Algean: An Open Framework for Machine Learning on a Heterogeneous Cluster

Naif Tarafdar¹, Giuseppe Di Guglielmo², Philip C Harris³, Jeffrey D Krupa³,

Vladimir Loncar⁴, Dylan S Rankin³, Nhan Tran⁵, Zhenbin Wu⁶, Qianfeng Shen¹ and Paul Chow¹

University of Toronto¹ Columbia University² Massachusetts Institute of Technology³ CERN⁴ Fermilab⁵ University of Illinois⁶

Take Aways

- Galapagos: Platform for multi-FPGA application deployment
 - A scalable giant FPGA comprised of individual FPGAs
- Algean: Mapping an ML application onto the giant FPGA
 - Could also be your own applications
- Depending on your area of expertise and interest you can use different parts of this project

Machine Learning

- One of the most popular topics of research
 - In many areas, many applications (e.g medical, financial, safety, transportation etc.)
 - Also within the computing community
- Wide usage in world pushes limits of devices
 - Metrics include performance and energy
 - Leading many researchers to consider heterogeneity!

November 13, 2020

Heterogeneity All Around Us

Snapdragon 630 Mobile Platform

0

Ď

<u>入</u> 會

This Photo by Unknown author is licensed under <u>CC</u><u>BY-SA-NC</u>.

This Photo by Unknown author is licensed under <u>CC</u> <u>BY-NC-ND</u>.

November 13, 2020

Applying Machine Learning to a Heterogeneous Environment

- Challenge: How do you design machine learning algorithms for a heterogenous space?
 - Hard enough with a homogenous computing environment
 - Is there a framework for such a thing?
- Challenge: If such a framework exists can we get both flexibility and performance?

Outline

- Brief Motivation
- Overview of machine learning frameworks
 - Categorized as an abstraction layer stack
- Overview of Algean
 - HLS4ML
 - Galapagos
- Results

November 13, 2020

MACHINE LEARNING FRAMEWORKS

November 13, 2020

Many Popular Examples!

- Such as
 - Tensorflow
 - PyTorch
 - Caffe
 - Intel DLA
 - Xilinx XfDNN
- What do these different frameworks offer?

TensorFlow

- Depends on who you ask!

November 13, 2020

Applications & Algorithms

Cluster Deployment & Communication

Hardware

Applications & Algorithms

Cluster Deployment & Communication

Hardware

E.g: Neural net layers, quantization, compression, pruning

November 13, 2020

Applications & Algorithms

Cluster Deployment & Communication

Hardware

E.g: Physical Connections (PCIe, ethernet etc.), Communication Protocols

November 13, 2020

Applications & Algorithms

Cluster Deployment & Communication

Hardware

E.g: Hardware circuit (multipliers, shifters), memory architecture (caching etc.)

November 13, 2020

Applications & Algorithms

Cluster Deployment & Communication

Hardware

• Allows researchers to

pick and choose layers

they wish to configure

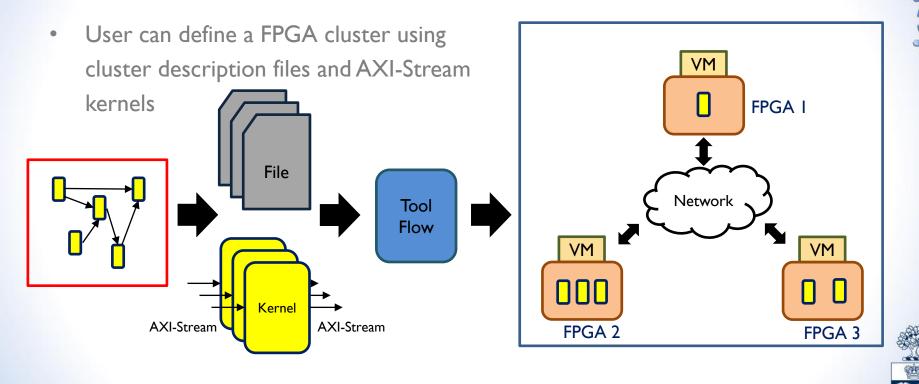
 Collapsable/Expandable for specific application and infrastructure!

AIGEAN OVERVIEW

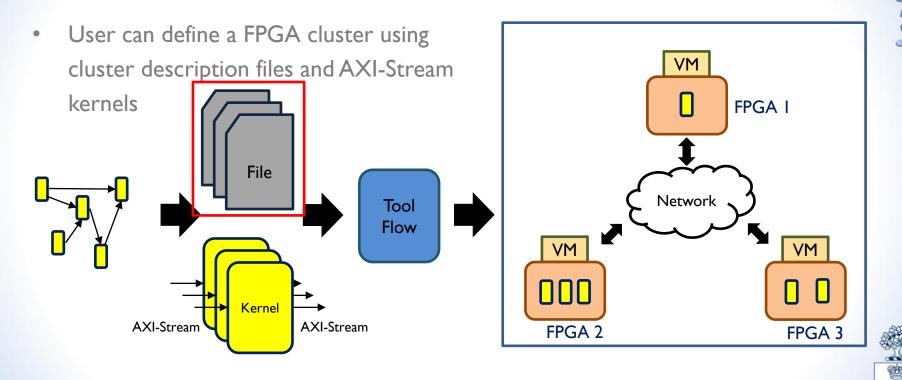
November 13, 2020

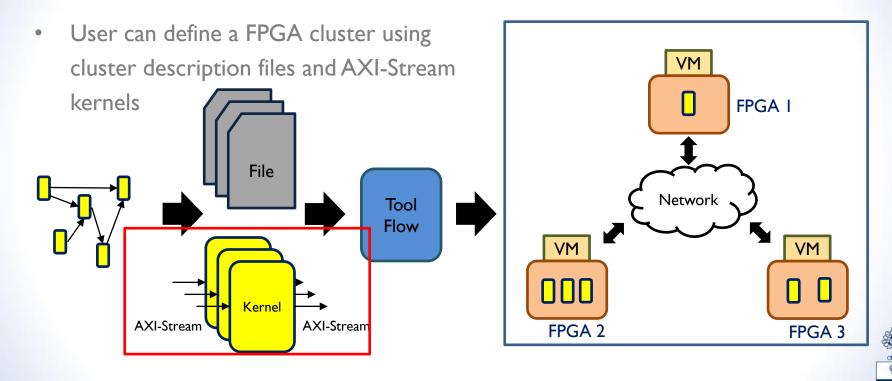
AlGean Introduction

- Like the archipelago and sea
- Combines two existing frameworks:
 - HLS4ML:
 - HLS IP cores of ML IP
 - Galapagos
 - Connects and deploys heterogeneous distributed application across multiple nodes

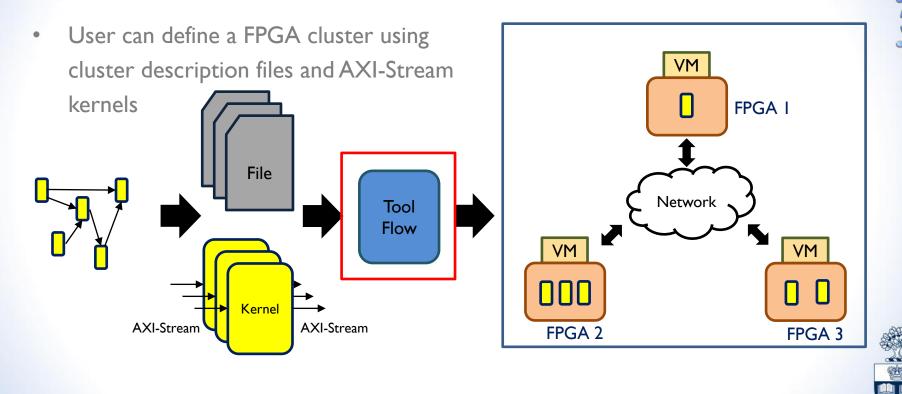


HLS4ML


- Open source project
- Input:
 - Description of FPGA resources
 - LUT, BRAM, DSP
 - Description of neural net
 - PyTorch, Keras, Onyx support
- Output:
 - HLS synthesizable C++ that fits within resource constraints implementing neural net
- Tunable HLS code, made to fit the FPGA


November 13, 2020

November 13, 2020



November 13, 2020

November 13, 2020

H2RC 2020

November 13, 2020

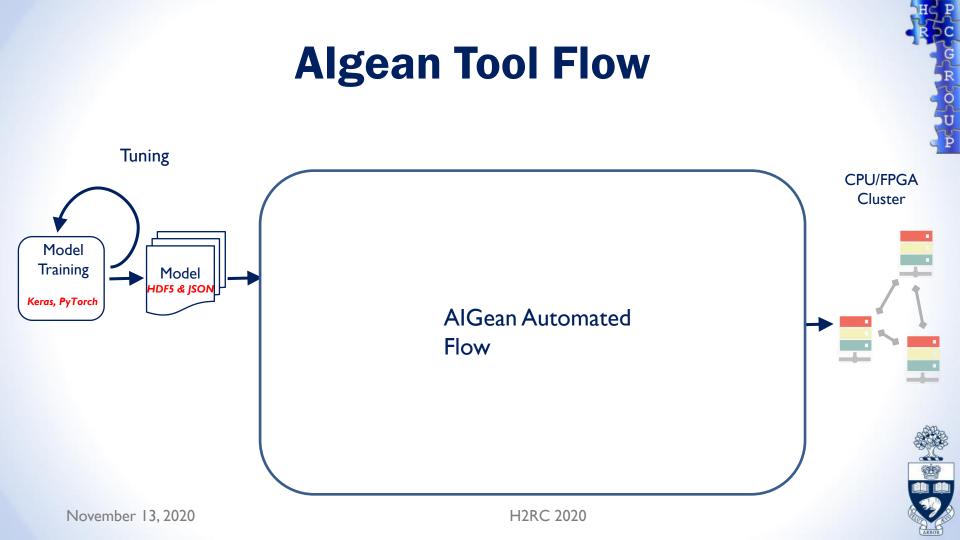
- Heterogeneous Stack
- Allows users to create flexible heterogeneous clusters across CPUs/FPGAs
- Seamlessly prototype by implementing both on CPU and FPGA
 - Galapagos ensures functional portability for network communication
 - Essentially "network-connected" HLS kernels
 - For both SW and HW
 - Iterative development, selectively move bottleneck from SW to hardware without modifying code
- Flexibly change communication protocol without modifying user application
 - TCP, UDP, LI etc
 - User application is agnostic to this

Communication Layer

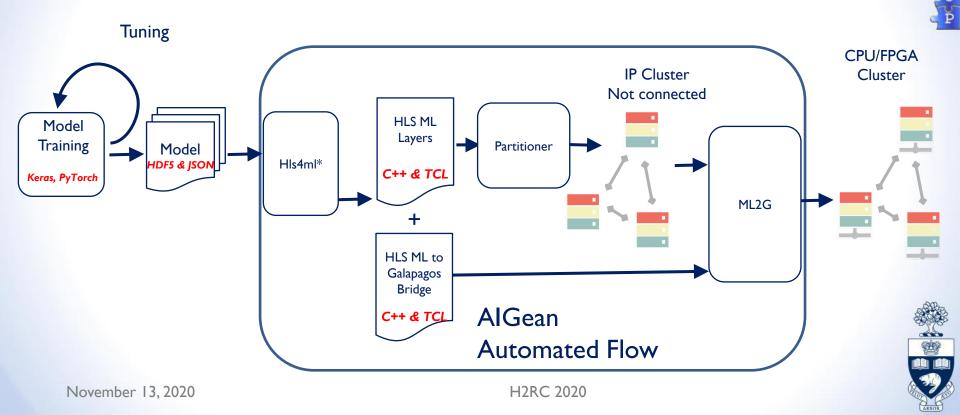
Middleware/Network Layer

Hypervisor Layer

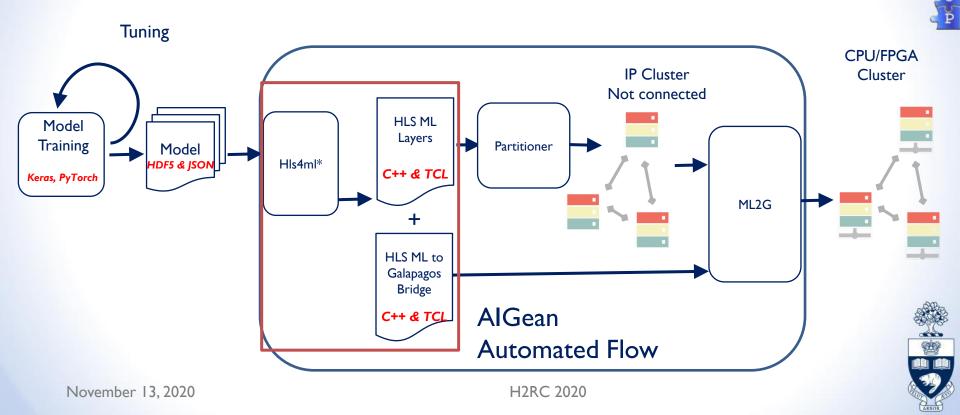
Physical Hardware



November 13, 2020

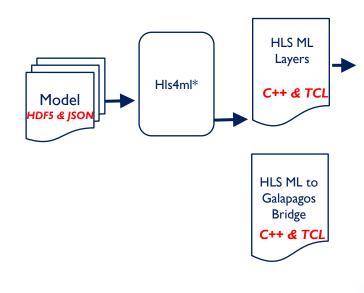

Birth of Algean

- HLS4ML creates HLS IP core to maximize FPGA utilization
- Galapagos can give a multi-FPGA fabric
- Tools combined to deploy neural-net on multi-FPGA Fabric



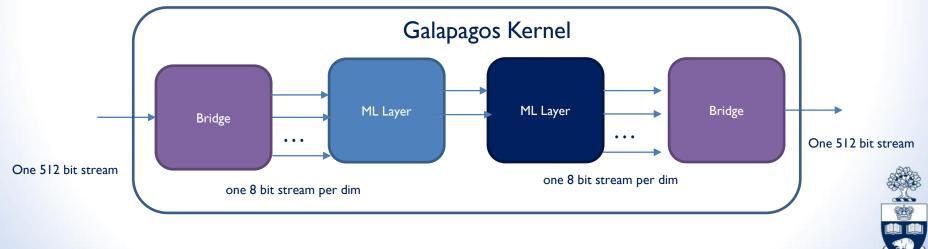
Algean Tool Flow

Algean Tool Flow

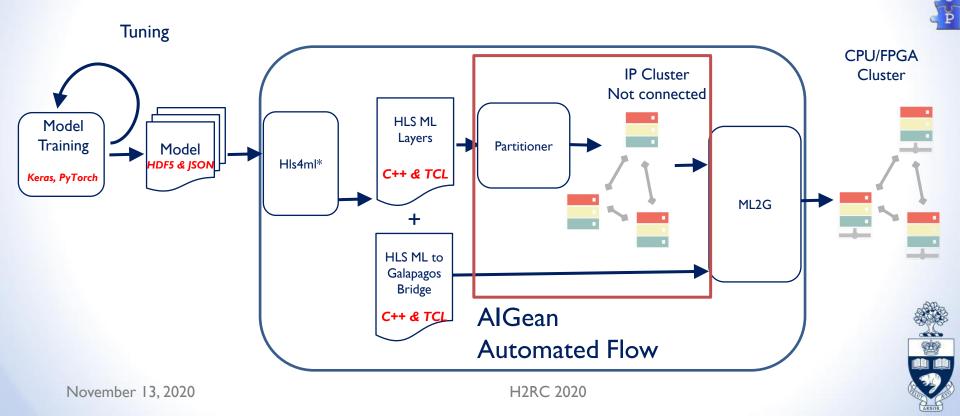


HLS4ML Modifications

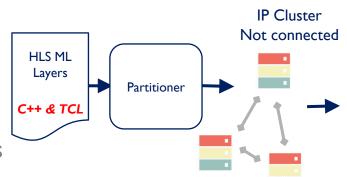
 HLS4ML modified to create independent layers


as separate HLS IP cores

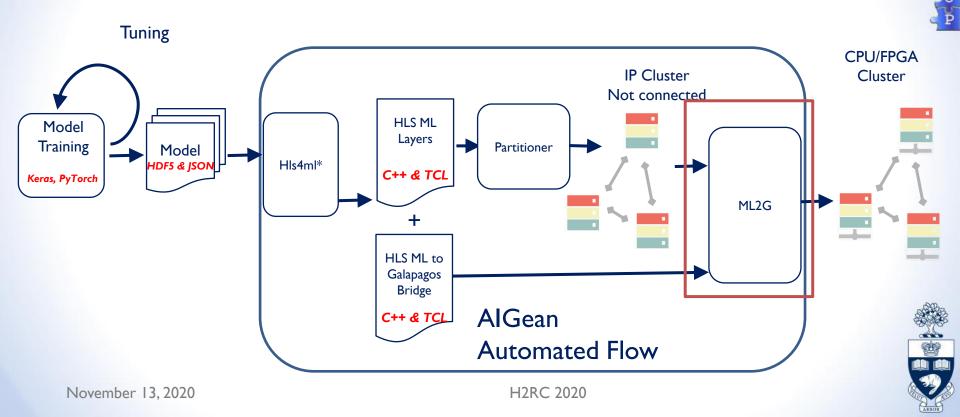
 Each IP core is a streaming core with each stream per dimension of the particular layer


HLS4ML Galapagos Bridge

- Bridges custom made for the layers used in the network (different bridges needed for different number of dimensions)
- If the user has a different application layer then they would need a different bridge

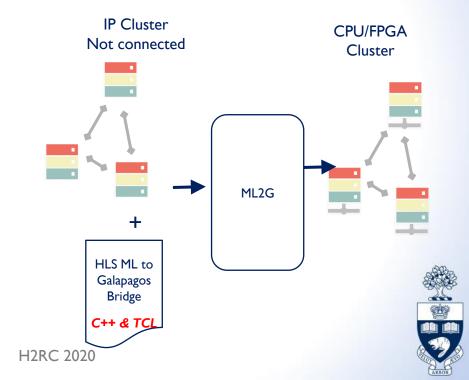

November 13, 2020

Algean Tool Flow



Partitioner

- Partitioner separates IP cores onto different FPGAs
- Currently using IP resources estimation from HLS Place and route and performing simple greedy approach
- Does not place the bridges as that is Algean specific, and this partitioner is general for all Galapagos IP kernels

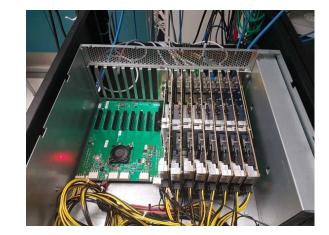


Algean Tool Flow

Machine Learning to Galapagos (ML2G)

- Adds the appropriate bridges on the interfaces of the FPGAs
- Creates the local connections for kernels on the same FPGA

November 13, 2020



November 13, 2020

Experiment Setup

- CPUs
 - Xeon E5-2650
 - 24 Cores at 2.2 GHz
- FPGAs
 - Fidus Sidewinder
 - ZUI9EG FPGA
 - ~I Million logic cells, 35 MB BRAM, 1968 DSP slices
 - 100 GB network interface
 - 100 GB UDP core

- Latency send single flit
- Throughput: maximum throughput of link (varying packet size for software)

Link	Latency	Throughput
Software to Hardware	0.029 ms	0.244 GB/s
Hardware to Hardware	0.00017 ms	100 GB/s
Hardware to Software	0.0203 ms	N/A

- Larger the packet, higher the throughput.
- UDP packet size limited
 - No segmentation
 - MTU size
 - Jumbo Frames:
 8K

Link	Latency	Throughput
Software to Hardware	0.029 ms	0.244 GB/s
Hardware to Hardware	0.00017 ms	100 GB/s
Hardware to Software	0.0203 ms	N/A

line kata	Link	Latency	Throughput
Line-rate,	Software to	0.029 ms	0.244 GB/s
same	Hardware		
throughput at	Hardware to Hardware	0.00017 ms	100 GB/s
small and	Hardware to Software	0.0203 ms	N/A
large packet			

size

- HW at linerate
- UDP, SW
 can't keep up
 and we see
 packet drop

Link	Latency	Throughput
Software to Hardware	0.029 ms	0.244 GB/s
Hardware to Hardware	0.00017 ms	100 GB/s
Hardware to Software	0.0203 ms	N/A

November 13, 2020

Small Neural Network: Results

- Single CPU, single FPGA, used in physics application to calculate energy of a particle
- I6K inferences
- SDAccel (without Algean) 3 ms
- Algean 6.3 ms
 - Latency of single inference 0.08 ms, we can do this since streaming, not possible via SDAccel
- Bottleneck: Sending data to FPGA via CPU
 network link

November 13, 2020

Small Neural Network: Takeaway

- Comparison vs SDAccel shows that network link for a single FPGA can be competitive with PCIe
 - Network link wins in terms of scalability, many more available FPGAs via network vs PCIe
- Can stream data
 - Latency of single inference a lot faster
- Should target larger application
 - We can do this as we have a large multi-FPGA fabric!

November 13, 2020

Autoencoder: Results

- Autoencoder implemented in both SDAccel on single FPGA and Algean using 3 FPGAs
- SDAccel: Single FPGA, higher reuse factor to fit logic
 - 0.26 ms
- Algean: Three FPGAs
 - 0.08 ms, more than 3x improvement

November 13, 2020

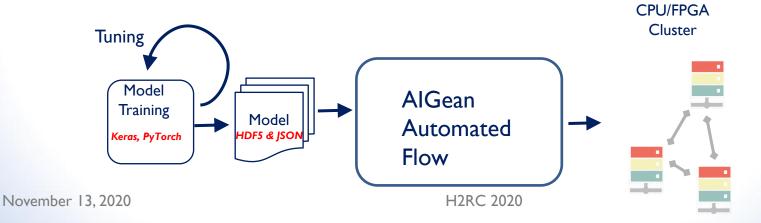
Autoencoder: Takeaway

- Using a larger fabric allows us to implement larger circuits
- The difficulty of communication between multi-FPGA is abstracted away

ResNet-50

- Currently IP cores implemented at 6600 images/second (slightly better than Brainwave)
- Prototype in software working
- Bridges working at line rate
- I2 FPGA bitstreams currently being synthesized and tested
- In the pipeline: 30000 images/second

November 13, 2020


SUMMARY AND CONCLUSION

November 13, 2020

Summary

- Multi-FPGA/CPU neural net framework by leveraging and combining HLS4ML and Galapagos frameworks
- Tunable IP cores, flexible communication
- ML HLS IP cores deployed onto cluster of network connected FPGAs and CPUs
- Communication abstracted away from user

Conclusions

- Network connected FPGAs/CPUs are more scalable than traditional PCIe
- Creation of larger fabrics with network connected FPGAs opens door for more complex algorithms
- Many opportunities to explore in multi-FPGA ML
- Galapagos provides a good foundation for multi-FPGA applications

Acknowledgments

November 13, 2020

Thank You

• Email: <u>pc@eecg.toronto.edu</u>

