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FPGAs and AI Engines have lots of potential

• If you pick the right algorithm, then FPGAs can be 

successful – especially when considering energy

• AI Engines (AIEs) are also interesting

• Recently included in Ryzen AI CPUs



But programming these is (really) hard!

• Ultimately, scientific computing 
programmers won’t do this at large

• They just want to concentrate on 
their science and get results as 
quickly as possible 

• Arguably, annotating HLS pragmas is the 
easy bit
• Although can be more complex if the code is 

initially in Fortran as many HPC codes are

• The challenge is restructuring the algorithm to suit 
a dataflow architecture which can be a very time 
consuming process!



AMD have opened up their toolchains
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Initial integration: Flang HLS
• Some incompatibilities between Flang and the backend:

• AMD’s version 7 of LLVM, HLS pragmas must be lowered to AMD Xilinx specific LLVM-IR 
metadata or directives, HLS streams managed via custom IR primitives from the HLS Clang 
frontend

• Preprocessor identifies HLS pragmas and converts these to function calls. The 
downgrader then identifies these and replaces with corresponding IR
• Followed this approach as it requires no changes to Flang

• Streams provided in HLS by C++ template library
• Use a module approach, the preprocessor determines type                                                

and size and generates this



Flang HLS: Performance

• Benchmarked with TeaLeaf suite

• Found that C and Fortran HLS 

performance is fairly comparable, 

although there are differences for 

individual kernels

• Similar optimisation opportunities, 

although individual differences

Lots more detail at https://arxiv.org/pdf/2308.13274 On an Alveo U280

https://arxiv.org/pdf/2308.13274


Flang HLS: Utilisation

• Benchmarked with TeaLeaf suite

• Similar optimisation opportunities, 

although individual differences

Lots more detail at https://arxiv.org/pdf/2308.13274 
On an Alveo U280

https://arxiv.org/pdf/2308.13274


Extracting domain specific patterns

• The approach we took meant 

that this wasn’t tied to Fortran

• We could feed in any LLVM-IR to our downgrading pass, including that 

generated from MLIR

• A whole load of work 
had been done to 
connect the Devito 
and PSyclone DSLs 
to the MLIR stencil 
dialect
• This was then extended 

to extract stencils from 
Fortran code



A new HLS dialect
• There isn’t an HLS dialect, so we developed 

one based on the abstractions provided in 

the AMD C++ HLS front-end

• Then developed transformations to lower this 

dialect down to the form that is 

understandable by our existing connection

• Following the same sort of approach that we used 

for Flang, where HLS directives are represented by 

function calls and these are then replaced by the 

corresponding IR
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Our stencil HLS flow

• Using the existing flow and dialects, we lower 
the stencil dialect (and others) to the HLS 
dialect

• Ultimately means that stencil codes written in 
any language can target FPGAs

• Just had to implement the HLS dialect and 
transformations, using the rest of the ecosystem 



Performance

• More details at https://arxiv.org/pdf/2310.01914  
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https://arxiv.org/pdf/2310.01914


AMD’s AI Engines (AIEs)

• In late 2023 AMD released their Ryzen AI CPU, which 

contains their Neural Processor Unit which is a marketing 

term for an array of AIEs

• Very interesting, as a much more attractive proposition if 

these are already inside a CPU

• Current models of Ryzen AI contain an array of 20 AIEs, each AIE-ML contains 64KB 
and has five memory tiles each of 512KB
• However Int32 and FP32 support have been removed compared to the AIEs in Versal, with BF16 

provided instead
• Int32 and FP32 are emulated so can be run on the NPU

• Direct programming via kernels in C++ using API and Riallto Python framework for the 
dataflow graph 



Work on Flang to common MLIR dialects a foundation
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Extending to seamlessly offload on the AIEs

• AMD have a Python interface to their AIE MLIR dialects and lots of examples

• We pre-generate lots of kernels, and add placeholders for constants and types

• These are all added to a library, when mapping the Fortran intrinsic our approach picks the 

appropriate MLIR, fills in the placeholders and forwards to AMD’s aie-opt tool

• Lots of existing work done here, 

we added an xrt dialect to drive 

from the host



Driving from Fortran

• The idea is that this is all hidden from the 

programmer, they simply recompile their code and 

the intrinsics will be run on the Ryzen-AI’s AIE array 

if appropriate

• For simple reduction based intrinsics such as sum, prod, maxval, minval the CPU 

core tends to be faster for int32 and int16, although for bf16 and fp32 the AIEs 

tend to outperform the CPU

• For matmul the AIEs are around five times faster than the CPU core 

• However the caveat is that these are currently small matrix sizes due to what can fit in the 

memory tile’s memory across the NPU

• This is likely a limit of the matrix multiplication kernel we are using and not the general 

approach however



Conclusions

• MLIR is powerful and enables us to do some cool things 

that addresses a major challenge for adoption

• It’s especially great that AMD have invested in MLIR for the 

AIEs, and I think this opens up a whole host of opportunities

• It’s easy to get started with MLIR!

• xDSL is a Python based compiler framework that is 

1:1 compatible with MLIR

• Enables fast prototyping and exploration of the 

underlying ideas

• https://xdsl.dev 

https://xdsl.dev/
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