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OctoRay: Framework for Scalable FPGA Cluster
Acceleration of Python Big Data Applications




Paper objectives

“To be able to scale out a data analytics task to
100s of FPGAs using Python transparently and
efficiently”




Big data scalability

- Big data scalability => input data parallelism Concurrent
execution of the same task on multiple computing cores/nodes
on different subsets of the data.

>

- Advantages:
- Lower costs
- Reliability
- Flexibility



Architecture: SW stack

e Big data SW stack
o Python
o Dask
e Integration with common
HW tools
o Pynq
o FPGA




Archltecture scalability
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Architecture: scalability

Using this architecture, we can scale to 10s or

of FPGA nodes -
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Data analytics pipeline
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Data source
STAGE 1 STAGE 2
DATA PREPARATION DATAANALYTICS
Eg: Data (de)compression Eg: Machine learning
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Acceleration of both stages possible with OctoRay

Results
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# Scatter the data to the workers before calling run on_worker on the workers

distributed data = client.scatter(data_split)

futures = client.map(run_on_worker, distributed data, range(num of workers))

results = client.gather(futures)

print("Received data from workers") t + + + + 4

# Reorder the response based on original input order
results.sort(key = lambda result: result('index'])
compression_time = max((r['time') for r in results])

Task Stream — [Bioep < <

print("Writing combined (compressed) data to " + FINAL_COMPRESSED_FILE)
with open(FINAL_COMPRESSED_FILE, "wb") as f:
for result in results:
f.write(result('data’))

tl = time.time()
print("MAX COMPRESSION TIME (in s): ", compression_time)
print("TOTAL EXECUTION TIME (in s): ", tl1 - t0)

Splitting input file into 2 chunk(s)

IOPub data rate exceeded.

The notebook server will temporarily stop sending output
to the client in order to avoid crashing it.

To change this limit, set the config variable
*--NotebookApp.iopub_data_rate limit".

Current values:
NotebookApp.iopub_data_rate_limit=1000000.0 (bytes/sec)
NotebookApp.rate_limit_window=3.0 (secs)

Received data from workers

Writing combined (compressed) data to compressed.gz
MAX COMPRESSION TIME (in s): 0.7149055004119873
TOTAL EXECUTION TIME (in s): 14.521609544754028

FILE_COPY = FILE_TO_BE_COMPRESSED + ".copy"
COMMAND_TO_RUN = "gzip -dc " + FINAL COMPRESSED_FILE + " > " + FILE_COPY
print("Extracting", FINAL COMPRESSED FILE, "using command:

) t t t t t
print (COMMAND_TO_RUN) - A i 5 3 : 3
6o, Byatam(Co B_T0_ RUN) Progress -- total: 4, in-memory: 4, processing: 0, waiting: 0, erred: 0

print("Comparing”, FILE COPY, "to', FILE_TO_BE_COMPRESSED) L — 7 1}
with open(FILE_TO_BE_COMPRESSED, 'rb') as fl: run_on_worker 2/2
with open(FILE_COPY, 'rb') as f2:
if fl.read() f2.read():
print("Validation succeeded !!")
else:
print("Validation failed !!")

nimbix2  }® main+ Ln 263, Col 27 LF Makefile


https://docs.google.com/file/d/1arYjJZalxbPcWaAYGWwq8wi7Iftx-Ask/preview

Throughput [MBps]

Results: pipeline stages on FPGA
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Throughput [FPS]

Results: flexible scalability on various FPGA
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e Scalability on various FPGA platforms: Pyng/ Alveo
e CNN throughput for increasing batch size



Results: inter vs intra FPGA scalability
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Easy scalability both on an FPGA and between FPGAs



Did we achieve objectives?

“To be able to scale out a data analytics task to
100s of FPGAs using Python transparently and
efficiently”

Yes .. partly
- Up to 10 boards & up to 10 CUs per board
- OctoRay works .. but end-to-end integration
still challenging (tooling is still HW centric)




Conclusions

- OctoRay’s multi-FPGA setup provides speedup for both stages
of a data analytics pipeline:

©)
©)
©)

Linear scalability for 10s of FPGAs
Compression: 2 FPGAs 4x faster than SW
Neural network: 2 FPGAs 12x faster than SW

- OctoRay supports:

©)

Various infrastructure setups: Multi-FPGA hosts or
single-FPGA hosts

Various types of accelerators: Vitis Library, FINN, PYNQ
and custom kernels

Various hardware platforms: Pyng-Z1, AWS-F1, Nimbix
Cloud, in-house servers



GitHub repo reference

The complete code for this project can be found at
https://github.com/abs-tudelft/octoray
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