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Abstract—We present DeLiBA-K, an improved version of the
Development of Linux Block I/O Accelerators (DeLiBA) frame-
work. DeLiBA-K operates at the Linux kernel level, bypassing
the user-space interactions of DeLiBA-1 and -2 to interact with
the block and network I/O kernel stack directly. Another critical
feature of DeLiBA-K is implementing and benchmarking the
modern io uring Asynchronous I/O (AIO) API within a 16nm
AMD Alveo U280 FPGA I/O framework. This allows for better
parallelism and reduced latency in I/O operations. Our results
show significant performance gains, up to a 3.2x improvement in
I/O operations per second (IOPS) and 3.45x increased throughput
for synthetic workloads. Real-world applications see a 30%
reduction in execution time for data-intensive tasks. DeLiBA-
K has been successfully tested in an industrial environment
using real workloads, demonstrating its effectiveness in large-
scale enterprise environments.

I. INTRODUCTION

Datacenter I/O performance has become increasingly criti-
cal as the volume of data processing continues to grow, and
it is estimated to reach 175 ZB in 2025 [1]. Additionally, as
AI/ML models become more sophisticated and datasets grow
more larger, the need for efficient data handling and processing
capabilities becomes increasingly challenging for these large-
scale AI applications [2] in storage [3]. To address these
challenges, researchers and industry professionals have been
exploring the use of specialized hardware accelerators like
Field-Programmable Gate Arrays (FPGAs) or Application-
Specific Integrated Circuits (ASICs) to cope with the deluge
of I/O workload.

FPGA-based SmartNICs have become off-the-shelf hard-
ware in recent years. However, their programming frameworks
for distributed storage have two main drawbacks. First, many
FPGA SmartNIC frameworks rely on decades-old system calls
and treat storage devices as black boxes. To fully leverage
the potential of these accelerators, it is necessary to delve
deeper into their interaction with the operating system kernel,
generally Linux in HPC [4], and understand their impact on the
overall system design. Second, many solutions often deploy
FPGA accelerators as passive offloading devices rather than
autonomous, active participants in the storage stack.

Previous versions of the open-source DeLiBA framework,
namely DeLiBA-1 (D1) [5] and DeLiBA-2 (D2) [6], demon-

strated significant gains in accelerating Linux block I/O op-
erations. However, these prior versions still had bottlenecks,
specifically in how user programs interacted with the storage
stack using decades-old traditional Linux APIs and in their
internal implementation, which incurred many user/kernel
context switches. We have carefully considered these two
performance bottlenecks in our new DeLiBA-K framework.

First, we have extended and optimized the FPGA-based
network and storage stack by redesigning it in RTL, enhancing
interactions between the FPGA and host system to minimize
latency and improve throughput performance. Additionally, we
implemented partial-bitstream-based reconfigurability on the
FPGA, allowing it to handle additional tasks independently
without context switches.

Second, we have enhanced the host-side API through new
system calls that offer fine-grained control over read and write
I/O operations. The updated framework supports the state-of-
the-art io_uring API for Asynchronous I/O [7]–[12], instead
of the traditional read() / write() call based interaction. The
fine-grained control allows for more efficient use of the I/O
subsystem, reducing overhead and improving data throughput.

The subsequent sections of this paper are structured as
follows: In Section II, we discuss the performance challenges
in the monolithic Linux kernel affecting block and network
I/O operations. Section III outlines the architecture of the
DeLiBA-K framework, with a focus on the software baseline.
Section IV describes recent enhancements in the hardware ar-
chitecture of DeLiBA-K. Section V presents detailed hardware
performance evaluation. Section VI reviews related research,
and Section VII concludes with a summary.

II. LIMITATIONS OF TRADITIONAL I/O APIS

To justify our overall architecture and subsequent microar-
chitectural design choices, we argue that both new [13]–[19]
and relatively new [19]–[23] FPGA frameworks designed to
accelerate I/O in systems require a critical reassessment of
decades-old system calls that were prevalent in earlier FPGA
frameworks [20], [22], [24]–[33]. Despite the significant ac-
celeration achieved by various FPGA frameworks, we contend
that existing system calls do not always perform their intended
functions effectively.
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Fig. 1: Monolithic I/O in Linux Kernel

As shown in the figure, the application layer in the Linux I/O
system interfaces with four main types [34] of I/O operations:
traditional read()/write(), mmap [35]–[40], asynchronous
I/O AIO [41]–[47], and O_DIRECT [48]–[51].

First, traditional read()/write() operations (buffered
pool) are the most common [52], involving the standard file
system calls to read data from or write data to storage devices.
These read/write I/Os are inherently synchronous, i.e., the
calling thread is blocked until the I/O is complete. Unfortu-
nately, the synchronous model runs into severe performance
problems on modern hardware. The results in work [41], [53]–
[55] quantify the performance impact of synchronous I/O
operations and show that blocking due to synchronous I/O
can degrade the performance of disk-intensive benchmarks by
two orders of magnitude.

Memory-mapped file I/O (mmap) [35]–[40] is a widely used
technique that allows applications to map files or devices
directly into memory, enabling direct access to data via
memory addresses and potentially enhancing performance for
specific workloads by eliminating the need for explicit read
and write operations. However, it does have many issues
in more complex scenarios, as raised in a notable study by
Crotty et al., which [35] presents a compelling case against
the blanket use of mmap in distributed systems, including
databases, arguing that it is not suitable in scenarios where
explicit control over memory management and handling of
page faults is necessary, and high throughput on fast persistent

storage devices is essential.
The third I/O technique is Asynchronous I/O (AIO). There

are two types of AIO in Linux: libaio (native async I/O
interface) [41]–[47] and POSIX [56]–[59]. Both have different
APIs [60]. The Linux libaio library, introduced in the early
2000s, suffers from several limitations, i.e, it only supports
asynchronous I/O for O_DIRECT (unbuffered) accesses.

On the other hand, the POSIX-based aio system call, which
is nearly 30 years old, also faces significant challenges. The
work titled “POSIX is Dead” [57] critiques its applicabil-
ity in modern distributed systems. Lastly, direct I/O (non-
buffered) [48]–[51] bypasses the kernel’s page cache, directly
transferring data between user space and storage devices.
While this approach is effective in eliminating some I/O
stack overheads, it has other implications, such as requiring a
dedicated filesystem (fs).

Apart from the direct I/O, all three major I/O APIs go
through the block I/O layer. The Linux block layer is a
kernel subsystem that is responsible for handling block de-
vices, e.g., hard disk drives (HDDs), SMR HDDs [61], [62],
HAMR [63] 1, solid state disks (SSDs), ZNS [64]–[66] and
remote storage. Over the years, the block layer has changed
significantly from a single-request queue to a multi-queue
model [67], as shown in Figure 1. Explicit multi-queuing
support was added with Linux 3.13, and since Linux 5.0,
the old single-queue implementation has been removed. This
queuing scheme applies not just to modern storage devices
used locally (e.g., SSDs) but also to the modern network
interfaces (NICs) used to access remotely distributed storage,
as these can send or receive packets in multiple hardware
queues. Apart from the monolithic mainline Linux kernel I/O,
there have been attempts to design operating systems with a
more fine-grained control of I/O, including microkernels [68]–
[70], and LibraryOS [71]–[73]. Despite these benefits, FPGA-
based frameworks [13]–[19], [19]–[23] deployed in modern
data centers continue to rely on the traditional Linux kernel
for storage I/O acceleration.

III. DELIBA-K FRAMEWORK ARCHITECTURE

The existing Linux I/O layer’s lack of fine-grained control
has been a significant performance bottleneck, as discussed
in the previous section (Section II). The DeLiBA series of
Linux block I/O accelerators focuses on speeding up client-
side processing for the distributed Ceph file system [74]–[78].
However, the previous DeLiBA frameworks, namely DeLiBA-
1 (D1) and DeLiBA-2 (D2), also faced the performance chal-
lenges discussed above. Specifically, three main performance
pain points were identified in previous DeLiBA frameworks:
1) extensive memory copies between user-space and kernel,
2) lack of multi-tenancy support, and 3) programming model.

We have developed a significantly improved version of
DeLiBA, called DeLiBA-K, to address these three issues. The
first problem stemmed from the numerous kernel-userspace
context switches and copying operations. To be precise,

1HAMR is a drive based on new media magnetic technology
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Fig. 2: Optimized DeLiBA Framework namely DeLiBA-K. Six ball points indicating the lifecyle of an I/O and likewise 6 major optimizations

DeLiBA-1 (D1) had at least six such context switches each
per read()/write() call, with the previous DeLiBA-2 (D2)
going through this copying process five times. This was evident
in the results of both previous both DeLiBA frameworks.
Despite using FPGA acceleration, DeLiBA-1 achieved only
modest speedups of 1.9x for sequential reads (4 kB) and
1.2x for random writes (128 kB). DeLiBA-2, which moved
the network stack onto the FPGA as well, showed more
improvement, with cluster-level speedups now reaching up to
2.8x for both throughput and IOPS relative to software Ceph.

The second problem was the need for multi-tenancy support.
Multi-tenancy is crucial in modern data centers, allowing
multiple users or tenants to share computing resources. This
feature became even more critical, as we aimed to deploy
DeLiBA-K in an industry partner’s2 research lab, where real-
world workloads were evaluated. Neither of the previous
DeLiBA frameworks had support for multi-tenancy.

The third issue was related to the system architecture and the
user APIs. Both previous DeLiBA frameworks relied heavily
on multiple user-space libraries, which complicated the system
architecture. These libraries, primarily NBD and Ceph-specific
libraries, were not easy to maintain or scale. Moreover, they
hindered the implementation of effective asynchronous I/Os
that are important in multi-tenant scenarios where numerous
concurrent I/O operations frequently occur.

Figure 2 shows the main architecture of DeLiBA-K frame-
work and it explicitly illustrates the lifecycle of an I/O request
in six stages, each corresponding to one of the six major
optimizations of the DeLiBA-K framework. It is important to
note that these six stages do not represent context switches, as
were the cases in the previous DeLiBA framework architec-

2The partner company, which is a global leader in DBMS and cloud
operations, cannot be named for confidentiality reasons.

tures, where bullet points were used to indicate them. In the
following sections (Section III-A and Section III-B), we will
discuss the application side and the kernel library in detail,
focusing on how they relate to the first two optimizations
in DeLiBA-K and the client-side components depicted in the
Figure 2.

A. Application: Batching, Zero Memory Copy and Asyn-
chronous I/O

The application end of the DeLiBA-K framework imple-
ments the io_uring I/O library [7]–[12], a new asynchronous
I/O (AIO) interface introduced in the mainline Linux kernel
version 5.1. This modern API allows considerably finer control
of I/O than the traditional I/O APIs described in Section II.
The name ”io uring” is derived from its use of two ring
buffers in the interface. As shown in Figure 2, each io uring
instance consists of two main components (two ring buffers):
Submission Queue (hereafter SQ) and Completion Queue
(hereafter CQ). The application uses the SQ to submit I/O
read/write requests to the kernel, while the kernel uses the
CQ to return completed I/O operations to the application. This
design allows for efficient, non-blocking I/O operations, sig-
nificantly reducing the performance bottleneck caused by extra
memory copies in previous DeLiBA frameworks. These fewer
memory copies (illustrated by black circle 1 ) are achieved
by using ring buffers in io uring as shown in Figure 2. The
use of these two ring buffers minimizes memory copies, as
they enable direct communication between the application and
the kernel, eliminating the need for intermediate data copying
between the application and kernel space.

One of the key features of io uring is its support for
batching (also illustrated by circle 1 ), which allows multiple
I/O requests to be submitted together in a single system call.
In the context of io uring, batching refers to the ability to
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Fig. 3: Pure software baseline in replication mode: Latency and throughput of 4 kB and 128 kB I/Os using io uring APIs in DeLiBA-K

submit multiple I/O requests in a single system call, thereby
reducing the overhead associated with making multiple system
calls. In contrast, traditional read and write operations typically
require separate system calls for each I/O operation, even when
batched. To this end, the earlier DeLiBA frameworks, based
on traditional reads and writes, lacked the ability to truly batch
operations at the system call level granularity, resulting in
really minimal throughput increase.

This batching mechanism is implemented in io uring by
queueing up multiple SQ entries (SQEs) and then using a
single call to io_uring_enter() to inform the kernel to
process these requests.

Each SQE includes fields such as the operation type (e.g.,
read, write), the file descriptor, a pointer to the buffer, the
buffer length, and additional flags for fine-grained control over
the I/O operation.

Although each io uring instance can be configured to
operate in one of three modes: interrupt-driven, polled, or
kernel-polled – DeLiBA-K specifically implements the kernel-
polled mode. In this mode, the application actively checks the
completion queue for any completed I/O operations, rather
than waiting for interrupts.

While a single io uring instance can provide substantial per-
formance improvements, DeLiBA-K takes this concept further
by creating multiple io uring instances. This is achieved by
calling the io_uring_setup system call multiple times, with
each instance independently operating its own SQs and CQs.
In current implementation, DeLiBA-K uses 3 instances as also
shown in Figure 2.

In implementing this multi-instance design, a key decision
was made to bind each io uring instance of a particular
application to a specific CPU core. This binding is achieved
through the CPU affinity mechanism, which utilizes the
sched_setaffinity system call. By assigning the submis-
sion queue threads of each io uring instance to designated
CPU cores, DeLiBA-K optimizes performance in several ways.
First, it avoids contention on a single submission queue thread,
which could become a bottleneck in high-load scenarios.
Second, it ensures better utilization of available CPU cores by
effectively distributing the I/O processing load across multiple
cores. Finally, this approach can significantly improve cache

locality, as each core consistently works with the same set of
data structures associated with its assigned io uring instance.

B. DeLiBA-K MQ and Unified Block I/O FPGA Driver

In the second phase (illustrated by circle 2 ), the requests
generated by each application pass through a modified Linux
MQ-block I/O layer, referred to as the DeLiBA-K MQ (here-
after DMQ) layer in the main architecture of DeLiBA-K in
Figure 2.

One of the main modifications is bypassing the block I/O
MQ-scheduler which is DeLiBA-K specific design implemen-
tation. The bypass is implemented because each ‘io uring‘
instance of a particular application is already bound to a spe-
cific CPU core, rendering the block I/O scheduler’s operations
unnecessary.

The DMQ layer manages these requests using its multi-
queue mechanism and forwards the I/O requests to a newly
developed driver named the DeLiBA-K Unified I/O FPGA
Driver. As the name indicates, the DeLiBA-K Unified I/O
FPGA Driver (hereafter UIFD) is an comprehensive uni-
fied kernel driver library developed from scratch, providing
support for a range of storage devices, including emerging
local storage such as ZNS and SMR disks3. At its core, the
UIFD implements multiple hardware queues using the AMD’s
(earlier Xilinx) QDMA (Queue Direct Memory Access) [79]–
[81] driver to talk to the actual FPGA cards via PCIe. When
multiple io uring instances are utilized, UIFD, managed by
the DMQ layer, handles I/O requests from each instance
concurrently. This multi-threaded per-core I/O processing is
enabled by the multi-queue design of DMQ, which distributes
I/O workloads across multiple queues per single hardware
in UIFD driver. Each io uring instance, bound to a specific
CPU core, aligns directly with a corresponding per-hardware
queue, reducing overhead from queue contention and inter-
core communication.

In addition to the QDMA interface, the UIFD provides
access to the CMAC block on the FPGA. This is particularly
useful in scenarios like network monitoring in data centers,

3We have access to physical SMR and ZNS disks but it is out-of-scope for
this work. We did not run DeLiBA-K tests on ZNS disks but we have run
tests on SMR disk
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Fig. 4: Pure software baseline in Erasure Coding mode: Latency and throughput of 4 kB and 128 kB I/Os using io uring APIs in DeLiBA-K

where data volumes are small, and the system may rely solely
on the CMAC interface without needing the QDMA.

Given that our industrial research partner operates data
centers and cloud deployments where virtual disks of virtual
machines play a significant role, it was equally important to
consider the virtual disks. Additionally, since Ceph [74]–[78]
has been a primary use case in our previous frameworks and
continues to be in the DeLiBA-K framework, it was necessary
to leverage Ceph’s virtual disk [82] functions in its RBD kernel
driver, which we had yet to utilize in earlier frameworks. To
this end, UIFD includes a DeLiBA-K specific Ceph RBD vir-
tual disk driver that adopts QDMA’s virtualization functions.
QDMA implements SR-IOV passthrough virtualization (thin
hypervisor model) where the adapter exposes a separate virtual
function (VF) for use by a virtual machine (VM).

C. Software Baseline and Evaluating DeLiBA-K with tradi-
tional Linux APIs in previous DeLiBA-2

After developing the new host-side interface in DeLiBA-
K (Figure 2), we adopt the same incremental approach used
in DeLiBA-1 (D1) and DeLiBA-2 (D2) for the initial bench-
mark. This initial benchmark was conducted without FPGA
acceleration in the cluster, establishing two key points. First,
it demonstrated the io uring based improvement in DeLiBA-
K compared to particularly DeLiBA-2 (D2) framework as
host-side libraries (without FPGA). To be more precise, a
software baseline of DeLiBA-K versus a software baseline of
DeLiBA-2 (D2). This is significant since DeLiBA-K includes
a modified Linux kernel block I/O layer (DMQ explained in
Section Section III-B) and an improved Ceph-RBD kernel
driver in its UIFD stack. Additionally, the application interface
now uses the io uring API instead of the NBD APIs used in
previous DeLiBA-2 (D2). Second, this benchmark provided
an initial understanding of the network and storage stack
optimizations needed in DeLiBA-K to achieve overall FPGA-
based acceleration compared to DeLiBA-2(D2) FPGA-based
acceleration.

1) Software Testbed: The software testbed consists of a
Ceph cluster built inside the industrial lab, featuring a single
Ceph kernel client [78] and two remote servers, with each
server housing 16 OSDs (Ceph terminology for OS layer on
the drive) for a total cluster of 32 OSDs. The client node

runs Red Hat Enterprise Linux (RHEL) 9.4 (Linux kernel
version 6.0.9-1) and has an Intel Sky Lake-E 28-core CPU
and 256GB GB of memory (6 memory channels per socket).
The iperf network testing tool was used to verify network
speed between the nodes, achieving a raw bandwidth of 9.8
Gb/s on the 10GbE network used.

In contrast to the prior DeLiBA work, which focused almost
exclusively on synthetic micro-benchmarks, this work also
includes a realistic workload evaluated in cooperation with our
industry partner’s labs. These non-synthetic workloads (Online
Analytical Processing (OLAP) [83] and Online Transaction
Processing (OLTP) [84]) cover two real world applications and
tasks that are part of a proprietary test suite regularly used by
data center users in the industrial research lab. However, for
reproducibility, we still include a synthetic workload generated
by the Flexible I/O (fio) [85] tool. We use the notation seq
and rand here to identify the sequential and random-access
workloads, respectively.

We always measure latency and throughput. Following the
methodology recently adopted by the Linux kernel community
[86], we have continued to focus our measurement on larger
block sizes, including 512 kB. This benefits applications for
on-disk databases, particularly those in industry research labs
involving full table scans or bulk data loads. However, the
latency and throughput results in the figure show only 4 kB
and 128 kB due to space constraints. To compare with earlier
DeLiBA-2 (D2) work, we benchmark both erasure coding
(EC) and replication operations, the two methods used in Ceph
for data durability and high availability. The results reported
here are based on averages measured across five benchmark
executions to ensure accuracy and consistency.

2) Latency and Throughput (DeLiBA-K vs DeLiBA-2):
Figure 3a and Figure 4a shows the latency results of DeLiBA-
K in replication and EC modes respectively. As mentioned
previously, this comparison highlights the improvements in
latency achieved in the DeLiBA-K framework compared to
DeLiBA-2 (D2), across both Erasure Coding (EC) and Repli-
cation modes. In EC mode, DeLiBA-K significantly reduces
latency, with random read latency at 4 kB dropping from
130µs to 85µs and random write latency at 4 kB decreasing
from 98µs to 80µs. Similarly, sequential operations have also
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TABLE I
COLUMN 2 AND 3 SHOWS THE SOFTWARE PROFILING RESULTS OF CEPH IN DELIBA-K. COLUMN 4 AND 5 SHOWS HARDWARE EMULATED
ESTIMATES IN VIVADO. COLUMN 6 SHOWS HW EXECUTION TIMES ON REAL PHYSICAL FPGA (U280). COLUMN 7 AND COLUMN 8 SHOWS THE

SOURCE LINE OF CODES FOR CEPH REPLICATION AND EC ALGORITHMS IN SOFTWARE (.C) AND HARDWARE (VERILOG)

Replication and Profiling SW Overall Vivado 2024 Vivado 2024 HW SLOCs (C) SLOCs (Verilog)
EC Kernels Execution Time contribution RTL Cycles Latency Execution SW HW

(Ceph-kernel) to runtime (min-max) (min-max) on FPGA Ceph-kernel Ceph-kernel

Straw Bucket 55 µs 80 % 105-105 0.345 µs - 0.355 µs 49 µs 256 880
Straw2 Bucket 48 µs 80 % 155-155 0.315 µs - 0.315 µs 51 µs 256 806

List bucket 35 µs 80 % 40-40 0.161 µs - 0.161µs 56 µs 197 770
Tree Bucket 22 µs 85 % 130-130 0.115 µs - 0.115 µs 31 µs 241 780

Uniform Bucket 9 µs 72 % 40-50 0.180 µs - 0.180 µs 19 µs 237 745
Reed-Solomon Encoder 65 µs 70 % 150-150 0.345 µs - 0.345 µs 85 µs 280 960

seen notable improvements. In Replication mode, DeLiBA-
K shows a substantial decrease in random read latency at
4 kB, from 130µs to 85µs, and random write latency at 4 kB
reduced from 98µs to 80µs. Figure 3b and Figure 4b shows the
throughput results of DeLiBA-K in replication and EC modes,
respectively. In EC mode, the random write throughput at 4 kB
has increased by 2.88x, and random read throughput at 4 kB
has increased by 2.4x.

IV. EXTENDING IN-NETWORK HARDWARE
ARCHITECTURE IN DELIBA-K

As shown in Figure 2, the FPGA architecture in the
DeLiBA-K framework has been extended to accommodate
newly developed application side and Linux kernel libraries on
the client (host) side (explained previously in Section III, Sec-
tion III-A and Section III-B). The client (host) communicates
with the XCU280-L2FSVH2892E AMD (earlier Xilinx) Alveo
U280 UltraScale+ FPGA data center card via a PCIe Gen3x16
interface. In the new DeLiBA-K framework, we have explicitly
focused on fully leveraging the microarchitecture of the AMD
Alveo U280 FPGA to achieve maximum performance. To this
end, we have utilized an additional number of vendor-specific
FPGA tools and IPs (discussed in the following sections) in
DeLiBA-K to achieve better results. The following sections
explain the four critical optimizations in the FPGA architecture
of previous DeLiBA-2 (D2) that were essential in developing
the microarchitecture of DeLiBA-K, as illustrated in Figure 2.
These four key optimizations, which represent significant
extensions to the original design, are also highlighted by four
black circles ( 3 , 4 , 5 , and 6 ) in the main Figure 2. Note that
the U280 card was chosen due to its high flexibility for R&D.
For a deployment-at-scale, much simpler, and correspondingly
cheaper, FPGA cards could be used instead.

After implementing the improved DeLiBA-K framework
libraries on the client side and establishing a software baseline
through system benchmarking, we extensively profiled the
DeLiBA-K source code with the Ceph use case on a bare-
metal server. To this end, Table I presents the profiling results
alongside other findings, which will be discussed in the
following section.

A. Leveraging QDMA in FPGA stack of DeLiBA-K

Since the UIFD kernel driver includes the Ceph RADOS
block device (RBD) kernel module, and the software baseline
established in the previous section is based on benchmarks
conducted in the Ceph cluster, the customized Xilinx PCI
Express Multi Queue DMA (QDMA) IP implementation in
DeLiBA-K adheres to Ceph cluster-level rules defined in the
CRUSH map. In Ceph storage, a CRUSH map is a set of
rules defined by Ceph application to be enforced when clients
read and write data in a cluster. For replication operations,
the QDMA IP [79]–[81] is customized to incorporate rules
for replicating data across remote nodes. This customization
enables the replication hardware accelerator to process de-
scriptors and perform the replication, thereby ensuring data
availability across the network. Similarly, the hardware accel-
erator for erasure coding (EC) is configured to manage data
chunks to enable data recovery in case of failure or data loss.

The Figure 2 illustrates the PCI Express (PCIe) QDMA ar-
chitecture within the DeLiBA-K FPGA stack, which comprises
five modules ((highlighted by circle 3 in Figure 2): Requester
Request (RQ), Descriptor Engine (DE), Host-to-Card (H2C),
Card-to-Host (C2H), and Completion Engine (CE).

Data communication among all modules is conducted via
AXI-stream, as the DeLiBA-K FPGA stack functions as a
data-plane smartNIC platform. In DeLiBA-K, the queues in
QDMA have been individually configured according to their
interface type, such as replication and erasure coding queues.
By assigning these queues as resources to multiple PCIe
Physical Functions (PFs) and Virtual Functions (VFs), a single
QDMA core and PCI Express interface are utilized for both
bare-metal and virtual machine (VM) applications in our
industrial research lab.

In its current implementation, the customized QDMA IP
supports up to 2048 queue sets for both replication and erasure
coding computations. Each queue set consists of a collection of
rings that operate together to manage specific DMA operations
related to replication and erasure coding. Specifically, each of
the 2048 queue sets in the QDMA includes a complete set of
three rings: the H2C descriptor ring, the C2H descriptor ring,
and the C2H completion ring. This configuration provides the
high degree of parallelism required in DeLiBA-K which is
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crucial given the parallelism on the client-side kernel libraries.
For our framework, which utilizes 10G Ethernet and an x16

PCIe 3.0 interface, we have selected a 512-bit data bus width
to ensure future-proofing and accommodate potential increases
in data throughput. However, we have initially implemented
a 256-bit data bus width, providing a burst size of 32 bytes
per cycle, which meets the current 10G Ethernet requirements
and aligns with the Ceph use case. This approach effectively
balances performance and resource usage while enabling us
to leverage higher bandwidth capabilities and a 64-byte burst
size per cycle in the future.

The RQ module is responsible for receiving and managing
incoming replication and erasure coding (EC) data packets.
Whereas, the DE serves as a central module. The DE contains
descriptors, which are data structures managed by the UIFD
kernel driver. These descriptors define the five main parameters
of a DMA operation for both replication and erasure coding:
Source Address, Destination Address, Length of Replicated
or Encoded Data, Control Information, and Next Descriptor
Pointer (NDP). This implies that the descriptor itself does not
carry the replication and EC packet payload but defines the
parameters for the data transfer. In our case the descriptors
are 128 bytes in size and it uses UltraRAM (also shown in
Figure 2) to store per queue configuration. The total length of
all descriptors is less than 64 kB in our implementation.

The H2C and C2H RTL modules primarily function as
packet payload blocks (data blocks). The H2C descriptor rings
are used to manage the flow of data from the UIFD driver to
the hardware accelerators in DeLiBA-K. The H2C module
can handle up to 256 read and write I/Os concurrently and
includes a re-ordering buffer with a capacity of 32 kB of
data. The C2H descriptor rings manage data transfers from
the card back to the UIFD driver (client). Consequently, both
H2C and C2H are written by the UIFD driver. H2C handles
descriptors for DMA read operations from the host (client),
while C2H handles descriptors for DMA write operations to
the host (client).

B. New RTL Accelerators in FPGA stack of DeLiBA-K

As illustrated in Figure 2, the Descriptor Engine, H2C
Streaming Engine, C2H Streaming Engine, and Completion
Engine modules are equipped with bi-directional AXI-stream

interfaces that connect to the replication and erasure coding
hardware accelerators (highlighted by circle 4 in Figure 2).
A significant enhancement in DeLiBA-K is the complete
redesign of these hardware accelerators from a High-Level
Synthesis (HLS) based approach to a Hardware Description
Language (HDL) implementation with a fine-granular control.

Although Bluespec [87] was initially considered, Verilog
was ultimately selected due to its native compatibility with
the user logic shell in QDMA IP. Consequently, the redesign
adhered to the Verilog IEEE 1800-2023 standard [88] for cycle
accurate Register Transfer Level (RTL) design. This decision
was mainly motivated by the need for precise control over
clock cycles required for the replication and erasure coding
accelerators. Deterministic behavior was essential because
these Verilog accelerators operate as finite state machines
(FSMs), crucial for managing various states and transitions
necessary for efficient data distribution in a Ceph storage
cluster. The FSMs maintain their state within the FPGA fabric,
utilizing internal memory resources such as Block RAMs
(BRAMs) and UltraRAMs (URAMs) available on the AMD
Alveo U280 FPGA. Comprehensive simulation and functional
verification were conducted for each RTL accelerator to ensure
their correctness and reliability. Given the inherent verbosity
in HLD like Verilog, it was not an easy undertaking. However,
we could explicitly improve two important metrics compared
to our HLS accelerators in DeLiBA-2: Latency and RTL cycles
(shown in columns 4 and 5 of Table I)

In the context of an FPGA hardware accelerator for the
Ceph CRUSH replication algorithm, cycles refers to the num-
ber of clock cycles required to complete four key opera-
tions: rule evaluation, hash computation, data mapping, and
replication. To define cycles, we measure how many clock
cycles these four operations take within the Verilog RTL
microarchitecture on the FPGA. Furthermore, latency in this
context is the total time it takes for a data object to be fully
processed, from its entry into the system to its replication.
The optimization of the FPGA hardware accelerator for the
Ceph CRUSH replication algorithm has resulted in an overall
performance improvement of approximately 38.61% in terms
of clock cycles.

The optimization of the FPGA hardware accelerator for
the Ceph CRUSH replication algorithm has led to an overall
latency reduction of approximately 45.71%, significantly en-
hancing the speed and efficiency of data processing operations.
Both the replication and erasure coding RTL accelerators
operate at approximately 235 MHz. The minimum packet
length in DeLiBA-K is 64 bytes. In contrast, the maximum
packet length is configurable to support the required MTU
plus overhead, ranging from 1518 bytes for standard Ethernet
to 9018 bytes for Jumbo frames, depending on the cluster’s
network requirements in the research lab.

C. Partial Reconfiguration in FPGA stack of DeLiBA-K

As shown in Figure 2, alongside the implementation of
QDMA and newly redesigned RTL accelerators, another key
optimization in DeLiBA-K framework is the utilization of
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FPGA-based partial reconfiguration (highlighted by circle 5
in Figure 2). This optimization is crucial for addressing the
dynamic nature of storage cluster hierarchies. For example,
the size of the Ceph storage cluster may fluctuate due to the
failure of underlying disks, which reduces the cluster size, or
the addition of new disks, which increases the overall cluster
size. This variation necessitates time-division multiplexing
of the underlying FPGA resources. To accommodate these
fluctuations, our redesigned RTL accelerators include three
distinct in-network accelerators, each optimized for different
cluster sizes. Previously, these accelerators were implemented
within the static region of the Alveo U280 FPGA, following
a single bitstream configuration, which made it impossible
to change functionality on the fly without power cycling the
storage server. Building upon this, the DeLiBA-K framework
leverages dynamic reconfiguration of specific regions inside
Alveo U280 FPGA [89]–[93] without reprogramming the
entire FPGA in a live storage cluster, allowing for real-time
adaptation to changing cluster sizes. To be precise, DeLiBA-
K framework has leveraged one of the three underlying SLR
(Super Logic Region) regions of the Alveo U280 FPGA
through a technique termed as 4Dynamic Function eXchange
(DFX) [94]–[98]. As shown in main architecture in Figure 2,
DeLiBA-K uses DFX through the Media Configuration Access

4DFX is AMD’s terminology for the methodology that includes partial
reconfiguration in FPGA designs

Port (MCAP), which provides a dedicated connection to the
configuration engine from one specific PCIe block per device.
Each SLR in the FPGA is a device die slice that contains
a subset of resources, such as CLBs, Block RAMs, DSP
tiles, and GTs, structured similarly to non-SSI (stacked silicon
interconnect) devices. In our implementation, the RTL acceler-
ators, namely Straw, Straw2, and EC-encoder, are implemented
in the static region, spanning across two SLRs (SLR1 and
SLR2), to manage the primary, unchanging functions and
ensure continuous FPGA operation under a single bitstream
configuration. In contrast, dynamic regions (or reconfigurable
regions) have to be positioned within a specific SLR based
on available space and specific reconfiguration requirements.
This ensures that global reset events are properly synchronized
across all elements in the reconfiguration module (hereafter
RM), and that all super long lines (SLL) are contained within
the static portion of the design. Here the global reset events
refer to signals that reset the entire FPGA or significant
portions of it, including the reconfigurable parts. We selected
SLR region 0 for our design, which includes 355K LUTs,
725K CLB registers, 490 Block RAM Tiles, 320 UltraRAM,
and 2733 DSPs.

Figure 5 shows the schematic of a single configuration with
the DFX-based terminologies. A configuration is a complete
design that has at least one RM for each reconfigurable
partition (hereafter RP). Each configuration generates one full
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binary (BIT) file as well as one partial BIT file for each RM.
An RP is a main reconfigurable block and it defines a level of
hierarchy within which different RMs are implemented. An
RM is the netlist implemented within an RP, and multiple
RMs can exist for a single RP. As shown in Figure 5, within
SLR region 0, we developed a single RP containing three
RMs. Each RM generates a partial bitstream and must be
carefully floorplanned with physical constraints (Pblocks) to
ensure the module can be physically isolated and meet timing
requirements. These partial bitstreams are tailored to specific
use cases: the Uniform Bucket RTL accelerator is ideal for
scenarios where all devices in the storage cluster have identical
capacities and performance characteristics, making it ideal
for uniform hardware configurations. The List Bucket RTL
accelerator’s partial bitstream is optimized for expanding clus-
ters where devices are frequently added, effectively managing
dynamic environments by seamlessly integrating new devices.
Lastly, the Tree Bucket RTL accelerator, which uses a binary
search tree structure, is best suited for larger or more complex
clusters that require efficient management of many devices or
nested buckets. Synthesizing each of these accelerators as RM
(partially reconfigurable designs) is based on typical a bottom-
up synthesis flow in which each module has its own synthesis
project. The DFX Configuration Analysis report compares
each RM and examines its resource usage, floorplanning,
clocking, and timing metrics. Also, we have verified all DFX
designs by running a verification utility pr_verify on all our
configurations.

D. Redesigning TX and RX paths of TCP/IP in RTL

In the previous version of DeLiBA, the storage accelerators
(replication and erasure) relied on a High-Level Synthesis
(HLS)-based communication library and a HLS-based open-
source TCP/IP block. In DeLiBA-K, we have completely
remove the HLS-based communication library and TCP/IP
stack. To enhance performance, the RX and TX modules,
along with the storage accelerators, have also been redesigned
in Verilog (highlighted by circle 6 in Figure 2), addressing
the performance limitations inherent in the HLS-based design.

Furthermore, the CMAC in DeLiBA-K operates at a frequency
of 260 MHz.

V. HARDWARE EVALUATION AND COMPARISON WITH
PREVIOUS VERSIONS

The hardware testbed deployed at the industry lab includes a
XCU280-L2FSVH2892E 16nm Ultrascale Xilinx Alveo U280
FPGA card attached to the client node. The client node runs
Red Hat Enterprise Linux (RHEL) 9.4 (Linux kernel version
6.0.9-1) and has an Intel Sky Lake-E 28-core CPU and 256GB
of memory (6 memory channels per socket).

In line with the software baseline, all hardware evaluations
in the research lab were conducted thoroughly using both
synthetic and real-world workloads. In this context, real-world
workloads refer to actual applications and tasks that are part
of a test suite regularly utilized by data center users in our
industrial partner’s research lab.

a) Criteria of Hardware Evaluation: In this final FPGA-
based hardware evaluation, we compared DeLiBA-K with
the previous DeLiBA frameworks, namely DeLiBA-1 (D1)
and DeLiBA-2 (D2). In the bar charts (Figure 6, Figure 7,
Figure 8 and Figure 9), D1 refers to DeLiBA-1, and D2 refers
to DeLiBA-2. We benchmarked both erasure coding (EC)
and replication operations. It’s important to note that, unlike
DeLiBA-2 (D2), DeLiBA-1 (D1) did not include erasure
coding accelerators. Therefore, the final FPGA based DeLiBA-
K erasure coding results are compared only to DeLiBA-2 (D2)
erasure coding results.

b) Throughput and Latency: The DeLiBA-K FPGA
framework demonstrates substantial throughput improvements
over DeLiBA-2, particularly in random writes and sequential
writes. For random writes, DeLiBA-K achieves the most sig-
nificant gains at smaller block sizes, with throughput reaching
145MB/s at 4 kB and 170MB/s at 8 kB, representing speed-
ups of 3.45x and 2.50x, respectively. In sequential writes, no-
table improvements are also seen, with DeLiBA-K achieving
440MB/s at 64 kB and 680MB/s at 128 kB, translating to
speed-ups of 2.38x and 2.00x, respectively.

Table II presents the end-to-end latency measurements in
DeLiBA-K compared to previous versions of DeLiBA. Since
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TABLE II
I/O REQUEST LATENCY IN DELIBA-K (HARDWARE) COMPARED WITH PREVIOUS FRAMEWORKS DELIBA-1 (D1) AND DELIBA-2 (D2)

Hardware (Replication) Latency [µs]
(4 kB) seq-read seq-write rand-read rand-write

DeLiBA-1 65 95 130 98
DeLiBA-2 55 75 85 82
DeLiBA-K 40 52 64 68

Hardware (Erasure Coding) Latency [µs]
(4 kB) seq-read seq-write rand-read rand-write

DeLiBA-2 48 70 82 75
DeLiBA-K 38 47 59 60

TABLE III
TOTAL RESOURCE UTILIZATION OF DELIBA-K, INCLUDING THE 10G TCP/IP STACK, QDMA, RTL ACCELERATORS CONFIGURED FOR A SPECIFIC

REPLICATION AND EC MODE. RESOURCE PERCENTAGES ARE RELATIVE TO AVAILABLE RESOURCES ON THE ALVEO U280 FPGA.

RTL Kernel + RTL TCP/IP + CMAC + QDMA CLB LUTs CLB Registers Block RAM (BRAM) UltraRAM (URAM) DSPs
Count % Usage Count % Usage Count % Usage Count % Usage Count

Straw Bucket 78,555 6.2 % 224K 8.59 % 190 9.42 % 26 2.71 % 0
Straw2 Bucket 82,334 6.31% 313K 12.01 % 165 8.18 % 35 3.65 % 0
Reed-Solomon Encoder 92,355 7.08 % 582K 22.32 % 215 10.66 % 52 5.42 % 0

Partial Reconfiguration Modules (RM) in SLR 0 of U280 CLB LUTs CLB Registers Block RAM (BRAM) UltraRAM (URAM) DSPs
Count % Usage Count % Usage Count % Usage Count % Usage Count

RM 1 List Bucket (Replication RTL Accelerator) 52,335 14.74 % 92,456 12.75 % 85 17.35 % 22 6.88 % 0
RM 2 Tree (Replication RTL Accelerator) 56,555 15.93 % 97,523 13.45 % 82 16.73 % 26 8.13 % 0
RM 3 Uniform (Replication RTL Accelerator) 62,456 17.59 % 112K 15.45 % 78 15.92 % 29 8.7% 0

DeLiBA-1 framework did not include Erasure Coding hard-
ware accelerators, the erasure coding results of DeLiBA-K in
Table II are only compared with those of DeLiBA-2. In terms
of latency, DeLiBA-K reduces random read latency from 85 µs
to 64 µs, a 25% decrease compared to its predecessor DeLiBA-
2. Similarly, random write latency drops from 82 µs to 68 µs,
representing a reduction of reduction of approximately 17%.

c) Resource Utilization and Power Measurements:
Table III shows the place-and-routed resource utilization. The
XCU280-L2FSVH2892E AMD Alveo U280 card, built on
16nm UltraScale architecture, features an FPGA chip with
1.3 million LUTs, 2.72 million registers, 9,024 DSP slices,
2,016 Block RAMs (BRAMs), and 960 UltraRAMs (URAMs),
offering 4.5 MB of on-chip BRAM and 30 MB of on-chip
URAM. Furthermore, Alveo U280 is divided into three Super
Logic Regions (SLRs). For DFX based partial reconfiguration
of three accelerators we have considered SLR region 0 of the
U280 chip. The SLR region 0 consists of SLR 355K LUTs,
725K CLB register, 490 Block RAM Tile, 320 UltraRAM,
and 2733 DSPs. The Reconfigurable Modules (RMs) include

accelerators like Uniform, List, and Tree in SLR 0. Further-
more, we dedicated significant effort to conducting detailed
power measurements. This focus was essential because full-
scale power measurements were a critical requirement estab-
lished by our industrial partner. We categorized the power
consumption into two scenarios: full load with no partial
reconfiguration and full load with partial reconfiguration.
We conducted detailed power estimation measurements using
Vivado Report Power and Vivado Power Analysis. We then
performed final power measurements using Xilinx xbutil [99]
and xbtest [100]. Options like Power Design Manager (PDM)
[101] is available; however, to the best of our knowledge,
PDM is not applicable to Alveo U280s. In the first scenario,
the reported power consumption was approximately 195 watts.
With partial reconfiguration, the reported power consumption
was 170 watts.

VI. RELATED WORK

In the development of our framework, we dedicated consid-
erable effort to thoroughly understand existing research and
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identify gaps where our framework can add value. While it is
understood that the some of the related works differ in scope
and approach, we have ensured that, wherever applicable, we
compare benchmark results that are directly relevant to our
findings. To this end, we have classified the related work
into three categories: (1) FPGA-based I/O frameworks that
emphasize OS integration; (2) relevant framework utilizing the
io uring API; and (3) in-network distributed frameworks, par-
ticularly those based on Ceph, alongside industrial accelerators
that have advanced research on Ceph into practical, industry-
grade solutions.

FPGA-based I/O frameworks: Landgraf et al. [102] in-
troduced FSRF (File System for Reconfigurable Fabrics), a
framework demonstrating that FPGA I/O can be abstracted
through mmap-style file access. Their microbenchmark mea-
sures transfer performance for I/O sizes from 4KiB to 2MiB
using a random access pattern from a single application. It
shows how quickly FSRF can handle warm and cold data,
and how efficiently the host reads from the NVMe drive and
transfers data to the FPGA via DMA. However, these results
are not directly comparable, as DeLiBA-K does not support
mmap-style virtual memory on FPGAs.

Korolija et al. [15] explored whether traditional operating
system abstractions are suitable for FPGAs within hybrid
systems. To investigate this, the authors developed a FPGA
based framework namely Coyote that integrates with the host
OS and offer a comprehensive set of OS abstractions. While
our work does not adopt a holistic approach to all operating
system abstractions as Coyote does, we consider our work
could potentially be integrated with Coyote for a more robust
AIO interface.

Ruan et al. [21] developed INSIDER, an FPGA-based
reconfigurable drive controller as the in-storage computing
(ISC) unit based on traditional Linux APIs. Although IN-
SIDER mentions the implementation of partial reconfiguration
in its FPGA framework, the open-source version for AWS F1
FPGAs does not support partial reconfiguration. In one of the
final evaluations the work reports a latency of 5µs. However,
this specific latency is associated with the local in-storage
computing read and write I/Os facilitated by their FPGA-
based local reconfigurable drive controller. This highlights a
fundamental architectural difference between INSIDER and
our work: INSIDER is drive-centric and does not account for
network I/O, thereby limiting its applicability in distributed
storage systems.

io uring framework: Zhou et al. [103] developed a frame-
work to mitigate the high latency and low throughput of Paxos
replication protocol by using io uring to accelerate the con-
sensus process. This is relevant to our DeLiBA-K framework,
as we also leverage io uring to enhance the performance of
Ceph-based replication protocols. The work reports a 99th-
percentile tail latency of 49µs, compared to our 40µs, though
their maximum throughput reaches 65K IOPS, slightly higher
than our 59K IOPS.

Ceph: DeLiBA-K is a cloud-driven block storage stack,
with Ceph traditionally used in cloud environments. However,

I/O performance issues are also prominent in HPC. Gai et
al. [104] introduced UrsaX, a block storage service for the
next-generation Tianhe exascale supercomputer, comparing it
to Ceph in HPC settings. While the framework lacks hardware
accelerators like FPGA, its performance metrics still offer
meaningful comparisons to our framework. For 4KB random
read and write I/Os, UrsaX achieves a latency of under 100µs
compared to our latency of 59µs.

Since the development of DeLiBA-K has been conducted
in collaboration with our industrial partner, it is important
to compare our framework with those resulting from indus-
trial research. A commercial Ceph accelerator, known as the
Accepherator [105], has been developed to accelerate erasure
coding performance in Ceph. Similar to DeLiBA-K, the accel-
erator features a 10GbE SFP network interface and utilizes a
hardware acceleration I/O module with programmable silicon
to compute erasure coding. Architecturally, our framework
excels in two key areas: First, DeLiBA-K is tightly integrated
with the latest Ceph version and is designed to scale with
future releases. Second, on the FPGA side, our framework
outperforms Accepherator by implementing both erasure cod-
ing and replication accelerators, along with an FPGA-based
TCP/IP network stack. AMD [106] presents a solution to
optimize Ceph block device operations by leveraging Data
Processing Units (DPUs) This approach enables the DPU
to run Ceph client libraries (library rados block device),
effectively virtualizing the Ceph block device and presenting
it to the host as a PCIe-connected NVMe disk. Intel [107]
has implemented hardware-based compression for Ceph using
Intel’s QuickAssist Technology (QAT).

VII. CONCLUSION AND FUTURE WORK

The development of DeLiBA-K has effectively addressed
the limitations identified in DeLiBA-2, particularly by elim-
inating unnecessary context switches. Furthermore, the im-
provements in the FPGA network and storage stack within
DeLiBA-K have contributed substantially to this performance
enhancement. While developing the previous two versions of
DeLiBA, and especially the current DeLiBA-K framework,
we extensively focused on tracing Ceph and Linux kernel
operations related to erasure coding. However, a detailed
explanation of the profiling and tracing-related work falls
outside the scope of this paper. In future work, we will provide
a detailed explanation of the techniques that were used to
profile and trace these erasure coding operations.

DeLiBA-K will be soon open-sourced at https://github.com/
esa-tu-darmstadt/deliba
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