FPGA Acceleration
of Fluid-Flow Kernels

Ryan Blanchard

Greg Stitt, Herman Lam

Center for Compressible Multiphase Turbulence (CCMT)
ECE Department, University of Florida

I |
UF [FLORIDA Ove rViEW

= Homogeneous systems inherently limited by

processor performance
= Hardware Accelerators offer performance and power benefits

= Case study: accelerate HPC physics app with FPGA
= Develop custom HW pipeline for compute-bound kernel

= Compare performance with CPU and GPU Reactor Assembly
= FPGA brings versatile performance and attractive energy

considerations

= Projected performance to notional FPGA-accelerated

Future - Post CMOS Extreme

i Present - Hetero geneous :

Past - Homogeneous : ;
H P‘ Systel I I AThec it Present - CPU+GPU Avckitactives

https://orau.gov/exheterogeneity2018/2018-Extreme-%20Heterogeneity-BRN-report-final.pdf

llllllllll

UFHOKS: Motivation: Application

= Nek5000: physics HPC app renowned for high scalability*

= Coarse-grained parallelism obtained by dividing large
volume into many sub-spaces

= Can we go beyond CPU scaling?
= Extract fine-grained parallelism inherent in sub-space computations

Strong Scaling to a Million Ranks F\

Reactor Assembly

O L
8) T~
& AN RN : AN N
3
: < — — I\
= Ny 0 IR 1 N R R R R
4000 ptsicore VIV V V V V V V
‘ 2000 pts/process
processioore e
A CPU CPU CPU CPU CPU CPU CPU CPU
nlll-‘bl 276A s 1N 3 xlM M

[53)
Number of Cores

https://www.mcs.anl.gov/~oanam/old_page/index.php/Scaling

IIIIIIIIII

= We show FPGA can accelerate CPU core's performance
= We project how this performance can complement

multicores in future heterogeneous systems
= Design Space Exploration (DSE) of notional accelerator

configurations
AN
N |
N N \7
\7
A A B B B B B N
vV VvV VvV VY @ {} @ {}
CPU CPU CPU CPU CPU CPU CPU CPU
¢ CPU CPU CPU CPU CPU CPU CPU CPU
% M
FPGA
FPGA

CCMT
[e, N e

O R
UFHOKS: Target Compute Kernel

CMT-nek Workflow

Pointwise

cfomputatnon SRS volume computation for Mgvle
or volume O(N?) O(N?) volume points particles
points O(N?) O(N3) O(Np)
y_4

Face data Computation D:\r;;:?:t\i,:n
exchange for face points| =

2 SR volume points
O(N?) O(NZ?,N?) O(N%)

Volume to

]
I 1

pudeg L

Surface to Pointwise

1

—— L —
l I

Interpolate
to particles
O(NavNP)

Relocate
particles
O(Np)

i

Distribute

point particle

force on

volume data

O(N3,Np)

' ‘ [

fur { b =

OpRration oony

< TINESTESS; ter) {

LF (rank o= PROBED RANKY) TA = now)

< 8K, ree) {

= @, & < ELEMENTS_PER_PROCESS, o+

0 5 < PHYSICAL PARANS: Bee

(elosents_Q[e}->8([b],

I

J 1

RX, Rx, Hy, Hz,

Ur, Us, Ut);

' Parfors

e LAY 0D Nrivative Cos

operation drikersel, W, Vr);
UparAtion ds{kerasl, U5, V§),
operation dt{kersel, Ut, Vt);

rar T L
ANL A0 in ’

7 TR

= Derivative computations are compute

bottleneck with O(N*) complexity

vl Vr, Vs, VB, eleoents

R(e]->81b]);

= Three derivatives in a row, one for each 3D direction of flow
= Opportunity for acceleration with custom FPGA circuit

CCMT

[e, N e

UFIOKB: Target Compute Kernel: CPU

Algorithm 1 Partial Derivative Compute Kernel

1: for derivative = dr,ds,dt do
D fori=1,..., N do

3 for j'=il, e N do
4 for ki=1; w55 N do
5 forg=1...., N do
6 if dr then
7 C. l1kI+ = Alillg) * Blgllj][K]
8: end if
: z j 5 ’ 9: if ds then
4= « * 10: C.[illjk+ = Aljllg) * Blillg)[¥]
— 11: end if
i 12: if dt then
5 . . 13: Cilil[j][K)+ = AlK][g] * BL)lo]
14: end if
15: end for
16: end for
17: end for
18: end for
19: end for

= Primary computation: 3D x 2D matrix multiply
= N3 outputs requiring N MACs each => O(N*) complexity
= Memory intensity: each N* input accessed N times

lllllllllll

Input Loader

—

® o o o
%
- .
Pipeline Controller
v

I I
v ¢ v
®| Kernel > Kernel
& RAM = € RAM
v__ v Sl v v
c
> FP Multiplier 8 > FP Multiplier
< P smm 2 | P
v 2 v
a
FP > FP
& Accumulator € Accumulator
| |
v ¢ v

k 9 9

Output Collector

= N parallel Multiply-Accumulate (MAC) pipelines
= Pre-load each path with 1 row of 2D kernel matrix

= Stream input ternix, performing all MACs in parallel
= Each input read only once per derivative

= Produces results every clock cycle once pipeline is saturated
= Wide + deep parallelism + reduced memory intensity yields
significant performance benefits

void operation_dr(matrix A, ternix B, ternix C)

/* Perform the R axis derivative operation, with kernel A and result C. *

UFHOKS: 3D Complexity

int k, j, i, ©;

for (k = ©; k < ELEMENT_SIZE; k++) {

for (j = ©; j < ELEMENT_SIZE; j++) {
\ for (i = 0; i < ELEMENT_SIZE; i++) {
j L] *r—> j) for (g = ©; g < ELEMENT_SIZE; g++) {
C->T[1][JI1[k] += A->M[i]1[g] * B->T[gl[JjI1[kl; } } } }
3
— i
+= *

void operation_ds(matrix A, ternix B, ternix C)
i g /* Perform the S axis derivative operation, with kernel A and result C. *,
{
k g k zero_ternix(C);

int k, j, i, g;

j L] *r—> g for (k = ©; k < ELEMENT_SIZE; k++) {
for (j = ©; j < ELEMENT_SIZE; j++) {

for (i = ©; i < ELEMENT_SIZE; i++) {
+_] * for (g = ©; g < ELEMENT_SIZE; g++) {

C->T[i][31[k]1 += A->M[jI[9] * B->T[i]1[g]l[k]l; } } } }

i i }

k g k void operation_dt(matrix A, ternix B, ternix C)

{

zero_ternix(C);

int k. 35 9 9;
for (k = ©; k < ELEMENT_SIZE; k++) {
+_ for (j = ©; j < ELEMENT_SIZE; j++) {
i\\ i for (i = ©; i < ELEMENT_SIZE; i++) {
for (g = ©; g < ELEMENT_SIZE; g++) {
. g g C->T[i][jI[k] += A->M[k]1[g] * B->T[i][jI1[gl; } } } }
3

= Same input data traversed in 3 different directions
= Send input data to FPGA only once per 3 derivative calculations
= Only 1 derivative traverses data in memory order (row-major)
= Other 2 directions require data re-ordering for best efficiency

/* Perform the T axis derivative operation, with kernel A and result C. *

llllllllll

Input Data Stream
Kernel Data In |

¢ v
\\
| %% R = Input Loader < Input
4= * v v v gg:ﬁ
N — . \\
I . 9 > Kernel > Kernel ¢
k 9 k = [RAM = [RAM
o = = Reorder
N o o
N = ¢ v = ¢ v Logic
j - . g 2 O S
. e O 1 | FP Multiplier g O | | FP Multiplier
. += ' * <Y 219 29 |, |Reorder
. . i\ o ¢ @ ¢ LOgIC
: : -~ ||&
| . > Fp > Fp v
N & Accumulator € Accumulator
j ® o o o : j O I ¢ I ODU;pt:t
+= Kle * v v R
AN - AN Output Collector . am
|
k g g

v
Output Data Stream

= Surround pipeline with data re-order buffers
= Receive input ternix in row-major order; store in input buffer while
also streaming through pipe for derivative dt
= Stream input through pipe with step size of N for ds, then N? for dr
= Collect results (ds, dr) back into row-major order in output buffer

UFiiotith Experimental Methodology

= What execution time is measured, and why?
= Total timestep = work that each CPU core performs

pppppppp

on its assigned portion of volume at every simulated : e
instant ﬁ-ﬂ-l |-|-»- l-»-

111 L
= Each core has work, whether accelerated or not =i 9-89 8
= Limits overall performance speedup by Amdahl's Law EC e
= Target kernel = portion of total timestep spent J
performing partial derivative computations _’
= Measured on CPU core, GPU and FPGA to determine =
fine-grained parallelism computation
. . volume points
= Speeding up compute bottleneck reduces total run time =)
Total Timestep (CPU) Total Timestep (CPU + GPU) Total Timestep (CPU + FPGA)
® @ ® & @ =l

[@ (2] &)
Target Kemnel (CPU) Target Kernel (GPU) Target Kernel (FPGA)

10

UNIVERSITY of

UFriorith Test Environment

= Application: CMT-bone-BE

Representative mini-app of CMT-nek

= HiPerGator 2.0 @ UF

CPU: Intel Xeon E5
GPU: NVIDIA Tesla K80
Nvcc compiler with O2 optimization

= Intel DevCloud

FPGA: Intel Arria 10 GX 1150

Quartus Prime Pro 19.2.0
= Synthesized Fmax 231-250 MHz

CPU: Intel Xeon E5*

= *Substitute HiPerGator CPU times for consistency

R
N 4 4 *
o o o [o e o [
o o o [4 % o [

c-w-n—-u—-:mon- s
r..:..:...co-:-cn- U
mw‘ﬂ-h‘mm- s
mmm-u-«aw-muu
omc-r/n-eumon- #u
c-c-w--t-c-e-- o 50
hmt‘!-f‘lf.’!(ﬂ‘- o i
r,-c-n:—--c-m-u-- w0
C.!Ctll(«ov-cv-cmtp--..n s
:-.o-ac--a-cmuu- w oy
W-Cmm-!m!ma--.».<qu
hh“‘-“‘“lf#‘-’:'vu
fﬂlm"‘.b"‘-‘fﬂ-- v

con core Core N com o cone [N

210)
4 4 B & +
o e e e

cors B <o o coo TR o v
o o Core IR o o o [N o o
u—-o-:--c—-u-e-- o
talmc--c—:-(..- o 3
o oo com [com co o [o o
:mc-am-mc«.un- -
com o con [o o core [N o
C-C.‘"'-‘-"'“I- Y WY
G o o [o o coce B o v
c-cm:--cu-u-m- o "
con G co [o o oo I o o
o G con [o oo o R -
o con o [oo con con [o
o e G [o oo oo [o0

3 - Y

UUUUUUU

ITY

= [arget kernel faster on FPGA than CPU core (all but 1 case)
= GPU underperforms CPU core in 3 cases

= GPU higher peak computational bandwidth FPGA

= FPGA 28x faster than GPU for sizes 5-10

Target Kernel Speedup vs CPU
Element | CPU Time | GPU Time GPU FPGA FPGA
Size (ms) (ms) Speedup | Time (ms) | Speedup
5 0.003 0.279 0.01 0.009 0.35
8 0.017 0.423 0.04 0.015 115
10 0.041 0.516 0.08 0.023 1.74
12 0.082 0.034 241 0.036 2.30
16 0.263 0.068 3.88 0.077 3.39
20 0.659 0.101 6.53 0.148 4.46
25 1.710 0.171 10.01 0.281 6.09
32 5.575 0.355 15.68 0.594 9.38

Speedup vs CPU

@® GPUSpeedup @ FPGA Speedup

20
g
10
S
0
5 10 15 20 25 30
Element Size

UUUUUUUUUU

= [otal timestep performance CPU with FPGA accelerated

kernel vs CPU with GPU accelerated kernel
= CPU+FPGA 18x faster than CPU+GPU for sizes 5-10
= Competitive performance for larger element sizes

= FPGA offers low-power performance vs GPU
= Massive energy savings at small sizes (E=P*t)

@® GPUSpeedup @ FPGA Speedup

Total Timestep Speedup vs CPU
Element | CPU Time | GPU Time GPU FPGA FPGA 2.5

Size (ms) (ms) Speedup | Time (ms)| Speedup
5 0.008 0.379 0.02 0.013 0.59 E &0
8 0.039 0.531 0.07 0.037 1.06 3 1.5
10 0.085 0.642 0.13 0.068 1.25 Z_
12 0.178 0.234 0.76 0.134 1.33 = 1.0
16 0.571 0.508 112 0.393 145 é)_ 0.5
20 1.360 0.931 1.46 0.869 1.56 » 0.0
25 3.130 1.748 1.79 1.758 1.78 5 10 15 20 25 30
32 9.203 4318 213 4421 2.08

CCMT Element Size

[e, N e T

llllllllll

= Accelerate multiple CPU cores with single FPGA

Replicate pipeline 8x comfortably (<1/15 resources each)
8 parallel cores @ 1.5x average speedup = ~12 core equivalents
= Communication bandwidth is limiting factor
~4 pipelines currently realistic
PCIe 5.0 could allow 12+ pipelines

\ N R : T
Arria 10 Pipeline
N N N Resources| Usage |Utilization
! . ! ALM 427k 27k 6.3%
e Mem| 67 Mb 4 Mb 6.0%
VvV V V VYV DSP| 1518 100 6.6%
CPU CPU CPU CPU
Pipelines 1 2 4 6 8
A H H A p :
Required 4.0 8.0 16.0 | 240 | 32.0
> FPGA € Comm.B/W| GB/s | GB/s | GB/s | GB/s | GB/s

14

UUUUUUUUUU

= FPGA pipeline only runs target kernel (else Idle)
= CPU core only needs FPGA during target kernel
= Multiple cores can share single pipeline in time
= 5 cores sharing pipeline @ 1.5x average speedup = ~7.5 core

equivalents from each shared pipeline
= Multiple shared pipes increase Time & Area utilization of FPGA

B Cores Accelerated by Time Sharing @ FPGA Kernel Run Time %

o 60.0% 8
E
}_
5 6 @
S 40.0% x
2 S

VVV VY 5 v
g 3
© 20.0%

CPU CPU CPU CPU t , i g
O
= > 4

" —— — e
3

FPGA K 0.0% 0
5 8 10 12 16 20 25 32
CCMT Element Size

O

UUUUUUUUUU

= Fluid-flow workloads can be accelerated beyond
coarse-grained CPU scaling

= Over 9x speedup of targeted compute kernel on FPGA
= Overall timestep speedup up to ~2x (Amdahl's Law)
= More kernels could be targeted to improve overall speedup

= FPGAs show promise as hardware accelerators

= Competitive performance vs GPU at high-end
= More versatile performance across all sizes
= More energy efficient than CPU, GPU

Past - Homogeneous Present - CPU+GPU | Present - Heterogeneous : Future - Post CMOS Extreme

Architectures : Architectures Heterogeneity

uuuuuuuuuuuuuuuuuuu

e — leterogeneity
CEE L EE N e
crPU H cru Im cPw [Mem T, Mem J : N 1 oY
L e | o || o || W’===:;; : ;1 3 [g.'
Buses E ‘
=] . | = N
g A

Towards Extreme Heterogeneity

CCMT

| 16

UUUUUUUUUU

= Design Space Exploration of FPGA accelerator

configurations
= Accelerate multiple cores with replicated HW pipeline
= lime-share each pipeline with multiple cores

= Collect power metrics of FPGA accelerator
= Show energy-efficient performance vs CPU & GPU

= Accelerate more kernels for total speedup
= Could consider productivity/performance tradeoffs of higher
level hardware generation

CCMT

|17

QUESTIONS?

Ryan Blanchard

Greg Stitt, Herman Lam

Center for Compressible Multiphase Turbulence (CCMT)

ECE Department, University of Florida

