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Abstract—Transformer neural networks (TNN) have been
widely utilized on a diverse range of applications, including
natural language processing (NLP), machine translation, and
computer vision (CV). Their widespread adoption has been
primarily driven by the exceptional performance of their
multi-head self-attention block used to extract key features from
sequential data. The multi-head self-attention block is followed
by feedforward neural networks, which play a crucial role
in introducing non-linearity to assist the model in learning
complex patterns. Despite the popularity of TNNs, there has
been limited numbers of hardware accelerators targeting these
two critical blocks. Most prior works have concentrated on sparse
architectures that are not flexible for popular TNN variants. This
paper introduces ProTEA, a runtime programmable accelerator
tailored for the dense computations of most of state-of-the-art
transformer encoders. ProTEA is designed to reduce latency
by maximizing parallelism. We introduce an efficient tiling
of large matrices that can distribute memory and computing
resources across different hardware components within the
FPGA. We provide run time evaluations of ProTEA on a Xilinx
Alveo U55C high-performance data center accelerator card.
Experimental results demonstrate that ProTEA can host a wide
range of popular transformer networks and achieve near optimal
performance with a tile size of 64 in the multi-head self-attention
block and 6 in the feedforward networks block when configured
with 8 parallel attention heads, 12 layers, and an embedding
dimension of 768 on the U55C. Comparative results are provided
showing ProTEA is 2.5× faster than an NVIDIA Titan XP GPU.
Results also show that it achieves 1.3 – 2.8× speed up compared
with current state-of-the-art custom designed FPGA accelerators.

Index Terms—FPGA, Transformer, Attention, Neural
Networks, Encoder, High-Level Synthesis, Natural Language
Processing, Hardware Accelerators.

I. INTRODUCTION

In recent years, transformer neural networks have become
widely utilized on a diverse range of applications including
natural language processing (NLP) [1], [2], neural machine
translation [3], and image processing [4]. They are becoming
favored over traditional recurrent neural network (RNN) and
long short-term memory (LSTM) models for NLP tasks, and
convolutional neural networks (CNN) for CV tasks. Their
popularity is being driven by their ability to enable high
computational parallelism for both the training and inference
steps. Their natural exposure of higher levels of parallelism
makes them well-suited for acceleration on hardware such
as GPUs and FPGAs. There exist many transformer-based
models such as full transformers containing both encoder and
decoder [2], BERT [5], RoBERTa [6], Swin Transformers [7],

structBERT [8] etc. These models incorporate two notable
features: a multi-headed attention (MHA) mechanism and
feedforward neural networks (FFN) that distinguishes them
from traditional CNNs, RNNs, and LSTMs. These MHA
and FFN mechanisms are computationally expensive due to
intensive matrix-matrix multiplications and complex data flows
[9]. They account for a significant portion of runtime in
many existing TNNs [10]. Unfortunately, executing TNNs
is inefficient on general-purpose platforms such as GPUs
and CPUs because of their high power consumption, low
computational efficiency, underutilized memory bandwidth,
and significant compilation overheads [11]. In addition to
GPUs, FPGAs have become popular commercial off the
shelf components used to accelerate DNNs. FPGAs offer the
ability to exploit high level of parallelism to provide low
run time inference latencies with efficient power consumption
[12], [13]. Many studies have investigated how to increase
the parallelization of CNNs, LSTMs, Graph Convolutional
Networks [14]–[17] on FPGAs to enhance performance.
Recently, TNNs have been successfully deployed on FPGAs
and application-specific integrated circuit (ASIC) hardware
accelerators [18]–[20]. Most implementations compress the
model by using different weight pruning strategies, and
reduce latency by incorporating sparse matrices. Thus,
they use a specialized sparse architecture specific to each
application. However, different applications require different
sparsity patterns, necessitating the redesign of the hardware
architecture for optimal results. This comes at the cost of
time-consuming synthesis, and requires skills in digital design
and computer architecture as well as detailed knowledge of
each target logic family. Therefore, there is a need for a
versatile accelerator capable of efficiently managing dense
matrix computations across a range of TNN applications.

The study in [18] uses logic resources to implement
a systolic array for parallelism, which can lead to
underutilization of digital signal processing (DSP) units that
are capable of high-speed computation at higher frequencies.
DSP utilization also depends on the implementation method.
For instance, many accelerators [20]–[23] employ high-level
synthesis (HLS) tools, while others use hardware description
language (HDL) [24]–[26] for design. Although HLS requires
less implementation time compared to HDL, writing efficient
HLS code that effectively manages specific FPGA resources,
such as DSPs, for optimal performance remains challenging

521979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00074



[15].
The analysis in [27]–[30] demonstrated that MHA and FFN

occupy major portions of the memory and they have the
highest computational demands. Since on-chip memory of
FPGAs typically does not exceed 36MB and off-chip memory
bandwidth is sometimes limited, matrices must be partitioned
into tiles. However, designing an optimal partitioning scheme
for MHA and FFN that aligns effectively with the architecture
presents a significant challenge.

In this paper, HLS tool was used to design ProTEA, a
programmable accelerator for transformer encoders. The code
of the design written in HLS was optimized to increase
the parallel computations by the DSPs. ProTEA incorporates
efficient tiling for both the attention mechanism and linear
transformations. It ensures enhanced parallel computations
and communication so that the transformer encoding can be
accelerated as much as possible.

The contributions of this paper are:
• A novel accelerator architecture for transformer encoders

that maximizes DSP utilization to enhance parallel
processing and achieve low latency.

• An efficient tiling strategy for weight matrices in both
the multi-head attention layer and the feedforward neural
network layer, enabling the accommodation of large
models within on-chip memory.

• A parameterized HLS code that allows for design-time
adjustments of parameters in the HLS tool.

• A runtime programmable feature enabling dynamic
adjustment of parameters in software, facilitating the
evaluation of different models without the need for
hardware re-synthesis.

II. BACKGROUND

Transformers consist of several fundamental components,
as depicted in Fig. 1. An input sequence of tokens is
first converted into embeddings. The positional encoder adds
positional information to these embeddings, enabling the
model to account for the order of tokens in a sequence.
This encoder generates vectors that provide context based
on each word’s position in a sentence. These vectors are
then linearly transformed into three tensors: Q (queries),
K (keys), and V (values) by multiplying the embedding
matrix with three distinct weight matrices. The encoder
block processes these tensors, transforming them into a
higher-level representation that captures essential information.
This transformation is crucial for accurately capturing features
and contextual relationships within the input sequence. The
encoder architecture is composed of two primary sub-layers:
(1) the self-attention mechanism, and (2) the position-wise
feed-forward network.

The self-attention mechanism allows the model to
simultaneously evaluate different parts of an input sequence,
capturing long-range relationships by calculating attention
scores and using multi-head projections for various input
representations. This capability enables the model to
effectively learn complex patterns, dependencies, and

relationships. The position-wise feed-forward network (FFN),
similar to a multilayer perceptron (MLP), applies linear
transformations independently to each position in the input
sequence. This network performs two linear transformations,
primarily involving matrix-vector multiplication. The first
transformation includes activation functions such as the
Rectified Linear Unit (ReLU) or Gaussian Error Linear Unit
(GeLU), while the second transformation does not.

Additionally, each sub-layer incorporates a residual
connection combined with layer normalization (LN),
addressing the vanishing gradient problem during training.
Residual connections and LN layers are added after each
MHA and FFN layer, involving the addition of matrix
elements and nonlinear functions.
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Fig. 1. Transformer Architecture.

The decoder block, depicted in Fig. 1, is tasked
with generating the output sequence using the encoded
representations provided by the encoder. Similar to the
encoder, the decoder comprises a stack of N identical layers.
Each layer in the decoder includes three sub-layers: (1)
the Masked Attention Mechanism, which is similar to the
encoder’s self-attention but incorporates a masking feature to
prevent the output from depending on future outputs; (2) an
attention layer that focuses on the encoder’s output, allowing
the decoder to highlight relevant parts of the input sequence
for each output element; and (3) a position-wise feed-forward
network.

As shown in Fig 2, the scaled dot-product attention in each
head is a vital component of the multi-head attention layer. The
attention weights are calculated by taking the dot product of
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Fig. 2. Multihead Attention Layer.

the Q and K matrices and then scaling the result by the square
root of the second dimension of the K matrix. This scaling is
crucial to prevent the dot products from becoming too large,
which helps stabilize gradients during training. The scaled
dot products are then passed through the softmax function
to compute the attention weights. These weights are used to
perform a weighted sum of the value vectors. The final output
is the projection of the concatenated sequences from all heads.

The output of MHA can be represented as Equation 1 &
2. The input sequence X is linearly mapped into Qi,Ki, Vi

matrices using weights and biases. The parameter dk =
dmodel/h is the 2nd dimension of Qi and Ki. dmodel is a
hyperparameter called embedding dimension and h is number
of heads. ‘i’ is the index for attention heads.

Attention(Qi,Ki, Vi) = softmax

(
Mask

(
QiK

T
i√

dk

))
Vi

(1)

Qi = X ×Wq +Bq,

Ki = X ×Wk +Bk,

Vi = X ×Wv +Bv

(2)

III. RELATED WORK

Various FPGA and ASIC accelerators have been designed
for TNNs. The ASIC design in [19] leveraged parallelism
and specialized datapaths to achieve significant gains in
performance and energy efficiency. Another ASIC, ELSA [10],
employed specialized approximation algorithms to reduce
computational demands. The SpAtten [31] ASIC utilized
sparsity and quantization to decrease computations and
memory access. Additionally, the hardware-software co-design
framework Sanger [9] facilitated dynamic sparsity through a
reconfigurable ASIC architecture. Despite these advancements,
these solutions primarily focus on accelerating sparse attention
mechanisms and do not address the deployment of full

transformer models. The FPGA accelerator proposed by Lu
et al. [18] is the first hardware architecture to accelerate both
the MHA and FFN layers of the transformer. However, their
implementation was done using HDL for a single attention
head. A shared computing architecture is implemented in [32],
where a parallel computing array is shared between MHA
and FFNs for a CNN application. A novel structural pruning
method was proposed by [33] and the associated accelerator
on FPGA was designed to reduce memory footprint. Peng
et al. [21] explored column-balanced block-wise pruning
for transformers and designed an FPGA accelerator for
optimized block-wise matrix multiplication. An algorithm
hardware framework [28] utilizes latency and accuracy
constraints to determine the optimal sparsity ratio and
select an appropriate FPGA platform. The energy-efficient
acceleration framework FTRANS [29] features an improved
block-circulant matrix method for algorithm-level sparsity,
along with a custom-designed accelerator tailored for this
approach. Wojcicki et al. [23] deployed a small TNN model
on FPGA using HLS for experiments at the Large Hadron
Collider. All of the existing hardware architectures are
designed for a specific TNN and a specific sparsity pattern.
They lack the flexibility to reconfigure the computing structure
for different applications during runtime. EFA-Trans [25] is
compatible with dense and sparse computing patterns, but it
would need resynthesis of the hardware to switch between two
options. Furthermore, none of them explored which tile size
and what utilization DSPs could achieve optimum parallelism.

IV. ACCELERATOR ARCHITECTURE

The core of the accelerator is designed in C language
on Vitis HLS 2022.2.1 tool. C simulation verifies the
correctness of the algorithm, while C/RTL co-simulation
ensures the functionality of the synthesized hardware. This
section describes the high-level synthesis design technique
that generates an optimized architecture utilizing most of the
DSPs in the computation engines, ensuring high parallelism.
The overall structure of the accelerator contains two main
processing modules - the multihead attention (MHA) module
and the feedforward network (FFN) module, which are shown
in Fig. 3 and Fig. 4 respectively. The overall system was
designed in Vivado 2022.1.2 design suite. It contains a custom
IP block for the accelerator, which is exported from HLS. The
inputs and weights are fetched from off-chip high-bandwidth
memory (HBM) using AXI4 master interfaces [34] when the
load instruction from the accelerator controller is received
according to demand. The accelerator receives control signals
from the processor through an AXI-lite slave interface [35].
Each hyperparameters of TNN can be programmed during
runtime up to a maximum value by MicroBlaze (µB) softcore
processor [36].

A. Attention Module

The attention module (Fig. 3) comprises three computation
engines (CE), labeled as QKV CE , QKCE , and SV CE based
on their outputs. The number of these engines is determined
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Fig. 3. Computations of the Attention Module

by the number of attention heads (h). Each engine features an
array of processing elements (PE), where each PE includes
a DSP48 for performing multiplication and accumulation
(MAC) operations. The quantity of PEs denoted as ‘t’ is
influenced by the unrolling factor of the inner loop and
the initiation interval of the pipelined outer loop. Since the
data access patterns and computational needs vary across
different engines, each has separate function definition in
HLS. This ensures that the synthesized RTL modules of
the engines contain distinct PE arrays, enabling individual
optimization. Input data and weights are stored in multiple
BRAMs/LUTRAMs to support parallel access.

Each PE operates independently, equipped with its own
memories, controller, and computing units. In HLS, the
weights (Wq , Wk, Wv) for generating the query (Q), key (K),
and value (V) matrices are defined as separate two-dimensional
arrays of size (dmodel

h × TSMHA). Here, TSMHA represents
the tile size in the attention module. It is the dimension
of the sub-matrices into which the larger weight matrices
are partitioned. The number of heads, tile size, and array
partitioning directives in HLS determine how these arrays are
divided to create multiple two-port BRAMs. To address the
limited ports of BRAMs, array partitioning and data loading
are optimized to ensure that data needed simultaneously by a
DSP is stored in separate BRAMs. The Q, K, and V matrices,
sized (SL× dmodel

h ), are stored in intermediate buffers. Here,
SL stands for sequence length.

1) QKVCE engine: QKV CE engine generates the query,
key, and value matrices. This engine contains the Wq , Wk, Wv

buffers, and input (Xi) buffers from which data is accessed
in parallel by parallel DSP units. The arrays used in this
engine are divided into subarrays using our tiling technique
to fit into on-chip memories. The number of loop iterations in
the QKV CE engine is determined by TSMHA, resulting in
a total of ( dmodel

TSMHA
) tiles or iterations. During each iteration,

distinct data is loaded into the Wq , Wk, Wv , and Xi buffers.
Computations then commence in the PEs, while biases for
the Q, K, and V matrices are simultaneously loaded into

registers from off-chip memory. These biases are subsequently
added to the Q, K, and V matrices. Algorithm 1 illustrates the
computations of this engine, where the second loop (line 6) is
pipelined, resulting in the full unrolling of the innermost loop
(line 8) and generating ( dmodel

TSMHA
) PEs.

2) QKCE engine: The QKCE engine performs
matrix-matrix multiplication between the Q and K matrices.
Since these matrices are relatively small, they are not tiled.
Algorithm 2 outlines the operations performed.

Algorithm 1 Q, K, V Calculation
1: for i← 1 to Sequence Length do
2: #pragma HLS pipeline off
3: Sq ← 0
4: Sk ← 0
5: Sv ← 0
6: for k ← 1 to Embedding Dimension

Number of Heads do
7: #pragma HLS pipeline II = 1
8: for j ← 1 to Tiles in MHA do
9: Sq ← Sq + x[i][j]× wq[k][j];

10: Sq ← Sq + x[i][j]× wk[k][j];
11: Sq ← Sq + x[i][j]× wv[k][j];
12: end for
13: Q[i][k]← Q[i][k] + Sq;
14: K[i][k]← K[i][k] + Sk;
15: V [i][k]← V [i][k] + Sv;
16: end for
17: end for

The innermost loop (line 6) is fully unrolled, resulting in
(dmodel

h ) PEs for this engine. The engine generates a matrix
(S) of attention weights, which is stored in either BRAM or
registers. These values are then passed to the softmax function.
The softmax function, implemented in HLS, utilizes LUTs and
flip-flops (FFs) to compute the result.
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Algorithm 2 Q×KT Calculation
1: for i← 1 to Sequence Length do
2: #pragma HLS pipeline off
3: for j ← 1 to Sequence Length do
4: #pragma HLS pipeline II = 1
5: S ← 0
6: for k ← 1 to Embedding Dimension

Number of Heads do
7: S ← S +Q[i][k]×K[j][k];
8: end for
9: s[i][j]← S/Embedding Dimension;

10: end for
11: end for

3) SVCE engine: The output matrix (S) from the softmax
operation is passed to the SV CE engine (Algorithm 3), where
it undergoes matrix-matrix multiplication with the value (V)
matrix. In Algorithm 3, the innermost loop (line 6) is fully
unrolled, resulting in (SL) PEs. The output from this engine
is termed the attention score.

Algorithm 3 S × V Calculation
1: for i← 1 to Sequence Length do
2: #pragma HLS pipeline off
3: for j ← 1 to Embedding Dimension

Number of Heads do
4: #pragma HLS pipeline II = 1
5: vv ← 0
6: for k ← 1 to Sequence Length do
7: vv ← vv + S[i][k]× V [k][j];
8: end for
9: SV [i][j]← vv;

10: end for
11: end for

B. Feedforward Network Module

There are three CEs, denoted as FFN1CE , FFN2CE , and
FFN3CE in FFN to perform the operations of feedforward
networks of different dimensions (Fig. 4). The definitions of
the functions representing the CEs have different dimensions
of arrays for the inputs and outputs in HLS. These arrays
are converted into BRAMs/LUTRAMs after synthesis. The
number of computations inside each engine is different, which
is why each has a separate function in HLS. They contain a
different number of processing elements (PE) after synthesis
because of different unrolling factors of the innermost loop.
The weights are stored in a two-dimensional array (Wo)
of size ( dmodel

TSFFN
× (4×dmodel)

TSFFN
) in HLS, where TSFFN is

tile size in FFN. FFN1CE and FFN3CE are followed by
layer normalization (LN) modules. Algorithm 4 describes the
general coding approach for an FFN engine.

1) FFN1CE engine: FFN1CE engine performs the first
linear transformation on the attention scores. The arrays used
by the PEs are tiled along both dimensions. Thus, this engine
is accessed TSFFN × TSFFN times to finish the complete
operation. The second for loop of the HLS code is pipelined

causing the innermost for loop to be fully unrolled. This
generates TSFFN PEs which equals to dmodel

Tile no. FFN .
2) FFN2CE engine: FFN2CE engine performs second

linear transformation on the normalized outputs of FFN1CE

engine. The arrays used by the PEs are tiled along both
dimensions. Thus, this engine is accessed 4 × TSFFN ×
TSFFN times to finish the complete operation. This engine
also contains TSFFN PEs which equals to dmodel

Tile no. FFN ,
because the trip count of the innermost loop is dmodel

Tile no. FFN
and it is fully unrolled.

3) FFN3CE engine: FFN3CE engine performs final linear
transformation on the normalized outputs of FFN2CE engine.
The arrays used by the PEs are tiled along both dimensions.
Thus, this engine is accessed 4 × TSFFN × TSFFN times
to finish the complete operation. The complete unroll of the
innermost loop generates 4×TSFFN PEs in it, which equals
to 4×dmodel

Tile no. FFN .

Algorithm 4 FFN Computation Example
1: for i← 1 to Sequence Length do
2: #pragma HLS pipeline off
3: m← index× Embedding Dimension

Tile no. FFN

4: for j ← 1 to Embedding Dimension
Tile no. FFN do

5: #pragma HLS pipeline II = 1
6: sum← 0
7: for k ← 1 to Embedding Dimension

Tile no. FFN do
8: sum← sum+ inputs[i][k]× weights[k][j];
9: end for

10: output[i][m]← output[i][j] + sum;
11: m← m+ 1;
12: end for
13: end for

C. Tiling Technique

Since transformer models are typically large, tiling is used to
manage the utilization of on-chip memory and computing units
effectively. It ensures that the HLS tool can efficiently partition
arrays and pipeline or unroll loops to minimize latency
while keeping compilation time short. Figure 5 illustrates our
distinctive tiling strategy for the MHA module. The weight
matrices are divided into tiles, enabling BRAMs to be loaded
with partial data fetched from off-chip memory. Tiling is
applied only along the second dimension (columns) of the
matrix because the first dimension (rows) is already reduced
by the number of heads. Consequently, each matrix is loaded
( dmodel

TSMHA
) times. The input buffers for each attention head are

defined as a two-dimensional array of size (SL × TSMHA),
and tiling is similarly applied along the column of the matrix,
resulting in ( dmodel

TSMHA
) loads. During each iteration, data for

one tile is loaded initially. The PEs then compute on this
data, storing the results in intermediate buffers, which are
accumulated with results from previous iterations. Ultimately,
the final output is the cumulative sum of the results computed
across all tiles.
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Fig. 4. Computations of Feedforward Network.
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The FFNs that follow the attention layer are the most
time- and resource-intensive components. The weight matrices
for the FFN are defined as two-dimensional arrays with
dimensions (TSFFN ) × (4 × TSFFN ). These matrices are
tiled along both dimensions (rows and columns), requiring
two loops to iteratively load each tile. The first FFN
module is reused ( dmodel

TSFFN
)2 times because both loops iterate

dmodel

TSFFN
times. The second and third FFN modules are reused

( 4×(dmodel)
2

(TSFFN )2 ) times, reflecting the iteration counts of either
dmodel

TSFFN
or 4×dmodel

TSFFN
. Figure 6 illustrates our specific tiling

strategy for the FFN. Results are first accumulated along the

columns, followed by accumulation along the rows for all tiles.
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D. Runtime Configurable Capability
The runtime-programmable parameters such as the number

of attention heads, number of layers, embedding dimension,
and sequence length can be sent to ProTEA via software
running on the µB processor. TNN models are trained using
the PyTorch framework, and the resulting models should be
saved as ’.pth’ files. These files are then processed by a Python
interpreter to extract key parameters such as the number of
attention heads, layers, embedding dimension, and sequence
length. While these parameters will vary across applications,
ProTEA does not require resynthesis for each model; only
minor software modifications are necessary. The software,
developed in C++ using the Xilinx SDK tool, utilizes the
extracted data to generate instructions and control signals.
These signals guide the processor in activating the relevant
parts of the accelerator hardware.

E. Tile Size Determination
In ProTEA, the programmable parameters can be adjusted

at runtime, whereas the tile size must be set before synthesis,
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as it cannot be modified without resynthesizing the entire
hardware. The graph in Fig. 7 illustrates how variations in
TSMHA and TSFFN impact system frequency (MHz) and
latency (normalized to the minimum value). The number of
tiles in MHA ( dmodel

TSMHA
) was varied from 6 to 48, and for

each MHA tile count, the number of tiles in FFN ( dmodel

TSFFN
)

ranged from 2 to 6. The results indicate that the optimal
configuration for achieving the highest frequency (blue color)
and lowest latency (green color) was 12 tiles in MHA and
6 tiles in FFN. This setup achieved a maximum frequency
of 200 MHz, allowing ProTEA to execute all transformer
neural network models discussed in Section V. Moreover,
experiments showed that TSMHA of 64 and TSFFN of 128
are optimal for HLS, allowing for efficient array partitioning
within a reasonable compilation time (approximately 36 hours)
for a state-of-the-art (SOTA) transformer encoder.
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Fig. 7. Choosing the optimum tile size.

V. EVALUATION AND RESULTS

Table I presents the runtime programmability, resource
utilization, and performance metrics of ProTEA. The reported
latency reflects the computation time, accounting for the
overlap of data loading and computation. The synthesis was
conducted with fixed tile sizes of TSMHA = 64 and TSFFN

= 128, as these values are set before synthesis and cannot
be altered afterward. Data was quantized to 8-bit fixed-point
format; while this might result in accuracy loss depending on
the application, it was not a primary focus. For applications
requiring a larger bit width, the design can be easily modified
in the HLS code, which will impact both resource utilization
and latency. The accelerator’s design parameters, including
the embedding dimension (dmodel), number of heads (h),
number of layers (N), and sequence length (SL), were initially
configured with fixed values — 768, 8, 12, and 64 respectively
— based on a variant of BERT [5] and the available FPGA
resources. These parameters were then adjusted dynamically
at runtime using µB. This approach allows ProTEA to be
synthesized once for a fixed set of resources while retaining
the flexibility to adapt to various architectures as needed.

Tests 1, 2, and 3 demonstrate how varying the number
of attention heads within the same accelerator dynamically

impacts latency and throughput, with throughput defined as
the number of giga operations per second (GOPS). On the
Alveo U55C, the lowest latency of 279 ms and the highest
GOPS of 53 were achieved with 8 parallel heads. Tests 4
and 5 explore the effect of varying the number of layers,
showing that latency decreases and GOPS increases as the
number of layers is reduced. Tests 6 and 7 examine the impact
of embedding dimensions, with latency increasing and GOPS
decreasing as the embedding dimension grows. Finally, Tests 8
and 9 investigate the effect of varying sequence length, where
performance deteriorates as sequence length increases.

Resource utilization remained consistent across Tests 1
to 9, as the accelerator was synthesized only once with a
fixed tile size, while other parameters were reconfigured at
runtime through software. The design achieved high resource
utilization, with 40% of DSPs and 76% of LUTs in use.
Further DSP utilization was limited by the available LUTs, and
the optimal number of parallel attention heads was determined
to be 8 on the Alveo U55C to avoid overutilization by the
QKV CE engine.

Table II compares the performance of our accelerator,
ProTEA, with other FPGA-based accelerators. Each of these
accelerators is custom-built for a specific TNN model, with
some designed specifically for sparse computations. Among
them, only EFA-Trans [25] is flexible enough to toggle the
sparse preprocessing unit, allowing it to switch between sparse
and dense computations. Since ProTEA was synthesized only
once with a fixed set of hardware resources and bit width,
and was implemented on a different platform, we evaluated
performance metrics like latency, throughput (GOPS), and
normalized throughput (GOPS per DSP) [15] for a fair
comparison. ProTEA achieved 2.8× and 1.7× improvements
in speed and GOPS, respectively, compared to the accelerators
proposed by Wojcicki et al. [23] and Qi et al. [28]. The
GOPS/DSP ratio was also increased by 3.46× and 2×
compared to these accelerators. On the other hand, EFA-Trans,
which appears to be custom-designed using HDL methods,
resulted in more efficient hardware with a lower level of
abstraction, making it 3.5× faster than ProTEA. Peng et al.
[21] applied a high sparsity of 90% to their model, achieving
a 14× speedup over ProTEA. If the same sparsity level
were applied to ProTEA, its latency would mathematically
be reduced to 0.448 ms (calculated as 4.48 − 4.48 × 0.9),
making it 1.4× slower. FTRANS [29] compressed the model
by 93%. The same compression would make ProTEA 9.4×
faster because its latency would be 0.31 ms (calculated as
4.48 − 4.48 × 0.93). Moreover, ProTEA demonstrated 2×
higher GOPS/DSP than FTRANS, indicating more efficient
DSP usage.

Table III compares ProTEA with various GPUs and CPUs
operating at frequencies between 1.3 and 3.2 GHz. ProTEA
was tested with different TNN models, as referenced in
the second column. We could easily adjust the embedding
dimensions, number of heads & layers, and sequence length
in runtime to align with the architectures in the referenced
studies without altering the hardware, thus, ensuring a fair
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TABLE I
OVERALL RESULTS FOR OUR ACCELERATOR.

Test no.
Sequence Embedding Number Number Data

DSPs LUTs FFs
Latency

GOPSLength Dimension of Heads of Layers Format (ms)

#1

64 768

8

12 8bit fixed 3612 (40%) 993107 (76%) 704115 (27%)

279 53

#2 4 285 51

#3 2 295 49

#4
64 768 8

8
8bit fixed 3612 (40%) 993107 (76%) 704115 (27%)

186 80

#5 4 93 159

#6
64

512
8 12 8bit fixed 3612 (40%) 993107 (76%) 704115 (27%)

186 36

#7 256 95 18

#8 128
768 8 12 8bit fixed 3612 (40%) 993107 (76%) 704115 (27%)

560 54

#9 32 165 44

TABLE II
COMPARISON WITH FPGA ACCELERATORS.

Accelerator Precision FPGA DSP
Latency

GOPS
(GOPS/DSP)×

Method Sparsity(ms) 1000

[21] – Alveo U200 3368 0.32 555 164
HLS

90%

ProTEA Fix8 Alveo U55C 3612 4.48 79 22 0%

[23] Float32 Alveo 250 4351 1.2 0.0006 0.00013
HLS 0%ProTEA Fix8 Alveo U55C 3612 0.425 0.0017 0.00045

[25] Int8 ZCU102 1024 1.47 279 272 HDL
0%ProTEA Fix8 Alveo U55C 3612 5.18 83 23 HLS

[28] – Alveo 200 4145 15.8 75.94 18
HLS 0%ProTEA Fix8 Alveo U55C 3612 9.12 132 37

[29] Fix16 VCU118 5647 2.94 60 11
HLS

93%

ProTEA Fix8 Alveo U55C 3612 4.48 79 22 0%

comparison. ProTEA is 0.79× and 6.65× slower than the Intel
I5-5257U CPU and JETSON TX2 GPU respectively for model
#1 because this study [21] applied a pruning technique. It is
2.5× faster than the NVIDIA TITAN XP GPU for model #2,
and 16× faster than the NVIDIA TITAN XP GPU for model
#4. These improvements are attributed to higher parallelism,
despite ProTEA operating at a lower frequency and lacking
sparsity. For model #3, ProTEA performed slower than the
Intel I5-4460 CPU and NVIDIA RTX 3060 GPU, potentially
due to the use of aggressive sparsity and omission of certain
computations in the referenced work.

TABLE III
CROSS-PLATFORM COMPARISON

TNNs Works Platform Frequency Latency (ms) Speed Up

#1 [21]
INTEL I5-5257U CPU 2.7 GHz 3.54 (Base) 1

JETSON TX2 GPU 1.3 GHz 0.673 5.3×
ProTEA FPGA 0.2 GHz 4.48 0.79×

#2 [23]
NVIDIA TITAN XP GPU 1.4 GHz 1.062 (Base) 1

ProTEA FPGA 0.2 GHz 0.425 2.5×

#3 [25]
INTEL I5-4460 CPU 3.2 GHz 4.66 (Base) 1

NVIDIA RTX 3060 GPU 1.3 GHz 0.71 6.5×
ProTEA FPGA 0.2 GHz 5.18 0.89×

#4 [28]
NVIDIA TITAN XP GPU 1.4 GHz 147 (Base) 1

ProTEA FPGA 0.2 GHz 9.12 16×

VI. CONCLUSION & FUTURE WORKS

In this research, we developed a flexible FPGA-based
accelerator for the encoder layer of a transformer neural
network (TNN) using a high-level synthesis (HLS) tool. The
accelerator architecture exploits FPGA parallelism and the
parallel nature of the encoder itself. On the Alveo U55C
platform, resources such as BRAMs, DSPs, and LUTs were
maximized to enhance parallelism and minimize latency. The
accelerator supports runtime programmability, allowing it to
adapt to various topologies without requiring re-synthesis. An
efficient tiling technique and data loading method for weight
matrices were implemented to accommodate large models
in on-chip memory, while preventing the overutilization of
computational resources. Experimental results show that our
design outperforms some CPUs and GPUs in terms of speed
and throughput despite operating at a lower frequency and
lacking sparsity optimizations. Additionally, it achieved 1.3
to 2.8× speed up compared to the fastest state-of-the-art
FPGA-based accelerators. Although this paper focuses solely
on encoder layers, future work will extend the architecture to
support both encoder and decoder layers of the transformer,
using the same design principles.
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