- 1SC23

Denver,CO | | am hpc.

OctoRay: Framework for Scalable FPGA Cluster
Acceleration of Python Big Data Applications

Paper objectives

“To be able to scale out a data analytics task to
100s of FPGAs using Python transparently and
efficiently”

Big data scalability

- Big data scalability => input data parallelism Concurrent
execution of the same task on multiple computing cores/nodes
on different subsets of the data.

>

- Advantages:
- Lower costs
- Reliability
- Flexibility

Architecture: SW stack

e Big data SW stack
o Python
o Dask
e Integration with common
HW tools
o Pynq
o FPGA

Archltecture scalability

= & e

ol i’ : <:>
jupyter : Dask Python
:..,/ mﬁhon“ worker

Dask
<:> client +

scheduler

Xilinx U50 FPGA-

I

Input data

| Merge L] Dask -
' results . Python

worker Driver

Xilinx U50 FPGA -

. FPGA cluster :
Output data e e e e e e e e e e e :

Architecture: scalability

Using this architecture, we can scale to 10s or

of FPGA nodes -
Dask
Python
worker | Driver
B —
Dask
o [
client + I
scheduler
7
Input data ; B
. Merge]
1 results Dask
1 Python
Worker | Driver
B —

Output data

Data analytics pipeline

@

Data source
STAGE 1 STAGE 2
DATA PREPARATION DATAANALYTICS
Eg: Data (de)compression Eg: Machine learning

el

(@

Acceleration of both stages possible with OctoRay

Results

@ Chrome File Edit View History Bookmarks People Tab Window Help O3 O $ @ o) 00%BF Sun18:37 Ml Shashank Q =

[] ® 0 JARVICE X I ﬂ Documentation i X : Home Page - Sel: X & dask - Jupyter N X O vitis_libraries_da: X [-+) Dask: Status X -+
& C @ localhost:8888/notebooks/dask.ipynb# Qv B~ 6o » O : < ® 127.0.0.1:8787/status Y SO
Z Jupyter dask Last Checkpoint: aminute ago (unsaved changes) @ Logon [/ Staus Workers Tasks System Profile Graph Info
File Edit View Insert Cell Kernel Widgets Help Trusted |Pylhcm:i o]
Bytes stored: 1.66 GB Tasks Processing
B+ % @ B 4 ¥ PR B C W Code v =
data_split.append(total[start:)) #Last partition

Scatter the data to the workers before calling run on_worker on the workers

distributed data = client.scatter(data_split)

futures = client.map(run_on_worker, distributed data, range(num of workers))

results = client.gather(futures)

print("Received data from workers") t + + + + 4

Reorder the response based on original input order
results.sort(key = lambda result: result('index'])
compression_time = max((r['time') for r in results])

Task Stream — [Bioep < <

print("Writing combined (compressed) data to " + FINAL_COMPRESSED_FILE)
with open(FINAL_COMPRESSED_FILE, "wb") as f:
for result in results:
f.write(result('data’))

tl = time.time()
print("MAX COMPRESSION TIME (in s): ", compression_time)
print("TOTAL EXECUTION TIME (in s): ", tl1 - t0)

Splitting input file into 2 chunk(s)

IOPub data rate exceeded.

The notebook server will temporarily stop sending output
to the client in order to avoid crashing it.

To change this limit, set the config variable
*--NotebookApp.iopub_data_rate limit".

Current values:
NotebookApp.iopub_data_rate_limit=1000000.0 (bytes/sec)
NotebookApp.rate_limit_window=3.0 (secs)

Received data from workers

Writing combined (compressed) data to compressed.gz
MAX COMPRESSION TIME (in s): 0.7149055004119873
TOTAL EXECUTION TIME (in s): 14.521609544754028

FILE_COPY = FILE_TO_BE_COMPRESSED + ".copy"
COMMAND_TO_RUN = "gzip -dc " + FINAL COMPRESSED_FILE + " > " + FILE_COPY
print("Extracting", FINAL COMPRESSED FILE, "using command:

) t t t t t
print (COMMAND_TO_RUN) - A i 5 3 : 3
6o, Byatam(Co B_T0_ RUN) Progress -- total: 4, in-memory: 4, processing: 0, waiting: 0, erred: 0

print("Comparing”, FILE COPY, "to', FILE_TO_BE_COMPRESSED) L — 7 1}
with open(FILE_TO_BE_COMPRESSED, 'rb') as fl: run_on_worker 2/2
with open(FILE_COPY, 'rb') as f2:
if fl.read() f2.read():
print("Validation succeeded !!")
else:
print("Validation failed !!")

nimbix2 }® main+ Ln 263, Col 27 LF Makefile

https://docs.google.com/file/d/1arYjJZalxbPcWaAYGWwq8wi7Iftx-Ask/preview

Throughput [MBps]

Results: pipeline stages on FPGA

Data source Results

v ﬁ

N

4

600 6000

400 o 4000
o
=
3

200 'S, 2000
= |
o
o o
|_

0 0
gzip pigz 1 U50 2 U50 brevitas 1 U50 2 U50

Data (de)compression CNN inference

Throughput [FPS]

Results: flexible scalability on various FPGA

6000 = 1 PYNQ-Z2
A 2 PYNQ-Z2

3 PYNQ-Z2

4000 ® 4 PYNQ-Z2
* 5 PYNQ-Z2

2000 « 6 PYNQ-Z2

0 jg
0 50000 100000 150000 200000

Batch size (no. of images)

Throughput [FPS]

— 4 = 1Alveo U280
— | ‘ . 4 2Alveo U280
3 Alveo U280

¢ 3 Alveo U280 +
1 Alveo U250

* 3 Alveo U280 +
2 Alveo U250

x 3 Alveo U280 +
3 Alveo U250

@

L &

10000

0 50000 100000 150000 200000

Batch size (no. of images)

e Scalability on various FPGA platforms: Pyng/ Alveo
e CNN throughput for increasing batch size

Results: inter vs intra FPGA scalability

B 1 CU 1 node CNN total throughput

=3 2 CUs 1 node 30000 A ==
B 4 CUs 1 node
Bl 8 CUs 1 node
Bl 10 CUs 1 node 25000 -
A 1 CU 4 nodes

Enables scalability within g
FPGA using multiple CUs £ -
Scalability is just as good S
as between FPGAs 5000

0_.

1000 5000 10000 50000 100000
Batch size [images 32x32 RGB]

Easy scalability both on an FPGA and between FPGAs

Did we achieve objectives?

“To be able to scale out a data analytics task to
100s of FPGAs using Python transparently and
efficiently”

Yes .. partly
- Up to 10 boards & up to 10 CUs per board
- OctoRay works .. but end-to-end integration
still challenging (tooling is still HW centric)

Conclusions

- OctoRay’s multi-FPGA setup provides speedup for both stages
of a data analytics pipeline:

©)
©)
©)

Linear scalability for 10s of FPGAs
Compression: 2 FPGAs 4x faster than SW
Neural network: 2 FPGAs 12x faster than SW

- OctoRay supports:

©)

Various infrastructure setups: Multi-FPGA hosts or
single-FPGA hosts

Various types of accelerators: Vitis Library, FINN, PYNQ
and custom kernels

Various hardware platforms: Pyng-Z1, AWS-F1, Nimbix
Cloud, in-house servers

GitHub repo reference

The complete code for this project can be found at
https://github.com/abs-tudelft/octoray

Acknowledgment

We would like to thank Xilinx for donating the U50 Alveo FPGA board for the
purpose of this project, and for providing access to the ETH XACC cluster.

https://github.com/abs-tudelft/octoray

