HPC on a Reconfigurable Substrate
with Machine Learning Support

Lizy K. John

Laboratory for Computer Architecture (LCA)
The University of Texas at Austin

Thanks to University of Texas that gave me the chance to have colleagues such as 2019
Nobel winner, Prof. John Goodenough and 2023 Turing award winner Bob Metcalfe.

john B. Goodenou Jr
Virginia H. Cockrell Centennial Chair 2023 Tu rlng

of Engineering

| Laboratory for
. . Computer Architecture

‘The Laboratory for Computer
Architecture (LCA) is a research group
within the Department of Electrical and
‘Computer Engineering at The University
of Texas at Austin. The lab is directed
by Dr. Lizy Kurian John and is part of
the Computer Engineering Research
Center (CERC).

The members of the Laboratory for
Computer Architecture are investigating
several avenues in computer
architecture. Some of our current
research interests include:

* Cloud and Big Data Architecture

* Memory Systems for Multicore and
Many- core Architectures

» Workload Characterization

* Proxies for Computer Performance/
Power Evaluation

* Low Power Architectures

« Development of Energy-efficient, High-
Performance Codes

» Compiler Support for Innovative Micro-
architectures

LCA research was supported in part by 3
Semiconductor Research Corporation (SRC) Tasks 3015.001 and 3148.001,
National Science Foundation (NSF) Grant #2326894,
and NVIDIA Applied Research Accelerator Program Grant.

HPC and Reconfigurable Substrates have
Changed a lot since 1990s

Arrival of FPGAS

FPGA Based Reconfigurable Computing

1993

Design In

$TaLNX

al

Reprogrammable Missile:
How an FPGA Adds Flexibility
to the Navy’s Tomahawk

would be kept on-board in read-
only memory.

Depending on the mode of
operation, then, the FPGA can
be configured in ‘mid-flight —
according to the needs of the
system software. The concept

will have other payoffs 1n. the

jocks, an8 mw:mmnu Interconnects.

cruise missile designed to perform
:r::veury of missions. Flying at low
high, subsonic speeds,
in any weath-
— is 500 to 700
Jaunched from

ith submarines.
“Key to the system’s ability to
complete its missions is the Digital
Scene Matchil Area Correlator —
‘the DSMAC 1IA. That subsystem
video input from an on-
camera, digitizes it, and com-
t to pictures pxeviously
in memory. Once a rnnct} is

able architecture breaks down into three categories — VO Blocks,

red by the processor to selections

to match the new data to a known

location. Based on this informa-

tion, control signals are generated

to guide the course of the missile.
That's where the FPGA, a 4,200

gate Logic Cell

Array from Xil-

future. Five years down the
line, if the Navy wants to add

1 L

" pROGRAM!

it
st /—Il 5= _———— new features, theylll be able to
1 stored in memory, and then com- because it's just a matter of lo-di;g

new flight software. ‘Hardware
om a library of existing pictures not be changt

‘That bonus s what led McDon-

nell Douglas to Xilinx's LCA.
Unlike some other FPGAs, W

can’t be reprof

‘;nx lnc.,c Sla;x The DSMAC IIA was made lw a‘sy&
ose, alif. y 2 tem’s logic func-
comes into the des‘gned to op! eral:‘e n tions simply by
picture. two modes, depen 0N reconfiguring the
McDonnell the mission at hand. rogrammable

d the ogic in the sys-

und, the missile can
its exact location relative to its
on-course” position and make

ts acco! ly.
DSMAC IIA is based on a

Semiconductor Corp.

part to generate
the timing si for the digitizer
and the address bits for storage.
The DSMAC TIA was designed to
operate in either of two modes,
depending on the mission at k
But rather than designing separate
for cach mode, McDonnell
cers drew on the pro-
nable gate array technolos

Bl M

tem.

Like a MICrOprocessor, the LCA is
a program-driven device. The archi-
tecture features three types of user-
configurable elements: an interior
array of logic blocks, 3 perimeter of
1/O blocks, and p:ogummable
interconnection resoUrCes. Config-
uration is established by program-
ming internal static memory cells
that determine the logle functions
and interconnections: configu-

IEEE Computer
Magazine, March 1993

IEEE Computer
Magazine, March 1993

This general-purpose
architecture speeds up
computationally
intensive tasks by
augmenting the core
processor’s functionality
with new operations.

Processor
Reconfiguration
Through
Instruction-Set
Metamorphosis

Peter M. Athanas, Virginia Polytechnic Institute
and State University

Harvey F. Silverman, Brown University

eneral-purpose computers are designed with the primary goal of provid-
ing acceptable performance on a wide variety of tasks rather than high
performance on specific tasks. The performance of these machines ulti-
mately depends on how well the capabilities of the processing platform match the
computational characteristics of the applications. If an application requires more
computational power than a general-purpose platform can achieve, users are often
driven to an application-specific computer architecture in which fundamental
machine capabilities are designed for a particular class of algorithms. Tasks suited
toa given application-specific machine perform well, but tasks outside the targeted
class usually perform poorly,

Computationally intensive applications typically spend most of their execution
time within a small portion of the executable code.’ A general-purpose machine
can substantially improve its performance in many of these applications by
adapting the processor’s configuration and fundamental operations to these
frequently accessed portions of code. Segments of the processing platform can be
reconfigured to add new capabilities that customize the architecture to individual
tasks. Such an architecture retains its general-purpose nature, while reaping the
performance benefits of application-specific architectures.

In this article. we review some of the issues in adaptive computing systems and
describe the architecture and compiler components of a general-purpose comput-
ing platform called PRISM (Processor Reconfiguration through Instruction-Set
Metamorphosis). We also describe PRISM-I, an initial prototype system, and
present experimental results that demonstrate the benefits of the PRISM concept.

PRISM (Athanas, 1993 March)

Table 1. Compilation and performance results of functions from the PRISM-I compiler running on a Sun Sparc 1PC

workstation. Speedup factors represent the improvement of executing on a 10-MHz M68010-based Armstrong node with
PRISM-I versus executing on the node without PRISM-1. Compilation times do not include target place-and-route times.

Function Compilation Percent Utilization [Speedup
Name Description (input bytes/output bytes) Time (min.) of XC3090 FPGA | Factor
Hamming(x,y) Hamming metric calculation (4/2) 6 38 ‘> 24
Bitrev(x) Bit-reversal function (4/4) 2 0 26
Neuron(x, y) Cascadable 4-input n-net function (4/4) 12 52 12
MultAcem(x,y) Multiply/accumulate function (4/4) 11 58 2.9
LogicEv(x) Logic-simulation engine function (4/4) 12 40 18
ECC(x,y) Error-correction coder/decoder (3/2) 6 14 24
Find_first_1(x) First “1” in input locater (4/1) 3 11 42
Piecewise(x) Five-section piecewise linear segmentation (4/4) 24 77 5.1
ALog2(x) Base-2 Axlog(x) computation (4/4) 16 74 54

Sequence Comparison using SPLASH
(Gokhale, 1991)

PRRPES I | | TEperE——

s s ERE = == = o=

-

Building and Using
a Highly Parallel
Programmable Logic Array

Maya Gokhale, William Holmes, Andrew Kopser, Sara

Lucas, Ronald Minnich, and Douglas Sweely

Supercomputing Research Center

Daniel Lopresti, Brown University

ith a $13,000 two-slot addition
called Splash, a Sun worksta-
tion can outperform a Cray-2

1Ct applica-

: involving bit-stream computa-
tions. have been run on Splash, which re-
ceiveda 1989 Gordon Bell Prize honorable
mention for timings on a problem that
compared a new DNA sequence against a
library of sequences to find the closest
match. In essence, Splash is a programma-

hila linaar lamis aveau that son ha canfie

Construction of real
hardware and feedback
from real users
contributed to Splash’s
design, development,

array, the linear array of chips comprising
Splash is programmed at a very low level.
A hardware implementation of the desired
algorithm must be synthesized. Unlike the
fixed-function systolic array, the “hard-
ware” can be reprogrammed and loaded
with new algorithms. This is made possible
by using field-programméble gate arrays
(FPGASs) as the chips of the linear array.
Unlike the programmable systolic array,
each stage of linear array does not have an

inctrnntinn cat architantnra Rathar than

VME bus j
Host 8-megabyte VSB staging memory
l VSB bus
Xilinx controi chips
Memory Memory Memory Memory Memory
U FIFOin X0 Xt —L e o - - X30 X31 FIFO out
Figure 1. The 32-stage linear array.
l2[3[4[5]6[7!
L bl]
_mbo ey
3 2 1 0 1 2 3
= ¥ (s ¥ —7 -
ol
d
[yl
|1
I e

lefTTolt]s]

SRR N

L71615418,2

Figure 7. A linear systolic array for sequence comparison.

Table 1. Benchmark results for 100 comparisons of 100-long sequences.

Best time
Machine in seconds Speedup Notes
L——-—-—n—l— e ‘\’wﬁ_ﬂ
< Splash 0.020 2,700 1 MHz, Sun 3/260 host
P-NAC 0.91 60 Special-purpose NMOS
device, Sun 2 host
Multiflow Trace 3.7 4 C compiler, optimization
level 5, 14 functional units
Connection Machine CM-2 4.7 11 C compiler, Paris
library 16,000 processors
Cray-2 6.5 8.3 Vector Pascal, one head
Convex CI 8.9 6.0 Vector C compiler,
optimization level 2
Sun 3/140 48 1.1 C compiler
Sun Sparcstation | 5.8 9.3 C compiler
DEC VAX 11/785 54 1.0 C compiler
e — M

FPGA Evolution

Sea of CLBs

Block RAMs

Embedded CPUs

DSP Slices (Sea of MACs)

ML Specific FPGAs (Xilinx Versal, Intel TensorBlocks)

-

Architectures for FPGASs

Interconnect

A

Logic BlockJ (b) Row-based

(a) Matrix-based

Interconnect

>

Logic Block —»

A g o
2 ER-Re
= 2 0 S
= E =@
.2 o= o
eh 5 O 'tn
=) = > o
— S0 A
mlimlmlmlimlmlm
I B
mlmlmlimlmlmlm;
| S N S QW
mlimlmlmlimlmlm
I O
mlmlmlmlmlmlm
I
mlmlmlmlmlmlm;
I S S
mimlmlimlimlmlm
N S S O

ccccoecocococooo
eccc000O 0000
eccce0 080800
escocee cesce

cccoceoc0c0G00
eeco00000© 0000
cocco09e 000000
eccoceeecos0e

ccescssceoon eoe coceecoooe0eo
FYLEEE RN BN R J 4 ooocooeoe00000D
Local Interconnect Local Interconnect

= . S

© L

22 ¢

2Eec

9 o

LT

Local Interconnect

©cocococcoco000
©cccococcos 00

LT

Local Interconnect

®t0ooocoo0oocccc 00
©®0c000 000009

(with local
interconnect)

(d) Sea-of-Gates

(c) Hierarchical

Clock Circuitry —

Oscillator

Phase Locked
Loop / Clock
Circuitry

Clock Circuitry —

'l-

I/0 Bank 0

I/0 Bank 1

i

Itll:ll:lﬂﬂl:l-'-l OooooooooOoo

— Clock Circuitry

l‘

b

/0 Bank 4

OO0O00O000O0000O0O0O0O00O0O0OO0O0OOOOOO0OO0 OOoOO

I/O Bank 3

-—Hnnnnnnnnnnn|:||:||:||:||:||:||:||:||:||:||:|'|:||:||:|nnnnnnnnnnnnnnnnnnnn.q.
| | | || || || | [|| || IE
| \ || || || || | || || | $#B—— SRAM Blocks
o
|
o
o
o
o
o
o
o
g—-l I/0 Blocks
]
o
o
o .
i Logic Blocks
0=
oo
am
aos
o~
o N
o
| || | || [|| | || || || I
| I | || || || || [|| || #O—— SRAM Blocks
o
Decryption User Nomvolatlle o
Block FlashrOM Charge Pumps =
o
o
A/D -
(=]
Flash Memory Blocks Converter Flash Memory Blocks o
o
o
Analog Analog| |Anabeg | |Anabog| |Aralog| | Analeg| (&nalog| (Analog) |Sreesl Al g
Cuad Cluad Cuad Cluad Cuad Cuad Cuad Clussd Gl.m? Dunﬂg o
o
-p-ﬂ eR=R=R=R=R=0=0=0=1=0=0=0=R=R=R=R=R=R:R=R=R=R=R=R=R=R=R=0:R=R=R=R=R=R=R=R=R=1=R=R=R=0=1=| m— Clock Circuitry

’IE

HPC has changed too

Al I1s the new HPC

Al is taking over as the primary technology used to tackle
complex computational problems

Al is becoming the key tool for performing complex
simulations and data analysis

Impressive ability to handle large datasets and intricate
models.

-

seeeeeeessssssssss | Batch size 1 e
Stages Matrix Multiplication No of Macs
M K N ~M*K*N
Tokenization and Word Embeddings
One Hot Mat * Embedded Weight Mat 2048 51,200 12288 1.28849E+12
Positional Encoding
Word Embedding Mat+ Positional Encoded Mc 2048 12288
Muli Head Attention Block
Number of Blocks 96
X*WQ=Q 2048 12288 128 3221225472
X*WK =K 2048 12288 128 3221225472
X*WV =V 2048 12288 128 3221225472
Q*KT=QK 2048 12288 2048 51539607552
Softmax 2048 2048
QK*V 2048 2048 128 536870912
Concate Heads 2048 12288
Linear Tranformation 2048 12288 12288 3.09238E+11
Feed forward Neural Network
Linear Tranformation + Bias 2048 12288 49152 1.23695E+12
Linear Transformation + Bias 2048 49152 12288 1.23695E+12
FEN + Input 2048 12288
Normalize 2048 12288
Decoding
2048 12288 51200 1.28849E+12
Softmax 2048 51200
Output 2048 51200
Total Model Parameters 1.7461E+11

1

All roads lead to GEMM

GEMM has been the bread and butter of HPC
HPC done via Al

HPC done in conjunction with Al

Whether HPC or Al,

All roads lead to GEMM

Programmable Matrix Accelerators — Tensor Cores

* Average speed-up on FP16 Tensor Cores
compared to FP32 CUDA Cores:

e GEMM: 7.69 X (hmma.1688), 9.14x
(hmma.16816)

*GEMV: 7.82 X (hmma . 1688), 8.96x
(hmma.16816)

*Conv2D: 6.99 X (hmma.1688)

@ |CUDA Cores: W32 (baseline) G

s 15 Tensor Cores: lfp161688 [lp16.16816

E

8

@10

Qa

Q

-.,E 5

E 0

E 52 2K 8K 32K | 512 2K 8K 32K
GEMM GEMV

g |CUDA Cores: [HMfp32 (baseline) G

S .. | Tensor Cores: Mfp16

215

g

%10

a

S

5 _-I -I -.I -I -I_

0

[J)

e 0 -I

d]| A B C D E F

Conv2D

Reshaping Matrix Accelerators to do other Functions

* In general, FIR and EIWiseAdd see

. @ |CUDA Cores: .fp32 ar (basellne) U
performance degradatlon on Tensor Cores E , Tensor Cores: Mfp16.ig | _ifp16.iq (1/64) Mfp16.rg
despite transformation. 5

* By default, they cannot run on Tensor Cores. |2
* Average speed-up on FP16 Tensor Cores EO 8Mi 8MS 32M8 32M16 128Mi6 128M32
compared to FP32 CUDA Cores: FIR
o . g |CUDA Cores: ifp32 (baseline)
FIR: |'C)"30 X (reshaped GEMV), 0.01x 5 [TensorCores: Mifs U
(implicit GEMV) £
g 1
+ EIWiseAdd: 0.25 X F;
E 0
| 256 &M 64M
ElWiseAdd .0

Tensor Slices: Hardening ML Specific Blocks

05 00 0 0F OF OF OF 06 OF N5 OF O OF 00 N6 06 06 OF OF OF O OF OF OF OF O OF 5 S NN
006 06 0 OF 0F 0F OF OF OF 06 OF 05 OF O N6 NN N OF 05 OF O OF OF F F O S B
NSNS NSNS SUPMONSY, SNRNENNSY (MSNSNESY RMSCSNERS BISSAISINY ANIMNNSS
LB % 8 &8 &8 &R &R _E B N & & ¥ N _§ _J
006 060 0F 06 OF OF OF OF I OF NG D6 NN D6 0 O OF 06 OF OV OF N OF OF O OF 5 OV O
06 96 0 06 0 0F OF OF OF OF OF OF 06 OF 05 06 06 06 0 N6 OF OV OF OF OF OF F F 6 F B ¥
06 95 06 %5 OF OF 0F OF OF OF 55 OF 06 I 55 06 00 O OF 06 OF OF OF OF 06 OF 05 F 06 F %
FEQNGRIT PRNEONR SIRCIDN NN NRINEEN WSSOI ROy et
L & 8 ¥ & X & & &% & 8§ § & ¥ & __§R]
B 06 06 6 OF OF OF OF OF OF OF OF OF OF OF OF BN O OF N BF B IF I E F N F NN
06 96 06 56 06 06 06 OF OF OF 0F OF 06 U6 55 06 06 06 OF 06 OF 06 OF OF 0F OF 06 OF 06 OF & ¥
006 0 % B 06 OF 06 OF OF 06 OF N6 06 06 06 0 06 0 S OF N6 OF OF OF OF 6 6 M F N
PRENIRY TROSRAIRS TR WONUET HORSPRIN SRS FPRISTORYE MR
. % ¥ & 3% ¥ 3 % § ¥ ¥ ¥ ¥ ¥ _§]
S s I i I e I S
SN NN NN NN NN EE NSNS NN NN NN NN ENSS NN
06 05 06 06 06 BF OF OF OF OF OF OF 06 06 00 06 OF N5 OF N6 OF OF OF OF N B F F FF N 6
ES0I000000000040000205501 MNMNMAC00000000000000000/ (NOODSSEC000000000000000T MGSGC0IOMSIGO00000S"
t B 8§ &8 &% ¥ &% &% § ¥ § ¥ ¥ ¥ __§
ERENNGE SSRGS WNNSCEISS SANIBSONOY SSEOSNINY DONNDGESSS DNSSEINSOIN SRAESISNTY
005 0 0 06 0F 06 BF OF OF 0F OF 06 06 06 06 O 06 OF O OF 06 OF OF OF OF 6 6 N5 6 N S
I E RN R R AR EREERERERERERNERESENENERERSERHE)]
SE NN NS NNNNS NSNS NN NN NN NSNS ESESN
B 8 & & ¥ &% ¥ % _E & & & N X ¥ |
POSRNNSNESN, POMDNIDSOAS SPSINNCRISS; SONSSOPSSS, RSCSIDNISS, PONPESNSONS SOPRNSSONE SPSSCRINGNY
06 06 0F 906 OF 0F OF OF OF OF OF OF 05 OF 05 OF 06 06 0F 0F OF 0F OF F OF OF OF OF & F B
IR R AR AR AR AR REERENENESENENENSRSE]
06 06 06 96 OF 06 OF OF OF OF 06 OF 56 OF 06 0F 06 95 0F 06 OF 0F OF OF OF OF 8F OF & OF % &
L B B 8 % &8 &R & _B _B _N &8 % N N _§]
ERGRONTDS PRI CONSOINON TOICOIONNN SROTRNNEDN (OULINEOON PRSDIGRON OISR
06 06 0F 06 OF OF OF OF OF OF OF OF 06 OF 05 OF 0 05 OF 0N OF OF OF N OV OF B OF F F B ¥
06 06 06 06 0F 06 OF 06 0F OF 35 OF 06 OF 06 0F 06 06 06 B OF 06 OF BF BF OF BF NF M N N

XL
EN an
-W%-
EREEEE

General goal — Higher performance and Lower energy

Arora et al., Tensor Slices to the Rescue: Supercharging ML Acceleration on FPGASs,

FPGA 2021

Compute Throughput and Frequency Improvement

Higher is better Higher is
better

" Tensor Slices m DSP Slices ® Logic Blocks u Baseline ® Proposed

£000 o _ 35X a00
Precision=int8

For mac operation

Takeaway: An FPGA with Tensor Slices can achieve significantly high compute

throughput and frequency for DL benchmarks, compared to a commercial FPGA.

. K
0 i ‘oﬁs‘@é@ %“66%@ & @p \é@\&@\g’% *@'&
Baseline 5% 10% 15% 20% 25% 30% PO Od &

Percent of area converted to tensor slices

Not extra area

Area and Routing Wirelength Reduction

Lower is
Lower is better
better

Tensor Slices: Non-ML Benchmarks do not slowdown

Higher is better
Lower is better

-
N

Non-ML/DL ML/DL

111178

(\Qa

_.

o
-

Achieved Frequency

(Normalized to baseline)

Baseline

o
N

Routing wirelength
(Normalized to baseline)
o

&
&

QO
¢ \0 (4 O \(4 \\'b \
2

» N4

v © % ‘b
?}99 > e\e" N & &

o X

AT T P T AT T R I A P

(o

Proposed_3pct m Proposed 3pct mProposed 6pct W Proposed 9pct

First 7 bars are for non-ML Benchmarks
Next 6 are for ML benchmarks

Last 2 bars are averages.

Last bar is average for ML

Intelligent Compute Fabrics: Supercharging ML
Acceleration on FPGAs — Compute-RAM Slices

a
o C

l

N‘\\\\Illll‘lili

_ Tensor
Compute in Slices

Compute Throughput Improvement

Higher is better
~ CoMeFa m DSP = LB

For mac operation

Takeaway: An FPGA with CoMeFa RAMs can achieve significant improvement in

compute throughput at a very low cost.
=

int4 int8 int16 hfp8 fp16

3.8% area overhead at the
chip level

Speedup and Energy Reduction

Higher is better Lower is better

! 20

Takeaway: An FPGA with CoMeFa RAMs can speed up benchmarks, while
reducmg energy consumption, compared to a commercial FPGA

Energy (no

0 0.0

LI = cC c LI c -
2ZRE.5235%§ 22852355
=ESSLS5<og 2 =SS g<pyg 2

w £ S oo § E T O Xy S E
o8 =0 S 9 00 = () S O
@] w o O O L o O
x O O o O

Era of Chiplets

2.5D and 3D Chiplets

DNNs in Extreme Throughput Applications

SmartCOREs LogiCOREs
Coarse-Grained]
Data

Trigger
FPGAs /| ASICs 99 Front End

Pipelines

—_
?
—
o
o
7

G
o
S~
»

Source: Thomas James, CERN

Readout Softly Defined Line Card

Buffers

SmartCOREs SmartCORE

CERN CMS Experiment))
Network Intrusion Detection

&)w do we mix DNNs into extreme-throughput applications?
* Need DNNs running at 100Ms of FPS, sub-microsecond latency

Slide from LogicNets presentation from AMD/Xilinx

LogicNets

* LogicNets (Umuroglu et al., 2020):
» Trains sparse DNNs with binary inputs and activations.
« After training: converts neurons into LUTs by going through all possible 10
combinations.

thresholding
activation

6x1-bit —2
inputs —& 1x1-bit output converf(
(enumerate inputs)

Total input: 6 bits Total input: 6 bits
Total output: 1 bit Total output: 1 bit

PyTorch FPGA

LogicNets

* LogicNets (Umuroglu et al., 2020):

» Trains sparse DNNs with binary inputs and activations.
« After training: converts neurons into LUTs by going through all possible 10

combinations.

L-LUT

X:Y

Yo > LuT
Yo

X:Y

i > LuT

VY

XY
LUT

v v

XY
LUT

¢+

XY
LUT

_|: LUT
X:Y

XY
LUT

XY

|, LUT

XY
LUT

Y V_ V. vV

X:Y
LUT

Argmax

o Differentiable Weightless Neural Networks (DWN) (ICML 2024)

Learnable Mapping

Learnable Reduction

Output
Class

Reconfigurable Chiplets

What should be on the reconfigurable chiplet?
CLB Chiplets

Neural Network Chiplets

DSP Chiplets

Memory Chiplets

Reconfigurable Tensor Cores (V*V, M*V, M*M)

Al Chiplets (TensorSlices, PIMs)

Thoughts on Reconfigurable Chiplets

Memory-Heavy Chiplet Configurations
Compute-Heavy Chiplet Configurations

Fine-Grain Reconfiguration (High Overhead)
Coarse-Grain Reconfiguration (Medium Overhead)

Large-Grain Reconfiguration (Small Overhead)

-

It’s all about the granularity

It’s all about the interconnect

It’s all about the scale

It’s all about the mapping of applications to
the heterogeneous reconfigurable
substrate

-

Importance of Mapping for
HPC on Reconfigurable Heterogeneous Substrate

High Level Language Code

S

‘g y ngh -Level Synthesis %

‘(‘2 Reglsuer Transfer Level Code

4 . 4 N
Y Performance Tuning Synthesis and mm_ Synthesis and
0" o7 and Compilation Physical Design mmmVap, Place, Route

CPU, GPU, TPU, ... ASIC FPGA
l W W v
Predicted Actual Predicted Predicted Actual Actual Predicted
Pp+ Pp+ Pp+ Pp+ pPp+ Pp+ pp+
xPU xPU xPU ASIC ASIC FPGA FPGA

100

NN NN

Desiqn Size
NANANANRNRRN

| |
1992 2000 2008 2016 2024

Year

-

ASICs

FLEXIEILITY EFFICIENCY

Chips will mix chiplets of CPUs, GPUs, FPGA-like
blocks, ASIC-like blocks, HBMs, etc.

High Throughput, Low Power, Low Latency

Summary

Reconfigurable Large Scale Substrates for Al and ML and
HPC seem viable

It will be all about the granularity

It will be all about the overheads of reconfiguration
It will be all about the interconnect

It will be all about the mapping

It will be all about the ability to model and evaluate

Hope we will make computing more energy efficient

[Source: Yoshua Bengio, ISCA TIML 2017]
Energy efficiency: the brain is about
500,000 x more energy efficient than an
Nvidia P100 GPU (ISCA 2017)

13,000 x more energy efficient than
H100

BPOE 2014

Thank You! Questions?

Laboratory for Computer Architecture (LCA)
The University of Texas at Austin
lca.ece.utexas.edu

	Slide 1: HPC on a Reconfigurable Substrate with Machine Learning Support
	Slide 2: Thanks to University of Texas that gave me the chance to have colleagues such as 2019 Nobel winner, Prof. John Goodenough and 2023 Turing award winner Bob Metcalfe.
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Instruction Set Metamorphosis with FPGAs
	Slide 7
	Slide 8: PRISM (Athanas, 1993 March)
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Architectures for FPGAs
	Slide 15
	Slide 16
	Slide 17: GPT3 Model Parameters and Multiplications
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Compute Throughput and Frequency Improvement
	Slide 23: Area and Routing Wirelength Reduction
	Slide 24
	Slide 25
	Slide 26: Compute Throughput Improvement
	Slide 27: Speedup and Energy Reduction
	Slide 28
	Slide 29
	Slide 30: DNNs in Extreme Throughput Applications
	Slide 31: LogicNets
	Slide 32: LogicNets
	Slide 33: DWNs
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Hope we will make computing more energy efficient
	Slide 46

