


■ Homogeneous systems inherently limited by 
processor performance 

■ Hardware Accelerators offer performance and power benefits

■ Case study: accelerate HPC physics app with FPGA
■ Develop custom HW pipeline for compute-bound kernel
■ Compare performance with CPU and GPU 
■ FPGA brings versatile performance and attractive energy 

considerations

■ Projected performance to notional FPGA-accelerated 
HPC system

* https://orau.gov/exheterogeneity2018/2018-Extreme- Heterogeneity-BRN-report-final.pdf 

https://orau.gov/exheterogeneity2018/2018-Extreme-%20Heterogeneity-BRN-report-final.pdf


■ Nek5000: physics HPC app renowned for high scalability*
■ Coarse-grained parallelism obtained by dividing large 

volume into many sub-spaces
■ Can we go beyond CPU scaling?

■ Extract fine-grained parallelism inherent in sub-space computations

*https://www.mcs.anl.gov/~oanam/old_page/index.php/Scaling

https://www.mcs.anl.gov/~oanam/old_page/index.php/Scaling


■ We show FPGA can accelerate CPU core's performance
■ We project how this performance can complement 

multicores in future heterogeneous systems
■ Design Space Exploration (DSE) of notional accelerator 

configurations



■ Derivative computations are compute 
bottleneck with O(N⁴) complexity

■ Three derivatives in a row, one for each 3D direction of flow
■ Opportunity for acceleration with custom FPGA circuit



■ Primary computation: 3D x 2D matrix multiply
■ N3 outputs requiring N MACs each => O(N4) complexity
■ Memory intensity: each N3 input accessed N times



■ N parallel Multiply-Accumulate (MAC) pipelines 
■ Pre-load each path with 1 row of 2D kernel matrix
■ Stream input ternix, performing all MACs in parallel

■ Each input read only once per derivative 
■ Produces results every clock cycle once pipeline is saturated 
■ Wide + deep parallelism + reduced memory intensity yields 

significant performance benefits 



■ Same input data traversed in 3 different directions 
■ Send input data to FPGA only once per 3 derivative calculations
■ Only 1 derivative traverses data in memory order (row-major) 
■ Other 2 directions require data re-ordering for best efficiency



■ Surround pipeline with data re-order buffers
■ Receive input ternix in row-major order; store in input buffer while 

also streaming through pipe for derivative dt 
■ Stream input through pipe with step size of N for ds, then N2 for dr
■ Collect results (ds, dr) back into row-major order in output buffer



■ What execution time is measured, and why?
■ Total timestep = work that each CPU core performs 

on its assigned portion of volume at every simulated 
instant
■ Each core has work, whether accelerated or not
■ Limits overall performance speedup by Amdahl's Law

■ Target kernel = portion of total timestep spent 
performing partial derivative computations
■ Measured on CPU core, GPU and FPGA to determine 

fine-grained parallelism
■ Speeding up compute bottleneck reduces total run time



■ Application: CMT-bone-BE
■ Representative mini-app of CMT-nek

■ HiPerGator 2.0 @ UF
■ CPU: Intel Xeon E5 
■ GPU: NVIDIA Tesla K80 
■ Nvcc compiler with O2 optimization 

■ Intel DevCloud
■ FPGA: Intel Arria 10 GX 1150 
■ Quartus Prime Pro 19.2.0

■ Synthesized Fmax 231-250 MHz
■ CPU: Intel Xeon E5*

■ *Substitute HiPerGator CPU times for consistency



■ Target kernel faster on FPGA than CPU core (all but 1 case)
■ GPU underperforms CPU core in 3 cases
■ GPU higher peak computational bandwidth FPGA 
■ FPGA 28x faster than GPU for sizes 5-10 



■ Total timestep performance CPU with FPGA accelerated 
kernel vs CPU with GPU accelerated kernel 
■ CPU+FPGA 18x faster than CPU+GPU for sizes 5-10
■ Competitive performance for larger element sizes
■ FPGA offers low-power performance vs GPU

■ Massive energy savings at small sizes (E=P*t)



■ Accelerate multiple CPU cores with single FPGA  
■ Replicate pipeline 8x comfortably (<1/15 resources each) 
■ 8 parallel cores @ 1.5x average speedup = ~12 core equivalents

■ Communication bandwidth is limiting factor
■ ~4 pipelines currently realistic
■ PCIe 5.0 could allow 12+ pipelines



■ FPGA pipeline only runs target kernel (else Idle)
■ CPU core only needs FPGA during target kernel
■ Multiple cores can share single pipeline in time
■ 5 cores sharing pipeline @ 1.5x average speedup = ~7.5 core 

equivalents from each shared pipeline
■ Multiple shared pipes increase Time & Area utilization of FPGA



■ Fluid-flow workloads can be accelerated beyond 
coarse-grained CPU scaling
■ Over 9x speedup of targeted compute kernel on FPGA
■ Overall timestep speedup up to ~2x  (Amdahl's Law)
■ More kernels could be targeted to improve overall speedup

■ FPGAs show promise as hardware accelerators 
■ Competitive performance vs GPU at high-end
■ More versatile performance across all sizes
■ More energy efficient than CPU, GPU 



■ Design Space Exploration of FPGA accelerator 
configurations
■ Accelerate multiple cores with replicated HW pipeline
■ Time-share each pipeline with multiple cores

■ Collect power metrics of FPGA accelerator 
■ Show energy-efficient performance vs CPU & GPU

■ Accelerate more kernels for total speedup
■ Could consider productivity/performance tradeoffs of higher 

level hardware generation




