
Enabling VirtIO Driver
Support on FPGAs

Sahan Bandara Zaid Tahir Martin Herbordt
Boston University

Ahmed Sanaullah Ulrich Drepper
Red Hat

November 14th, 2022

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

Data Centers are Evolving …
Herbert Yoshida - Hitachi
The Compute Centric data center is running out of gas. … The
move to offload data management functions has already begun
with the introduction of Smart NICs and FPGAs. Hitachi’s
recent announcement of new enhancements and capabilities to
its hyperconverged infrastructure (HCI) portfolio …

Timothy Prickett Morgan – The Next Platform
One of the reasons why Intel spent $16.7 billion to acquire FPGA
maker Altera six years ago was because it was convinced that its
onload model - where big parts of the storage and networking stack
were running on CPUs - was going to go out of favor and that
companies would want to offload this work to network interface
cards with lots of their own cheap processing …
This is what we used to call SmartNICs …

2

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

Revolution in Data Center Architecture

Intel’s vision for the datacenter

Requirements
• In-line, line-rate processing
• Complex (look-aside) line-rate
processing
• Process many streams simultaneously
• Process many types of applications
• Support frequent updates, upgrades
for changing protocols, standards, etc.

Need HW speed with SW flexibility

3

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

EDGE/IOT - same requirements as for data center

Requirements
• In-line, line-rate processing
• Complex (look-aside) line-rate
processing
• Process many streams simultaneously
• Process many types of applications
• Support frequent updates, upgrades
for changing protocols, standards, etc.

Need HW speed with SW flexibility

Primary FPGA Markets → routers, data centers, I/O devices 4

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

FPGAs in the Datacenter

5

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

FPGAs in the Datacenter

6

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

Host-FPGA Communication Interface

• To effectively leverage FPGAs
• High Bandwidth
• Reliable
• Robust
• Uniform
• Support necessary protocols & functionality

• Ideally;
• Portable
• Easy to maintain software

7

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

Host-FPGA Communication (Current Status)

• PCIe is the most used
• Vendor provided IP blocks used on the device side

• Even third-party custom IPs are bound to integrated blocks on the FPGA
• Device drivers on the host side

• Provided by FPGA vendors
• Written by end user
• Provided by third parties

• Limitations
• Lack of portability
• Difficult to maintain

8

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

Host-FPGA PCIe Communication (Limitations)

• Lack of portability
• Device side hardware is vendor- and device- specific

• Different resource types/amounts across FPGAs
• IP capabilities and interfaces exposed

• Device drivers are designed to handle the device specific details
• Specific to vendor, device, and even IP core

• Maintaining the drivers – must modify whenever
• Host kernel updates
• Deprecated dependencies
• Newer versions of vendor IPs

9

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

Host - FPGA PCIe Communication

10

Device driver (usually) needs to match specifics of vendor IP
Ideally – same mechanism for accessing the device from VM
Vitio drivers?

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

Host - FPGA PCIe Communication

Can we be vendor and
device agnostic here?

Handle vendor/device
specific details here.

11

Device driver (usually) needs to match specifics of vendor IP
Ideally – same mechanism for accessing the device from VM
Vitio drivers?

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

The Big Picture
• This is not an issue if:

• You have infinite resources to write and maintain all your drivers
• Or you always use the same device
• And the kernel never updates

• For everyone else: – Desire: Never need to do anything ever again.
• Don’t write device drivers for FPGAs
• No need to update the drivers with kernel updates
• No need to update the drivers with IP updates
• Use the same driver with all the FPGAs
• Design portability across devices
• Don’t implement PCIe controllers, etc. on the FPGA
• Just focus on the application logic

12

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

Current Efforts Towards a Solution
• Open Programmable Acceleration Engine (OPAE)

• Software framework for managing and accessing Intel programmable accelerators (FPGAs)
• Linux device driver and SDK (user level libraries and tools)
• User kernel implemented in the reconfigurable region inside the FPGA shell
• Only works with some Intel FPGAs

• Xilinx Runtime Library (XRT)
• Standardized software interface that facilitates communication between the application code

and the accelerated-kernels deployed on the reconfigurable portion of PCIe based FPGAs
• User space library and kernel drivers
• Works with a FPGA shell that implements PCIe interface, DMA, etc.
• Only works with some Xilinx FPGAs

• Device drivers and IPs from FPGA vendors and third parties
• Just to implement PCIe communication
• Open-source and proprietary, paid and free

13

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

Our Observations – life of the FPGA user:
• FPGA shells + runtime libraries + drivers:

• Allow the user to focus on the application logic
• No need to implement PCIe, DMA, etc. on FPGA side or drivers on host side
• But, extremely limited in devices supported
• Specific to both the device and the development board
• Shell implementations do not have good separation between device/board specific and

generic logic limiting portability

• Device driver + IP
• Implementation effort is higher than when using FPGA shells
• User does not have to write the drivers
• The user might have to keep the drivers up to date
• Vendor provided: Usually, spotty maintenance for drivers which are not for the latest and

greatest FPGAs
• Third-party provided: Only a limited set of devices/boards supported

14

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

What We Like to See in a Solution
• FPGA side:

• Clear separation between device specific and generic logic in the shell
• Standard interfaces exposed to user logic
• Application portability between devices/boards
• Limit the use of vendor provided IPs to the integrated ASIC blocks and replace rest of the

logic with generic open-source components

• Host side
• Same driver across all devices

• Driver and device should be able to negotiate supported features
• Drivers are part of the operating system and get updated with the kernel updates

• and not as a reaction to a kernel update

15

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

Aside - This work is part of a bigger project (DISL)
• Dynamic Infrastructure Services Layer for Reconfigurable Hardware (DISL)

• Operating system like abstractions on the FPGA
• Generator framework to automatically generate BIOS and OS layers using a component library

and user requirements as the input
• OS layer provides services to the user application through standard interfaces

• Making applications portable
• BIOS layer implements all the device specific logic making the OS layer common across devices
• Use standard in-kernel drivers for host-FPGA communication

• Our choice is VirtIO drivers

16

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

I/O Virtualization and VirtIO

• Guest processes interact with
devices emulated by a hypervisor

• Full virtualization:
• Guest OS is unaware of the virtualization

17

• Hypervisor traps I/O requests and emulates the behavior of real hardware

• Paravirtualization:
• Guest OS is aware of the virtualization and uses appropriate front-end drivers
• The hypervisor implements the back-end drivers for the particular device emulation

• VirtIO is an abstraction for a set of common emulated devices in a
paravirtualized hypervisor

https://developer.ibm.com/articles/l-virtio/

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

VirtIO Drivers
• Industry standard for I/O virtualization
• Native Support on host operating systems

• No need to write/maintain an additional driver
• APIs are relatively consistent
• Allows feature negotiation between driver and device
• Works from both host and guest OSs
• Potential to define new device types to match different FPGA use cases
• VirtIO devices:

• Virtual devices found in virtual environments
• Can use normal bus mechanisms for device discovery, interrupts, DMA, etc.

18

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

VirtIO Drivers – Basic Model

https://www.redhat.com/en/blog/virtqueues-and-virtio-ring-how-data-travels

19

3 key components

QEMU = an open-source
machine emulator

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

VirtIO Drivers – paravirtualization w/ physical device

20

Host uses legacy driver

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

VirtIO Drivers – bypass layers?

21

Get rid of copies

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

Contribution: VirtIO Support on FPGAs

22

• Virtio functionality directly on the FPGA
• Neither device specific driver is now needed
• Or the emulated back end

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

New Use Models

23

No logical difference btw guest or host
virtio driver accessing the FPGA

New models
a) Virtio driver runs in guest kernels
space – PCI passthrough?
b) User application communicates
directly with virtio driver in host
kernel space

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

Challenges on the FPGA Side

• The FPGA must present a VirtIO compliant interface to the host
• Implementing appropriate data structures and state machines

• The vendor-provided IP blocks may not support some of the
functionality

• Our approach:
• Building a subset of hardware blocks using generic RTL
• Leverage existing IP blocks for device specific parts

24

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

Implementing VirtIO Functionality (on FPGA)

For compliant interface 
1 Device discovery and initialization

• Add VirtIO capabilities to the device’s PCIe capability list
• VirtIO data structures

2 Data movement
• Virtqueue control state machines
• More data structures

VirtIO drivers are agnostic to device specific details
• Need to control DMA engine from the device side

• Potentially replace IP or DMA engine
25

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

Implementing VirtIO Functionality (In Detail)

To add virtio capabilities to the device’s capability list 
• Capabilities are part of the device’s PCI configuration space
• Formed as a linked list
• VirtIO needs five capabilities

• Common Configuration
• Notification
• ISR status
• Device specific configuration (optional)
• PCI configuration access

• Configuration space is part of the hardened PCIe block (in
our case)
• This may not be true for all devices –
• Which would make it simpler to modify IP

26

By Vijay Kumar Vijaykumar - Own work, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=3181779

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

Implementing VirtIO Functionality (In Detail)
• PCIe block allows the configuration space accesses to be forwarded – but …
• PCI configuration space accesses are different from regular memory accesses

over PCI
• Different packet type
• Must be routed out of the integrated block
• Need user logic to implement extra configuration space registers

• Config. space access forwarding feature not available for the DMA IP
• Need to modify IP source files to enable this feature

• DMA IP removes packet header information before it reaches user logic
• Implement extra configuration space registers inside the IP

• Cannot set the next pointer of capabilities implemented by the integrated block
• So, modify IP source files

27

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

Look at the Internals of the XDMA IP (for hacking)

• PCIe integrated block includes hardened and …
• Physical and link layer
• Configuration space

• … reconfigurable logic
• DMA engine
• Operate at the transaction layer

• User logic uses AXI interfaces for communication
• Additional interfaces optionally exposed to user

logic to control the DMA engine (UDMA block)
• Integrated block instantiation parameters:

• Forward configuration space accesses
• Set next pointers for capability list

28

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

Implementing Virtqueues
• Virtqueues move data between the driver and the device
• For VirtIO over PCIe, the device is responsible for controlling the data

movement using DMA
• Need support for multiple queues

• Individual controllers for each queue
• Queues have to share the DMA engine

• Implement necessary arbitration logic
• VirtIO data structures

• required for device initialization and data movement
• Pointed to by the capabilities we added
• Implemented in reconfigurable logic

29

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

Implementing VirtIO Functionality

30

Virtio controller block needs data
structures and state machines

To add capabilities, modify vendor IP:
*Intercept and responds to transactions
btw hardened PCIe block and DMA
engine
*We demonstrate that hardware should
have necessary capabilities to implement
virtio support
*Potential limiting factor – FPGA tools not
exposing features to user and encrypted
IP which prevents modification by user

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

Challenges

• Not all the capabilities of the hardware are made available to the
user
• Because those are advanced features?
• Improper use can prevent both the FPGA and the host machine from

working properly
• Lack of documentation on how to use the features
• Some capabilities of the integrated blocks are not properly

utilized by the vendor IPs
• Configuration space access forwarding is disabled in the XDMA IP although

the PCIe integrated block has the capability (Sahan added this to IP source)

31

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

Results - QED

32

Virtio console device
implemented and identified
by unmodified virtio drivers

Virtio capabilities added to
the device’s capabilities list

We have communicated
with user logic on the
FPGA

Boston University Slideshow Title Goes Here

Enabling VirtIO Driver Support on FPGAs

Future Work

• Implement other VirtIO device types
• Define new VirtIO device types that correctly represent

different FPGA use cases
• Detailed performance analysis

• Against vendor and third-party IPs and drivers
• Host vs guest OS communicating with the device
• For different VirtIO device types

33

Thank You!

34

	Enabling VirtIO Driver Support on FPGAs
	Data Centers are Evolving …
	Revolution in Data Center Architecture
	EDGE/IOT - same requirements as for data center
	FPGAs in the Datacenter
	FPGAs in the Datacenter
	Host-FPGA Communication Interface
	Host-FPGA Communication (Current Status)
	Host-FPGA PCIe Communication (Limitations)
	Host - FPGA PCIe Communication
	Host - FPGA PCIe Communication
	The Big Picture
	Current Efforts Towards a Solution
	Our Observations – life of the FPGA user:
	What We Like to See in a Solution
	Aside - This work is part of a bigger project (DISL)
	I/O Virtualization and VirtIO
	VirtIO Drivers
	VirtIO Drivers – Basic Model
	VirtIO Drivers – paravirtualization w/ physical device
	VirtIO Drivers – bypass layers?
	Contribution: VirtIO Support on FPGAs
	New Use Models
	Challenges on the FPGA Side
	Implementing VirtIO Functionality (on FPGA)
	Implementing VirtIO Functionality (In Detail)
	Implementing VirtIO Functionality (In Detail)
	Look at the Internals of the XDMA IP (for hacking)
	Implementing Virtqueues
	Implementing VirtIO Functionality
	Challenges
	Results - QED
	Future Work
	Thank You!

