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• Computing projections for high energy physics (HEP) greatly outpace CPU growth, interest 
in ML rapidly increasing


• We see FPGAs as possible solution 

• How can we best use FPGAs for  
ML computing tasks in HEP?


• → As-a-service computing

Motivation
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Applications
• FPGA compute as-a-service not 

only beneficial for our particular 
experiments


• Gravitational waves


• Neutrinos


• Multi-messenger astronomy
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Coprocessor

As-a-service Computing
• As a user, I just want my workflow to run quickly


• On-demand computing


• Client communicates with server CPU, server CPU 
communicates with coprocessor


• Many existing tools from industry, cloud
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As-a-service Computing
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• Can provide large speed up 
w.r.t traditional computing 
model


• Scheduling important to 
improvement


• Machine learning is 
particularly well-suited for 
as-a-service


• Small number of inputs 
relative to large number 
of operations


• Large speedups w.r.t 
CPU



FPGAs-as-a-Service Toolkit

CPU Client FPGAServer
PCIe

gRPC

gRPC

• Have developed cohesive set of implementations for range of hardware/ML 
models - refer to as FPGAs-as-a-Service Toolkit (FaaST)


• For fast inference we focus on gRPC protocol 

• Open source remote procedure call (RPC) system developed by Google 

1. Runs the inference
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1. Formats inputs 

2. Sends asynchronous,  

non-blocking gRPC call

3. Interprets response
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1. Formats inputs 

2. Sends asynchronous,  

non-blocking gRPC call
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1. Initializes model on coprocessor

2. Receives and schedules inference request

3. Sends inference request to FPGA

4. Outputs and send results
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1. Formats inputs 

2. Sends asynchronous,  

non-blocking gRPC call

3. Interprets response

1. Initializes model on coprocessor

2. Receives and schedules inference request

3. Sends inference request to FPGA

4. Outputs and send results

Tools:



SONIC
• FaaST compatible with Services for Optimized Network Inference on 

Coprocessors (SONIC) framework


• Integration of as-a-service requests into HEP workflows


• Works with any accelerator


• Requests are asynchronous, non-blocking
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• Triton inference server developed by Nvidia for as-a-service 
inference on GPUs


• Supports gRPC protocol


• FaaST designed to use same message protocol as Triton


• Server designed using various tools for different benchmarks


• FACILE:                      +                      (Alveo U250 & AWS f1)


• ResNet-50:                   (AWS f1) 

• ResNet-50:                   (Azure Stack Edge)

FaaST Server
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Benchmarks

Tagging tops

!17
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Fig. 3: A comparison of QCD (left) and top (right) jet images averaged over 5,000 jets.

Model Accuracy AUC 1/"B("S = 30%)
Floating point 0.9009 0.9797 670.8

Quant. 0.8413 0.9754 414.6
Quant., f.t. 0.9296 0.9825 970.7
Brainwave 0.9257 0.9821 934.8

Brainwave, f.t. 0.9348 0.9830 999.6

Table 1: The performance of the evaluated models on
the top tagging dataset.

characteristic (ROC) curve is a graph of the false pos-
itive rate (background QCD jet e�ciency) as a func-
tion of the true positive rate (top quark jet e�ciency.)
It is customary to report three metrics for the per-
formance of the network on the top tagging dataset:
model accuracy, area under the ROC curve (AUC),
and background rejection power at a fixed signal ef-
ficiency of 30%, 1/"B("S = 30%). Fig. 4 shows the
ROC curve comparison for the transfer learning ver-
sion of ResNet-50 as well as the fully retrained fea-
turizer with custom weights. In Table 1, the accuracy,
AUC, and 1/"B("S = 30%) values are listed for each
model considered. The performance of the retrained
ResNet-50 compared to other models developed for
this dataset is state-of-the-art; the best performance is
1/"B("S = 30%) ⇡ 1000.

One other consideration in this study is the size of
the model. The typical particle physics models used
for top tagging are often several orders of magnitude
smaller than ResNet-50 in terms of the numbers of pa-
rameters and operations. However, it should be noted
that the best-performing models to date (ResNeXt50
and a directed graph CNN) [32,24] are within a factor
of a few in size with respect to the ResNet-50 model.
We emphasize here that this study is a proof-of-concept
for the physics performance and that there are many
other very challenging, computationally intensive algo-

Fig. 4: The ROC curves showing the performance of
the floating point and quantized versions (before fine-
tuning, after fine-tuning, and using the Brainwave ser-
vice) of the ResNet-50 top tagging model.

rithms where machine learning is being explored. We
anticipate that for these looming challenges, the size of
the models will continue to grow to meet the demands
of new experiments.

3.3 Neutrino flavor identification at NOvA

Neutrino event classification can also benefit from ac-
celerating the inference of large ML models. In this
section, due to a lack of publicly available neutrino
datasets, we do not fully quantify the performance of
a particular model. Instead, we present a workflow to
demonstrate that this work is applicable beyond the
LHC.
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Public top tagging data challenge

Averaged over 1000 jets
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ResNet-50FACILE
calorimeter energy regression


3-layer MLP

2k 
parameters

10M 
parameters

batch 16000 batch 10/batch 1

top quark image classification

Large CNN

• Standard HEP data processing proceeds event-by-event


• Batch sizes limited by event characteristics → smaller batches



Gains
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• hls4ml is a software package for creating implementations of 
neural networks for FPGAs and ASICs


• https://fastmachinelearning.org/hls4ml/


• arXiv:1804.06913


• Supports common layer architectures and model software, 
options for quantization/pruning


• Output is a fully ready high level synthesis (HLS) project


• Customizable output


• Tunable precision, latency, resources
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https://fastmachinelearning.org/hls4ml/
https://arxiv.org/abs/1804.06913
https://fastmachinelearning.org/hls4ml/
https://arxiv.org/abs/1804.06913


• Use Vitis Accel to manage data transfers, kernel execution


• Basic scheduling:


• Copy batch 16000 inputs from host to FPGA DDR


• Run hls4ml kernel


• Tuned for low latency,  
pipelined, ~104 ns/inference


• Copy 16000 batch outputs  
from FPGA DDR to host


• Server responsible for transferring  
input to dedicated buffers in  
host memory


• Set up for Alveo U250, AWS f1

FACILE Server (        +        )
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• Large amount of server optimization 


• Can create multiple copies of 
hls4ml inference kernel on separate 
SLRs


• Can create buffer in DDR for 
multiple inputs, cycle through 
buffers
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FACILE Server (        +        )
Alveo U250



ResNet Server (          )

17

• Similar server interface designed for ResNet / Xilinx ML 
Suite


• Set up for AWS f1



ResNet Server (          )
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• Microsoft Azure Machine Learning Studio works with 
Azure Stack Edge server


• Intel Arria 10 FPGA


• Predefined list of ML models (including ResNet-50)


• Out-of-the-box solution accepts gRPC calls


• Installed locally at Fermilab



Server Optimization
• Many settings to tune


• FACILE: scan of CU 
duplication and DDR buffer 
size


• ResNet: streaming gRPC 
inference calls found to 
greatly increase throughput


• Both: proxies to manage 
requests, distribute to 
multiple gRPC server 
endpoints
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Throughput Tests
• What is the maximum throughput of the server? 

• Start server (local/cloud), create N client processes at Fermilab 
computing cluster


• Workflow contains only accelerated processing module


• All processes begin running 
at the same time


• Fixed number of events


• Measure time/throughput  
for each process

20



Throughput Tests
• With small FACILE network, server  

able to process over 5000 events/s


• Limitation from CPU


• ResNet performance depends on hardware/specs
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Fermilab 

FACILE ResNet ResNet

8 FPGA 1 FPGA1 FPGAbatch 16000 batch 10
batch 1

FPGA server



Scalability Test
• How many processes can a single server realistically serve? 

• Start server, create N client processes


• Running realistic HEP high level trigger (HLT) workflow


• HLT is fast reconstruction  
during data-taking  
traditionally performed  
using large CPU farm


• Compare standard HLT to  
HLT with calorimeter  
reconstruction replaced by  
FaaST server running FACILE 

• Use HEPCloud to manage clients
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Scalability Test

• 10% reduction in computing time operating as-a-service 

• Consistent with fraction of time spent on calorimeter reconstruction w.r.t total 
HLT time


• → Maximal achievable reduction  
for this single algorithm


• No increase in latency until 1500 clients 

• Single FPGA can service  
1500 HLT instances 

• Limited by AWS bandwidth (25 Gbps)


• On Alveo U250, without network limit,  
estimate saturation at ~3300 clients
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Summary
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• Comparison of results to GPUaaS results (arXiv:2007.10359)


• FaaST greatly outperfoms GPUaaS for FACILE 

• Small network, large batch is ideally suited for FPGA


• Comparable performance between FaaST and GPUaaS for ResNet

https://arxiv.org/abs/2007.10359
https://arxiv.org/abs/2007.10359


Conclusions
• FPGAs have been used in HEP for decades


• As-a-service paradigm, recent developments in ML inference, provide 
opportunity to leverage FPGA compute for many additional 
applications


• FPGAs-as-a-Service Toolkit (FaaST) can help facilitate integration of 
FPGA compute into existing workflows


• Our results focus on HEP (and LHC particularly)


• Applicable many other fields


• Astronomy, neutrinos, gravitational waves


• Look forward to the growth of heterogeneous computing for science
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Thanks!
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BACKUP
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FACILE Optimization
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Alveo U250 AWS f1


