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EUROEXA PROJECT

EU-funded project
September 2017 – December 2021 (4 years)
Budget €20 M

Innovation in
Full system design
Programming Models

Evaluation using actual HPC applications 
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BUILDING AN FPGA-BASED SUPERCOMPUTER

Academic/Gov. PartnersCommercial Partners
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SYSTEM ARCHITECTURE AND TECHNOLOGY: COMPUTE NODE
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SYSTEM ARCHITECTURE AND TECHNOLOGY: BLADES

Liquid-cooled blades

16 Node half depth 1u chassis

Total Liquid Cooling technology

48 V DC distribution

Hot water out, chiller-less operation
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EUROEXA: CO-DESIGN, DEMONSTRATION AND EVALUATION 
USING EXASCALE-CLASS APPS
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COMPOUND ACTIVITY PREDICTION

Predict 
compound activity on
protein target
aka chemogenomics

Similar to
Netflix: users rating movies
Amazon: users rating books

LIKE RECOMMENDER SYSTEMS

?
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VIRTUAL MOLECULE SCREENING IS THE INFERENCE STAGE

Early stage drug discovery example
1. Build chemogenomics model
2. Scan space of possible chemicals for very active 

molecules
3. Pass promising candidates along for investigation

§ Virtual Molecule Screening
Virtual chemical space is essentially unlimited: 1060

Want to scan as much as possible
Fast and low energy compute
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ML PROBLEM NEEDING MASSIVE THROUGHPUT
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VIRTUAL MOLECULE SCREENING STRUCTURE
SIMPLE LINEAR ALGEBRA PIPELINE
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HIGH-LEVEL SYNTHESIS PLAYS AN IMPORTANT ROLW
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Source
Code

FPGA Synthesis

High Level 
Synthesis

Convert control code
Extract Parallelism
Static Scheduling
Distribute Arrays
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HIGH EFFORT NEEDED FOR FPGA MAPPING

10

WE NEED TO HELP THE HLS COMPILER

•Inner loops are completely unrolled
•Local arrays spread on FPGA

Increase 
Parallelism

•Trim to <100 lines of code
•No branches are left 

Reduce 
Complexity

•Store model on the FPGAUse Local
Memory

•16 bit fixed pointReduce
Bit-Width
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TRANSFORMATIONS GIVE 1000X PERFORMANCE GAIN

​ 1x

4x
2x

8x

10x 2x

​

2x
2x 1x

32x

1x

3x

0.01%

0.10%

1.00%

10.00%

100.00%

1. Floating point 2. Fixed point 3. HLS Loop 4. HLS Dataflow 5. Kernel Dims 6. Longer Kernel 7. >1 kernel

%
 o

f p
ea

k 

Optimization Steps

% of peak performance

% of resources (DSP blocks)

11



PUBLIC

COMPARISON TO GPU AND CPU

Pla$orms
24 core Intel Skylake CPU
Nvidia A100 GPU
Xilinx Alveo U200 FPGA 

Results
Performance (% peak): FPGA is best
Energy Efficiency: GPU best
Effort: FPGA mapping was significantly more difficult

Long synthesis times, and timing or routing failures
Many optimization steps

Even with a background in CGRA compilers
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PERFORMANCE, ENERGY AND EFFORT
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Fig. 2. Effect of the Different optimization steps on performance (as a
percentage of peak performance) and on resource usage (as a percentage of
DSP blocks used)

V. RESULTS AND DISCUSSION

In this section we evaluate the different optimization steps,
we compare the final results to a GPU and CPU implemen-
tation and discuss performance versus effort for the three
implementations.

A. Optimization Steps

We evaluated the aforementioned optimization steps on a
Xilinx Alveo U200 [20] datacenter card on the VMS ap-
plication. Figure 2 shows the effect of each of the step on
performance and resource usage. Both are calculated as a per-
centage of peak based on the number of available DSP slices.
Noting that the Y-axis is logarithmic, each step increased the
performance with a factor, indicated on each point in the
graph. The total performance increases with a factor 1351⇥
and the total resource usage with 280⇥, indicating the crucial
importance of optimizing the generated C++ code.

The highest improvement comes from the step that tunes
the kernel dimensions because that step enables the full
parallelism of the FPGA. While the steps preceding this step
also have a significant positive effect on performance, they are
also important enabler steps to Kernel Dimensions step. They
increase the effect of this step.

B. Comparison

Two alternative implementations were of VMS made, one
for GPU using the ArrayFire [21] library, one for CPU using
the Eigen [22] library. We spent significant effort to make
sure these implementations perform well on their respective
platform.

Performance numbers for GPU and CPU were collected
on the Juwels supercomputer installed at Forschungszentrum
Jülich, energy numbers for GPU and CPU on the COKA
system at the University of Ferrara. FPGA and CPU energy
consumption has been monitored using hardware counters
available in the system, while the GPU power drain could
be monitored using the Nvidia NVML library.

Table I shows the results. Peak performance of the three sys-
tems was calculated using the maximum number of multiply-
accumulate operations per cycle, multiplied by the clock

frequency. For the FPGA, we could reliably reach a clock
frequency of 100Mhz.

While the three systems clearly have a different peak
performance in giga-flops per second (GF/s), the three im-
plementations reach a similar portion of peak performance
(%peak). The FPGA implementation’s percentage of peak is
higher because it exploits low-precision fixed-point calcula-
tions, which are more efficient on FPGA. Exploiting fixed-
point on GPU or CPU did not improve performance.

In terms of energy consumption, the GPU is clearly the
winner, the CPU performs worst and the FPGA is in between.
This can be explained by look at the peak-performance to
power consumption ration. While the FPGA power consump-
tion is an order of magnitude lower compared to the CPU and
GPU, its peak performance is two orders of magnitude smaller
compared to the GPU system.

TABLE I
COMPARISON OF ENERGY PERFORMANCE OF THE VMS APPLICATION

IMPLEMENTED ON AN NVIDIA A100 GPU, AN INTEL SKYLAKE CPU (24
CORES @ 2.7GHZ) AND A XILINX ALVEO U200 FPGA

CPU GPU FPGA
Peak Performance (GF/s) 3072 19500 684
Achieved Performance (GF/s) 402 3265 260
% of Peak Performance 13% 17% 38%
Measured Power Drain (Watt) 205 200 37
Energy Efficiency (GF/s/Watt) 1.8 10 3

C. Optimization Effort

Let us conclude this section with some estimates on effort
spent optimizing the different implementations. For the CPU
and GPU implementations we were able to use optimized
libraries, for the FPGA implementation we were unable to
reach good performance with the Vitis Libaries, which were
available only late in the implementation of VMS.

Hence, we spent most effort optimizing the FPGA imple-
mentation, logging around 600 commits in version control,
over three years of development. For the CPU and GPU
versions combined we registered 30 commits over a period
of two years.

Additionally, long compilation times for the FPGA version
(several hours per run, unless we could rely on performance
estimates after high-level synthesis), with frequent compilation
failures due to routing congesting also hampered the optimiza-
tion process.

VI. CONCLUSIONS

Optimizing your compute-intensive application for FPGA
acceleration can improve performance several orders of magni-
tude, 1000⇥ for our application. But even with FPGA-specific
optimizations, like using fixed-point, the final result is worse
than a simpler GPU version, both in terms of performance and
energy consumption. While this is somewhat expected [12],
one has to wonder if targeting FPGAs to accelerate compute
is worth the effort with current generation hardware.
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CONCLUSIONS

EuroEXA project set out to bring scientific computing to FPGAs

In the end very few applications managed to make good use of FPGA

Code transformations improve performance 1000x, with large effort

Yet, in pure performance and energy efficiency we cannot beat GPUs

I would not call this a success…
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NOT A GREAT SUCCESS
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QUESTIONS ?
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