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HPC and Reconfigurable Substrates have
Changed a lot since 1990s

Arrival of FPGAS

FPGA Based Reconfigurable Computing
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Reprogrammable Missile:
How an FPGA Adds Flexibility
to the Navy’s Tomahawk

would be kept on-board in read-
only memory.

Depending on the mode of
operation, then, the FPGA can
be configured in ‘mid-flight —
according to the needs of the
system software. The concept

will have other payoffs 1n. the
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cruise missile designed to perform
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— is 500 to 700
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“Key to the system’s ability to
complete its missions is the Digital
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video input from an on-
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t to pictures pxeviously
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future. Five years down the
line, if the Navy wants to add
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part to generate
the timing si for the digitizer
and the address bits for storage.
The DSMAC TIA was designed to
operate in either of two modes,
depending on the mission at k
But rather than designing separate
for cach mode, McDonnell
cers drew on the pro-
nable gate array technolos
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tem.

Like a MICrOprocessor, the LCA is
a program-driven device. The archi-
tecture features three types of user-
configurable elements: an interior
array of logic blocks, 3 perimeter of
1/O blocks, and p:ogummable
interconnection resoUrCes. Config-
uration is established by program-
ming internal static memory cells
that determine the logle functions
and interconnections: configu-
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This general-purpose
architecture speeds up
computationally
intensive tasks by
augmenting the core
processor’s functionality
with new operations.

Processor
Reconfiguration
Through
Instruction-Set
Metamorphosis

Peter M. Athanas, Virginia Polytechnic Institute
and State University

Harvey F. Silverman, Brown University

eneral-purpose computers are designed with the primary goal of provid-
ing acceptable performance on a wide variety of tasks rather than high
performance on specific tasks. The performance of these machines ulti-
mately depends on how well the capabilities of the processing platform match the
computational characteristics of the applications. If an application requires more
computational power than a general-purpose platform can achieve, users are often
driven to an application-specific computer architecture in which fundamental
machine capabilities are designed for a particular class of algorithms. Tasks suited
toa given application-specific machine perform well, but tasks outside the targeted
class usually perform poorly,

Computationally intensive applications typically spend most of their execution
time within a small portion of the executable code.’ A general-purpose machine
can substantially improve its performance in many of these applications by
adapting the processor’s configuration and fundamental operations to these
frequently accessed portions of code. Segments of the processing platform can be
reconfigured to add new capabilities that customize the architecture to individual
tasks. Such an architecture retains its general-purpose nature, while reaping the
performance benefits of application-specific architectures.

In this article. we review some of the issues in adaptive computing systems and
describe the architecture and compiler components of a general-purpose comput-
ing platform called PRISM (Processor Reconfiguration through Instruction-Set
Metamorphosis). We also describe PRISM-I, an initial prototype system, and
present experimental results that demonstrate the benefits of the PRISM concept.




PRISM (Athanas, 1993 March)

Table 1. Compilation and performance results of functions from the PRISM-I compiler running on a Sun Sparc 1PC

workstation. Speedup factors represent the improvement of executing on a 10-MHz M68010-based Armstrong node with
PRISM-I versus executing on the node without PRISM-1. Compilation times do not include target place-and-route times.

Function Compilation  Percent Utilization [ Speedup
Name Description (input bytes/output bytes) Time (min.)  of XC3090 FPGA | Factor
Hamming(x,y) Hamming metric calculation (4/2) 6 38 ‘> 24
Bitrev(x) Bit-reversal function (4/4) 2 0 26
Neuron(x, y) Cascadable 4-input n-net function (4/4) 12 52 12
MultAcem(x,y) Multiply/accumulate function (4/4) 11 58 2.9
LogicEv(x) Logic-simulation engine function (4/4) 12 40 18
ECC(x,y) Error-correction coder/decoder (3/2) 6 14 24
Find_first_1(x)  First “1” in input locater (4/1) 3 11 42
Piecewise(x) Five-section piecewise linear segmentation (4/4) 24 77 5.1
ALog2(x) Base-2 Axlog(x) computation (4/4) 16 74 54




Sequence Comparison using SPLASH
(Gokhale, 1991)
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Building and Using
a Highly Parallel
Programmable Logic Array

Maya Gokhale, William Holmes, Andrew Kopser, Sara

Lucas, Ronald Minnich, and Douglas Sweely

Supercomputing Research Center

Daniel Lopresti, Brown University

ith a $13,000 two-slot addition
called Splash, a Sun worksta-
tion can outperform a Cray-2

1Ct applica-

: involving bit-stream computa-
tions. have been run on Splash, which re-
ceiveda 1989 Gordon Bell Prize honorable
mention for timings on a problem that
compared a new DNA sequence against a
library of sequences to find the closest
match. In essence, Splash is a programma-

hila linaar lamis aveau that son ha canfie

Construction of real
hardware and feedback
from real users
contributed to Splash’s
design, development,

array, the linear array of chips comprising
Splash is programmed at a very low level.
A hardware implementation of the desired
algorithm must be synthesized. Unlike the
fixed-function systolic array, the “hard-
ware” can be reprogrammed and loaded
with new algorithms. This is made possible
by using field-programméble gate arrays
(FPGASs) as the chips of the linear array.
Unlike the programmable systolic array,
each stage of linear array does not have an

inctrnntinn cat architantnra Rathar than
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Figure 7. A linear systolic array for sequence comparison.




Table 1. Benchmark results for 100 comparisons of 100-long sequences.

Best time
Machine in seconds Speedup  Notes
L——-—-—n—l— e ‘\’wﬁ_ﬂ
< Splash 0.020 2,700 1 MHz, Sun 3/260 host
P-NAC 0.91 60 Special-purpose NMOS
device, Sun 2 host
Multiflow Trace 3.7 4 C compiler, optimization
level 5, 14 functional units
Connection Machine CM-2 4.7 11 C compiler, Paris
library 16,000 processors
Cray-2 6.5 8.3 Vector Pascal, one head
Convex CI 8.9 6.0 Vector C compiler,
optimization level 2
Sun 3/140 48 1.1 C compiler
Sun Sparcstation | 5.8 9.3 C compiler
DEC VAX 11/785 54 1.0 C compiler
e — M




FPGA Evolution

Sea of CLBs

Block RAMs

Embedded CPUs

DSP Slices (Sea of MACs)

ML Specific FPGAs (Xilinx Versal, Intel TensorBlocks)

-



Architectures for FPGASs
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Clock Circuitry —

Oscillator

Phase Locked
Loop / Clock
Circuitry

Clock Circuitry —
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HPC has changed too

Al I1s the new HPC

Al is taking over as the primary technology used to tackle
complex computational problems

Al is becoming the key tool for performing complex
simulations and data analysis

Impressive ability to handle large datasets and intricate
models.

-



seeeeeeessssssssss | Batch size 1 e
Stages Matrix Multiplication No of Macs
M K N ~M*K*N
Tokenization and Word Embeddings
One Hot Mat * Embedded Weight Mat 2048 51,200 12288 1.28849E+12
Positional Encoding
Word Embedding Mat+ Positional Encoded Mc 2048 12288
Muli Head Attention Block
Number of Blocks 96
X*WQ=Q 2048 12288 128 3221225472
X*WK =K 2048 12288 128 3221225472
X*WV =V 2048 12288 128 3221225472
Q*KT=QK 2048 12288 2048 51539607552
Softmax 2048 2048
QK*V 2048 2048 128 536870912
Concate Heads 2048 12288
Linear Tranformation 2048 12288 12288 3.09238E+11
Feed forward Neural Network
Linear Tranformation + Bias 2048 12288 49152 1.23695E+12
Linear Transformation + Bias 2048 49152 12288 1.23695E+12
FEN + Input 2048 12288
Normalize 2048 12288
Decoding
2048 12288 51200 1.28849E+12
Softmax 2048 51200
Output 2048 51200
Total Model Parameters 1.7461E+11

1




All roads lead to GEMM

GEMM has been the bread and butter of HPC
HPC done via Al

HPC done in conjunction with Al

Whether HPC or Al,

All roads lead to GEMM




Programmable Matrix Accelerators — Tensor Cores

* Average speed-up on FP16 Tensor Cores
compared to FP32 CUDA Cores:

e GEMM: 7.69 X (hmma.1688), 9.14x
(hmma.16816)

*GEMV: 7.82 X (hmma . 1688), 8.96x
(hmma.16816)

*Conv2D: 6.99 X (hmma.1688)
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Reshaping Matrix Accelerators to do other Functions

* In general, FIR and EIWiseAdd see

. @ |CUDA Cores: .fp32 ar (basellne) U
performance degradatlon on Tensor Cores E , Tensor Cores: Mfp16.ig | _ifp16.iq (1/64) Mfp16.rg
despite transformation. 5

* By default, they cannot run on Tensor Cores. |2
* Average speed-up on FP16 Tensor Cores EO 8Mi  8MS  32M8  32M16 128Mi6 128M32
compared to FP32 CUDA Cores: FIR
o . g |CUDA Cores: ifp32 (baseline)
FIR: |'C)"30 X (reshaped GEMV), 0.01x 5 [TensorCores: Mifs U
(implicit GEMV) £
g 1
+ EIWiseAdd: 0.25 X F;
E 0
| 256 &M 64M
ElWiseAdd .0




Tensor Slices: Hardening ML Specific Blocks
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General goal — Higher performance and Lower energy

Arora et al., Tensor Slices to the Rescue: Supercharging ML Acceleration on FPGASs,

FPGA 2021




Compute Throughput and Frequency Improvement

Higher is better Higher is
better

" Tensor Slices m DSP Slices ® Logic Blocks u Baseline ® Proposed

£000 o _ 35X a00
Precision=int8

For mac operation

Takeaway: An FPGA with Tensor Slices can achieve significantly high compute

throughput and frequency for DL benchmarks, compared to a commercial FPGA.

. K
0 i ‘oﬁs‘@é@ %“66%@ & @p \é@\&@\g’% *@'&
Baseline 5% 10% 15% 20% 25% 30% PO Od &

Percent of area converted to tensor slices

Not extra area




Area and Routing Wirelength Reduction

Lower is
Lower is better
better




Tensor Slices: Non-ML Benchmarks do not slowdown

Higher is better
Lower is better
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Intelligent Compute Fabrics: Supercharging ML
Acceleration on FPGAs — Compute-RAM Slices
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Compute Throughput Improvement

Higher is better
~ CoMeFa m DSP = LB

For mac operation

Takeaway: An FPGA with CoMeFa RAMs can achieve significant improvement in

compute throughput at a very low cost.
=

int4 int8 int16 hfp8 fp16

3.8% area overhead at the
chip level




Speedup and Energy Reduction

Higher is better Lower is better

! 20

Takeaway: An FPGA with CoMeFa RAMs can speed up benchmarks, while
reducmg energy consumption, compared to a commercial FPGA
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Era of Chiplets




2.5D and 3D Chiplets




DNNs in Extreme Throughput Applications

SmartCOREs LogiCOREs
Coarse-Grained ]
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Readout Softly Defined Line Card

Buffers

SmartCOREs SmartCORE

CERN CMS Experiment ) )
Network Intrusion Detection

&)w do we mix DNNs into extreme-throughput applications?
* Need DNNs running at 100Ms of FPS, sub-microsecond latency

Slide from LogicNets presentation from AMD/Xilinx



LogicNets

* LogicNets (Umuroglu et al., 2020):
» Trains sparse DNNs with binary inputs and activations.
« After training: converts neurons into LUTs by going through all possible 10
combinations.

thresholding
activation

6x1-bit —2
inputs —& 1x1-bit output converf(
(enumerate inputs)

Total input: 6 bits Total input: 6 bits
Total output: 1 bit Total output: 1 bit

PyTorch FPGA




LogicNets

* LogicNets (Umuroglu et al., 2020):

» Trains sparse DNNs with binary inputs and activations.
« After training: converts neurons into LUTs by going through all possible 10

combinations.
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o Differentiable Weightless Neural Networks (DWN) (ICML 2024)

Learnable Mapping

Learnable Reduction

Output
Class




Reconfigurable Chiplets

What should be on the reconfigurable chiplet?
CLB Chiplets

Neural Network Chiplets

DSP Chiplets

Memory Chiplets

Reconfigurable Tensor Cores (V*V, M*V, M*M)

Al Chiplets (TensorSlices, PIMs)



Thoughts on Reconfigurable Chiplets

Memory-Heavy Chiplet Configurations
Compute-Heavy Chiplet Configurations

Fine-Grain Reconfiguration (High Overhead)
Coarse-Grain Reconfiguration (Medium Overhead)

Large-Grain Reconfiguration (Small Overhead)

-



It’s all about the granularity




It’s all about the interconnect




It’s all about the scale




It’s all about the mapping of applications to
the heterogeneous reconfigurable
substrate

-



Importance of Mapping for
HPC on Reconfigurable Heterogeneous Substrate

High Level Language Code

S

‘g y ngh -Level Synthesis %

‘(‘2 Reglsuer Transfer Level Code

4 . 4 N
Y Performance Tuning Synthesis and mm_ Synthesis and
0" o7 and Compilation Physical Design mmmVap, Place, Route

CPU, GPU, TPU, ... ASIC FPGA
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ASICs

FLEXIEILITY EFFICIENCY

Chips will mix chiplets of CPUs, GPUs, FPGA-like
blocks, ASIC-like blocks, HBMs, etc.

High Throughput, Low Power, Low Latency




Summary

Reconfigurable Large Scale Substrates for Al and ML and
HPC seem viable

It will be all about the granularity

It will be all about the overheads of reconfiguration
It will be all about the interconnect

It will be all about the mapping

It will be all about the ability to model and evaluate




Hope we will make computing more energy efficient

[Source: Yoshua Bengio, ISCA TIML 2017]
Energy efficiency: the brain is about
500,000 x more energy efficient than an
Nvidia P100 GPU (ISCA 2017)

13,000 x more energy efficient than
H100




BPOE 2014

Thank You! Questions?

Laboratory for Computer Architecture (LCA)
The University of Texas at Austin
lca.ece.utexas.edu
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