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Introduction

• Transformers are crucial for NLP, Translation, and CV applications.

• Internal parallelism making them suitable for hardware acceleration.

• Existing accelerators focus on sparse or custom architectures.

• Lack of flexibility and parallelism for different TNN applications.

• High computational complexity and memory demand require efficient 
tiling and coding.

• GPUs have high power consumption, low computational efficiency, and 
underutilized memory bandwidth for dense computations.

• ProTEA is a runtime programmable accelerator tailored for the dense 
computations of most state-of-the-art transformer encoders. 
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Objectives

Novel Accelerator Architecture: High DSP utilization for high parallelism. 
and low latency.

Efficient Tiling Strategy: Supports large models in on-chip memory by 
applying tiling in MHA and FFN layers.

Optimized HLS Code: Efficient HLS coding for better performance within 
limited resources and compilation time.

Parameterized HLS Code: Allows design-time customization of key 
parameters.

Runtime Programmability: Enables dynamic parameter adjustments 
without hardware re-synthesis. 
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Background
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Overall Architecture

• Designed accelerator in C language using Vitis HLS 2022.2.1. 

• Two main modules- Attention and Feedforward Network modules.

• The system was designed in Vivado 2022.1.2 using the accelerator IP exported 
from HLS and other IPs (timer, UART, processor, etc.).

• Inputs and weights fetched from off-chip high-bandwidth memory (HBM) via 
AXI4 master interfaces.

• MicroBlaze (μB) processor enables programming TNN hyperparameters 
dynamically without hardware re-synthesis.

• Processor controls with the accelerator through AXI-lite slave interface.

• Software running on the processor was written in C on the Vitis IDE tool.

5



ekabir@uark.edu

Attention Module
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QKV Engine
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FFN Module
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FFN1 Engine
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Tiling on MHA

• Tiling is applied only along the 
columns of the weight matrix.

• Each matrix is loaded (embedding 
dimension/tile_size) times.

 
• Output of each tile is stored in 

intermediate buffers.

• Final output is the cumulative sum 
of the results computed across all 
tiles.
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Tiling on FFN

• Tiling is applied along both the rows and 
columns of the weight matrix.

• Two loops of iterations, each iterates 
(embedding dimension/tile_size) times.

• Each matrix is loaded 4*(embedding 
dimension/tile_size) times.

• Output of each tile is stored in 
intermediate buffers.

• Outputs are first accumulated along the 
columns and then along the rows for all 
tiles.
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Choosing Tile Size

• The number of tiles in MHA was varied from 6 to 
48, and for each MHA tile count, the number of 
tiles in FFN was varied from 2 to 6.
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• The optimal configuration for achieving the 
highest frequency (blue color) and lowest latency 
(green color) was 12 tiles in MHA and 6 tiles in 
FFN. 

• Maximum frequency of 200 MHz for 12 tiles in 
MHA and 6 tiles in FFN.

• This is optimal for HLS, allowing for efficient array 
partitioning within a reasonable compilation time 
(approximately 36 hours) for a state-of-the-art 
transformer encoder.
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Results

Runtime programmable parameters Synthesized once, Fixed Resource

Overall Result Showing Runtime Programmability
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Comparison with FPGA Accelerators 

Results

Normalized
throughput

• FTRANS [29] compressed the model by 
93%. The same compression would make 
ProTEA 9.4× faster. 

Peng et al.

Wojcicki et al.

EFA-Trans.

Qi et al.

FTrans
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• ProTEA achieved 2.8× and 1.7× 
improvements in speed and GOPS, 
respectively, compared to Wojcicki et al. 
[23] and Qi et al. [28]. 

• EFA-Trans [25] used HDL methods, 
resulted in more efficient hardware with a 
lower level of abstraction, making it 3.5× 
faster than ProTEA.

• Peng et al. [21] applied a high sparsity of 
90% to their model, achieving a 14× 
speedup over ProTEA. The same level of 
sparsity on ProTEA will make it 1.4x faster.
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Results

Cross Platform Comparison

• ProTEA is 0.79× and 6.65× slower 
than the Intel I5-5257U CPU and 
JETSON TX2 GPU respectively for 
model #1 because this study [21] 
applied a pruning technique.

• For model #3, ProTEA performed 
slower than the Intel I5-4460 CPU 
and NVIDIA RTX 3060 GPU, 
potentially due to the use of 
aggressive sparsity and omission of 
certain computations in the 
referenced work.
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• ProTEA is 2.5× faster than the 
NVIDIA TITAN XP GPU for model #2.

Wojcicki et al.

Peng et al.

EFA-Trans.
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Conclusion

• A flexible FPGA-based accelerator for a transformer neural network (TNN) encoder 
layer using a high-level synthesis (HLS) tool. 

• On the Alveo U55C platform, high utilization of resources such as DSPs for enhanced 
parallelism and minimized latency. 

• Supports runtime programmability, allowing it to adapt to various topologies without 
requiring re-synthesis. 

• An efficient tiling technique was implemented to accommodate large models in on-chip 
memory while preventing the overutilization of computational resources. 

• Outperforms some CPUs and GPUs in terms of speed and throughput despite operating 
at a lower frequency and lacking sparsity optimizations. 

• Achieved 1.3 to 2.8× speed up compared to the fastest state-of-the-art FPGA-based 
accelerators. 

16



Q/A

Thanks

17


	Slide 1
	Slide 2: Introduction
	Slide 3: Objectives
	Slide 4: Background
	Slide 5: Overall Architecture
	Slide 6: Attention Module
	Slide 7: QKV Engine
	Slide 8: FFN Module
	Slide 9: FFN1 Engine
	Slide 10: Tiling on MHA
	Slide 11: Tiling on FFN
	Slide 12: Choosing Tile Size
	Slide 13: Results
	Slide 14: Results
	Slide 15: Results
	Slide 16: Conclusion
	Slide 17: Thanks

