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▪ Trends in reconfigurable computing
— Architectures
— Tools
— Applications

▪ Targeting fast architecture design space exploration
— MPSoC to accelerate design and evaluation of heterogeneous function units
— Mixed hardware/software approaches for scaling studies for complex design space scenarios

▪ The perennial tools problem
— Need for a unified hardware/software development environment 
— Open source

Outline



FPGA architecture has evolved as dramatically as CPU

▪ Xilinx 3000 series 

— Configurable Logic Blocks “sea of gates”

— I/O Blocks high speed programmable input-
output

— Interconnect combining mesh and long lines

https://www.xilinx.com/support/documentation/data_sheets/3000.pdf

https://www.xilinx.com/support/documentation/white_papers/wp505-versal-acap.pdf

▪ Xilinx Versal

— Specialized DSP processors

— “Fabric” for data acquisition/pre-
processing

— Control processor



Progression of FPGA architecture evolution

▪ Embedded, distributed memories to 
store local state

▪ DSP blocks for fast fixed point arithmetic

▪ I/O architecture optimization for fast 
data ingest and generation

▪ Clock management for multiple clock 
domains

▪ Host CPU integration

— HPC & ACP, CXL, CAPI

Specializations for application domains
Video codec
100 Gb EMAC, PCIe gen 4



FPGA tools have evolved from microprogramming to (highly 
annotated) C++

// Ethernet FIFO interface
// Receives 128-bit wide data in
// Transmits a packet via PS Ethernet FIFO
// This version supports flushing out buffered data
void eth_fifo_interface(

u1t dma_tx_end_tog,
u1t tx_r_fixed_lat,
u1t tx_r_rd,
…) {

#pragma HLS PIPELINE II=1 enable_flush
#pragma HLS INTERFACE ap_ctrl_none port=return
#pragma HLS INTERFACE ap_none port=dma_tx_end_tog
#pragma HLS INTERFACE ap_none port=tx_r_fixed_lat
#pragma HLS INTERFACE ap_none port=tx_r_rd
#pragma HLS INTERFACE ap_none port=tx_r_status
…
// various state variables and useful constants
static enum state {IDLE, MAC_DST, MAC_SRC, TYPE, PAYLOAD, ZEROS, ID} 

current_state = IDLE;
const u8t src_mac[6] = {0x00, 0x0A, 0x35, 0x03, 0x59, 0xF5};

#pragma HLS ARRAY_PARTITION variable=src_mac complete dim=1
…

static u8st data_buffer;
#pragma HLS STREAM variable=data_buffer depth=16384



▪ Signal and image processing
— Satellite, space application
— Instrument sensor data streams

▪ Network packet processing
— Routing
— In-stream processing
— Regular expression matching

▪ Finance
— Integrated with network packet processing
— High frequency trading
— Risk analysis

▪ Data center
— Microsoft investment in FPGAs to accelerate search, ML, etc.: the FPGA sits between the datacenter’s top-of-rack 

(ToR) network switches and the server’s network interface chip (NIC). As a result, all network traffic is routed through 
the FPGA, which can perform line-rate computation on even high-bandwidth network flows.

— Amazon F1 for individual, corporate, or FPGA as a service

▪ Logic emulation
— Use the sea of gates to emulate IP blocks, function units, full ASICs

Reconfigurable computing applications are diverse

CHIME Radio Telescope with 
F-Engine Containers

Mars Perseverance Rover



▪ M. Butts, J. Batcheller and J. Varghese, “An efficient logic emulation system,” Proceedings 1992 IEEE 
International Conference on Computer Design: VLSI in Computers & Processors, Cambridge, MA, 1992, 
pp. 138-141.
— Realizer System: array of FPGAs for emulating large digital logic design

▪ Q. Wang et al., "An FPGA Based Hybrid Processor Emulation Platform," 2010 International Conference 
on Field Programmable Logic and Applications (https://ieeexplore.ieee.org/document/5694215)
— Emulates Xeon processor on FPGA in a processor socket

▪ FireSim for many-core RISC-V simulation https://rise.cs.berkeley.edu/projects/firesim/
— Amazon F1 cloud
— Custom accelerators for RISC-V

▪ ESP for heterogeneous SoC design https://www.esp.cs.columbia.edu
— tile-based architecture built on a multi-plane network-on-chip
— prototype on FPGA

▪ Logic in Memory Emulator (LiME) follows a hybrid approach: keep the native hard IP cores/cache 
hierarchy for the CPU complex and use the programmable logic to emulate widely varying memory 
latencies and near memory accelerators

FPGAs can accelerate architecture exploration by orders of 
magnitude over software

https://ieeexplore.ieee.org/document/5694215
https://rise.cs.berkeley.edu/projects/firesim/
https://www.esp.cs.columbia.edu/


Shift to heterogeneous computing has generated innovation in 
purpose-built hardware blocks from exascale to IoT

LLNL NS61e True North boards with 16 TN chips

Habana Gaudi AI training chip

Intel CGRA
https://en.wikichip.org/wiki/intel/configurable_spatial_accelerator

Heterogeneous computing has 
been dominated by GPUs, but 
contenders abound:
For example, specialized tensor 
processing cores with 
embedded SRAM, HBM, fast 
network

Focus on compute units



▪ Advances in memory technology and packaging
— High bandwidth memories – HBM, HMC
— Non-volatile memory – 3D Xpoint

— focuses attention on computer memory system design and evaluation
— Potential for logic and compute functions co-located with the memory

New memory technologies and packaging are needed to deliver 
data to the compute units 

Hongshin Jun, et. al. IMW 2017

Micron Technology

HMC HBM 3D XPoint
Singh, et. al. 
https://arxiv.org/pdf/1908.
02640.pdf

Creative Commons Attribution



▪ Emerging memories exhibit a wide range 
of bandwidths, latencies, and capacities
— Challenge for the computer architects to 

navigate the design space

▪ Near-random and sparse access patterns 
make performance prediction difficult
— Challenge for application developers to assess 

performance implications

▪ Opportunities for near memory 
acceleration emerge
— Large design space must be investigated

Memory landscape diversity presents challenges 
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▪ Need for system level exploration of the design space
— Combinations of memory technology
— Various memory hierarchies
— Prototype architectural ideas in detail
— Potential benefit of near-memory accelerators

▪ Need to quantitatively evaluate the performance impact on applications – beyond an 
isolated function
— Latency impact
— Scratchpad vs. Cache
— Cache size to working data set size
— Byte addressable vs. block addressable
— Accelerator communication overhead
— Cache management overhead
— Operating System overhead

Quantifying impact of memory interactions requires a global view



MPSoC can be an effective tool to 
accelerate memory system investigations

Fidus Sidewinder and ZCU102 development boards with Xilinx Zynq UltraScale+ MPSoC device
Desktop, dedicated evaluation environment

A. K. Jain, S. Lloyd and M. Gokhale, "Microscope on Memory: 
MPSoC-Enabled Computer Memory System Assessments," 2018 
IEEE 26th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), Boulder, CO, 
2018, pp. 173-180, doi: 10.1109/FCCM.2018.00035.



LiME (Logic in Memory Emulator)

approach

▪ Use embedded CPU and cache 
hierarchy in Zynq MPSoC to save 
FPGA logic and development time

▪ Loopback path to route CPU 
memory traffic through hardware IP 
blocks

▪ Emulate the latencies of a wide 
range of memories by using 
programmable delay units in the 
loopback path

▪ Capture time-stamped memory 
transactions using trace subsystem

▪ Emulate Accelerator, including 
CPU/Accelerator interactions

Open Source:
https://github.com/LLNL/lime and lime-apps

Programmable Logic (PL)

Processing System (PS)

Zynq UltraScale+ MPSoC

Tr
ac

e 
Su

b
sy

st
em

M
em

o
ry

 S
u

b
sy

st
em

H
o

st
 S

u
b

sy
st

em

Trace DRAM

P
ro

g
ra

m
 D

R
A

M

AXI Performance 

Monitor (APM)

ARM 

Core

L2 Cache

Accelerator

Trace Capture 

Device

Monitor

AXI Peripheral 

Interconnect

L1

Delay Delay

DDR Memory 

Controller

ARM 

Core

L1

ARM 

Core

L1

ARM 

Core

L1

Not Used

Main Switch

Coherent Interconnect

HPM1HP0,1HP2,3 HPM0

https://github.com/LLNL/lime


Emulation Method
Delay & Loopback

▪ Address ranges R1, R2 
intended to have different 
access latencies (e.g. 
SRAM, DRAM)

▪ Shims shift and separate 
address ranges (R1, R2) for 
easier routing

▪ Standard AXI Interconnect 
routes requests through 
different delay units

▪ Delay units have separate 
programmable delays for 
read and write access
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Emulation Method
Clock Domains

▪ ARM cores are slowed to run at a 
frequency similar to programmable logic

▪ A scaling factor of 20x is applied to the 
entire system

▪ Other scaling factors can be used 
depending on the target peak 
bandwidth to memory

▪ CPU peak bandwidth is limited to 44 
GB/s
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Component Actual Emulated

Memory Bandwidth (PL) 4.8 GB/s 96 GB/s

Memory Latency (PL) 230 ns 12 ns (too low)

Memory Latency (PL)  w/delay 230 ns 12+88 = 100 ns

CPU Frequency 137.5 MHz 2.75 GHz

CPU Bandwidth 2.2 GB/s 44 GB/s

Accelerator Frequency 62.5 MHz 1.25 GHz

Accelerator Bandwidth Up to 4.8 GB/s Up to 96 GB/s

Emulation Method
Scaling by 20 Example

Delay is programmable over a wide range: 0 - 174 us in 
0.16 ns increments



Emulation Method
Macro Insertion

▪ Insert macros at the start and end of 
the region of interest (ROI)

▪ CLOCKS_EMULATE/CLOCKS_NORMAL
— Modify the clock frequencies and 

configure the delay units

▪ TRACE_START/TRACE_STOP
— Trigger the hardware to start/stop 

recording memory events in Trace DRAM

▪ STATS_START/STATS_STOP
— Trigger the hardware to start/stop the 

performance monitor counters

▪ TRACE_CAP
— Save captured trace from Trace DRAM to 

SD card



▪ Uses 2nd DRAM so that memory system of device under test is unaffected

▪ Captures 
— Timestamp
— Transaction type
— Source of request (CPU core, cache pre-fetch, accelerator)
— Type of memory 

• Emulator supports two memory regions with separate read and write latencies
• Total of 8 individual delays

Trace capture subsystem stores memory accesses for analysis



Memory Trace Capture

LiME

trace.bin

parser.c

trace.csv

Each count represents 0.16 nsCPU = 0, Accelerator = 1
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▪ Near memory data rearrangement engine for 
gather/scatter 
— Batch operation
— Indexed A[B[i]]
— Strided A[i+c]

▪ Key/Value Store lookup accelerator
— Gather values for batch of keys

▪ Floating point compression pipeline
— Tailored to scientific 1D, 2D, 3D data arrays 
— Based on zfp library 

Let’s add accelerators to the mix

Maya Gokhale, Scott Lloyd, and Chris Hajas. 2015. Near 
memory data structure rearrangement. In Proceedings 
of the 2015 International Symposium on Memory 
Systems (MEMSYS '15). Association for Computing 
Machinery, New York, NY, USA, 283–290. 
DOI:https://doi.org/10.1145/2818950.2818986

A. K. Jain, S. Lloyd and M. Gokhale, "Performance 
Assessment of Emerging Memories Through FPGA 
Emulation," in IEEE Micro, vol. 39, no. 1, pp. 8-16, Jan.-
Feb. 2019, doi: 10.1109/MM.2018.2877291.

G. Scott Lloyd and Maya Gokhale. 2017. Near memory 
key/value lookup acceleration. In Proceedings of the 
2017 International Symposium on Memory Systems 
(MEMSYS ‘17). Association for Computing Machinery, 
New York, NY, USA, 26-33. 
https://doi.org/10.1145/3132402.3132434



▪ Memory bandwidth to CPU limiting many applications
— Trend is downward with many-core processors
— 8 GB/s per core Intel Xeon X5550, Q1'09
— 5.6 GB/s per core Intel Xeon E7-4890 v2, Q1'14
— Large caches and more memory channels may help some applications

▪ Data-intensive applications
— Large application working sets
— Unstructured and irregular data access patterns
— Manipulate complex, linked data structures
— Benefit less from CPU caches
— Small portion of cache line actually used by CPU

▪ Approach
— Rearrange and reduce data near the source
— Move less data to CPU for energy and performance benefit
— Rearrangement hardware is generally applicable

Near memory data rearrangement can help applications with 
sparse, irregular access patterns



Heterogeneous architecture targets interconnected, near 
memory, configurable fixed function units 
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Use Cases
Evaluation of Near-Memory Data Rearrangement Engine

▪ Multiple Memory Channels

▪ Up to 16 concurrent memory requests

▪ DREs are located in the Memory Subsystem

▪ Scratchpad is used to communicate parameters 
and results between CPU and accelerator

▪ DRE puts buffer data into a cache-friendly layout 
to minimize wasted memory bandwidth
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setup Specify the location and size of application data structures and other 
parameters for gather/scatter

/* ImageDiff: Specify image location, dimensions, and decimation factor */
void setup(void *ref, size_t ref_width, size_t ref_height, size_t elem_sz, size_t decimate);
/* PageRank, RandomAccess, SpMV: Specify reference table and index array */
void setup(void *ref, size_t elem_sz, const void *index, size_t len);

fill Copy from DRAM to the view buffer according to the access pattern 
established during setup

/* Specify view buffer and window offset */

void fill(void *buf, size_t buf_sz, size_t offset);

drain Copy from the view buffer into DRAM according to the access pattern 
established during setup

/* Specify view buffer and window offset */

void drain(void *buf, size_t buf_sz, size_t offset);

API



On HMC-like memory, should near memory buffer be SRAM or 
DRAM?
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Is there energy savings in using a narrow width memory?
Simple model: 19.4 pJ/bit for DRAM, 1.0 pJ/bit for SRAM, and 10.3 pJ/bit for off-chip traversal
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RandomAccess Power Profile

(a) The entire run. (b) Enlarged segment of the run.



▪ One DRE provides a benefit 
— Even when data rearrangement is not overlapped with CPU computation
— Computation can take advantage of vector and SIMD units
— View buffer contains only data that is needed by the CPU
— Speedup – up to 3.45x ( SRAM view buffer)
— Reduces energy – up to 7.62x (Narrow DRAM access)

▪ An SRAM view buffer provides an advantage over DRAM
— Speedup – up to 1.64x
— Reduces energy – up to 2.17x

▪ Narrow-width (8B) memory access uses less energy than Full (32B)
— Reduces energy – up to 2.91x

▪ Further speedup expected based on upper-bound results
— Multiple cores
— Multiple DREs
— Overlapped computation with data rearrangement

What have we learned about Data Rearrangement Engine?



Near memory key/value store lookup accelerator

▪ Multiple Memory Channels

▪ Up to 16 concurrent memory requests

▪ Lookup accelerators are located in the Memory 
Subsystem

▪ Scratchpad is used to communicate parameters 
and results between CPU and accelerator
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Lookup pipeline connects simple IP blocks
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Emulator predicts lookup performance over large design space
90% hit rate
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▪ Emulator models an idealized memory. 
— Can we generalize?

▪ Emulator studies focused on single core + single accelerator. 
— What about multiple accelerators with realistic memory behavior?

▪ Building accelerators in RTL is time consuming
— Can we have a higher level of abstraction and still get meaningful, quantitative 

answers?

Great insights, but what about …



▪ Fixed latency delay model is 
simplistic (simulation 101!) 

▪ Memories show considerable 
variability in access latency

▪ Variable latency delay (VLD) unit can 
improve prediction accuracy

▪ Delay profiles stored in table

▪ Each memory access delay amount is 
chosen randomly from a table

Variable Latency Model improves accuracy of predictions
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Variable latency reduces performance of some applications
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▪ Model accelerator, CPU, and LiME memory model in Structural Simulation Toolkit (SST)

▪ LiME data
— Capture memory access traces through LiME
— Use memory traces to determine model parameters

▪ SST capabilities
— Plugin detailed memory model: use HMC-Sim to simulate a Hybrid Memory Cube (HMC)
— Can scale up to an arbitrary number of CPUs and accelerators

Best of both worlds: combine insights from FPGA emulator 
with software simulator to study complex scenarios

https://github.com/sstsimulator

Joshua Landgraf, Scott Lloyd and Maya Gokhale. 2017. Combining Emulation and Simulation to Evaluate a Near Memory Key/Value 
Lookup Accelerator. In Open Source Computing Workshop, SC17. Available at 
https://www.researchgate.net/publication/330369517_Combining_Emulation_and_Simulation_to_Evaluate_a_Near_Memory_KeyValu
e_Lookup_Accelerator

https://github.com/sstsimulator
https://www.researchgate.net/publication/330369517_Combining_Emulation_and_Simulation_to_Evaluate_a_Near_Memory_KeyValue_Lookup_Accelerator
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▪ Goal is to find a simulation to emulation path:
— Enable full system evaluation combining software and hardware
— Provide flexible simulation during initial design
— Offer synthesis of promising design options for fast emulation
— Avoid writing two models, one for simulation and another for emulation

▪ LiME was implemented in RTL with heavy inclusion of Xilinx IP blocks: fifos, data 
mover, APM, AXI stream, AXI lite
— Continual battle with the tools
— C++ HLS didn’t work well for our use case

• We want to design a system of communicating processes
• We want to develop a library of building blocks stitched together with custom stream interconnect
• Our fixed function units need independent, concurrent accesses from multiple modules to shared DRAM 

— We need a communicating process model
• HLS from C/C++ tries to parallelize sequential programming model
• OpenCL and other parallel languages with data parallel model make it difficult to describe fixed function units

The tool problem: how can we speed up design of accelerators?
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SystemC Language
https://www.accellera.org/downloads/standards/systemc
https://github.com/accellera-official/systemc

▪ Modeling and simulation language of 
complex System on Chip hardware 
architectures
— Event-driven simulation hardware 

components

▪ Multiple levels of simulation
— Register/Transfer level
— Behavioral
— Transaction

▪ Parallel communicating process model
— Timing, event sequencing, process 

concurrency

▪ C++ library of classes and macros 

▪ Hierarchical model
— Modules, ports

▪ Scheduling and synchronization of 
concurrent processes

▪ Separation of computation (process) 
and communication (channel)

▪ Hardware oriented data types
— Digital logic
— Fixed point arithmetic

https://www.accellera.org/downloads/standards/systemc
https://github.com/accellera-official/systemc
https://www.accellera.org/downloads/standards/systemc
https://github.com/accellera-official/systemc
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SystemC in action

{
bool last = (count.read() == 0);
FP fp = s_fp.data_r();
expo_t expo;
if (fp.expo == 0 && fp.frac == 0) {

expo = fp.expo;
} else {

expo = fp.expo + expo_t(1);
}
if (c_sync) {
if (last) {count = fpblk_sz(DIM)-1;}

else {count = count.read() - 1;}
}
if (emax_v && c_ex.ready_r()) {
if (s_fp.valid_r()) emax = expo; else emax = 0;

} else if (s_fp.valid_r() && expo > emax) {
emax = expo;

}
if (emax_v && c_ex.ready_r()) emax_v = false;
else if (c_sync && last) emax_v = true;
}

SC_MODULE(find_emax)
{

typedef typename FP::expo_t expo_t;
/*-------- ports --------*/
sc_in<bool> clk;
sc_in<bool> reset;
sc_stream_in <FP> s_fp;
sc_stream_out<FP> m_fp;
sc_stream_out<expo_t> m_ex;

/*-------- modules --------*/
sfifo_cc<FP,2*DIM+1,RLEVEL> u_que_fp;
sreg<expo_t,FWD_REV,RLEVEL> u_reg_ex;



▪ FPGA HLS tools focus on C/C++/OpenCL, lack equivalent robustness for SystemC

▪ Industrial strength SystemC synthesis tools cost $$$$$

▪ Let’s work on a community effort on an open source SystemC to RTL compiler!

▪ Leverage LLVM/CLANG C++ front end

▪ Identify and consolidate synthesizable SystemC constructs in CLANG AST

▪ Translate SystemC processes to RTL

▪ On-going open source effort

SystemC for FPGA System on Chip



53
LLNL-PRES-xxxxxx

Clang: front end for LLVM
https://clang.llvm.org

▪ Language front-end and tooling infrastructure for languages in the C language family

▪ Supports C++11, C++14, C++17

▪ Modular library based architecture

▪ Well documented internal data structures and AST

▪ Tools to process AST: visitor pattern, traverse, matchers

▪ Code examples of clang usage

https://clang.llvm.org/
https://clang.llvm.org/
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8 SystemC: an overview 

SystemC Design Flow 

Functional  

Specfication 

SystemC  

Functional  

Model 

Gate Level HDL 

System 

Validation 

By TestBench 

Software/  

Hardware Tasks 

Hardware 

Synthesis SystemC-clang

Benefits:
• Open source
• Iterative refinement 

• Functional to RTL
• Suitable for SoC design

• Not just 
CPU/Accelerator

• C++ “carrier” language 
enables easy sw/hw co-
design

Issues: 
• Simulation language
• Synthesis requires vendor tools
• FPGA tools immature and buggy
• ASIC tools $$$$$

Vendor tools don’t handle complex C++ patterns very well: type hierarchies, typedefs, constexpr, etc.). We leverage Clang 
technology. 

https://cas.tudelft.nl/Education/courses/et4351/SystemC1.pdf
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Systemc-clang with HDL plugin:  open-source translator based on clang
https://github.com/anikau31/systemc-clang

▪ Translate synthesizable SystemC to HDL

▪ Build from prior work by U Waterloo
— Leverage clang parsing and semantic analysis

• Parse and build AST, type info from complex templated data types

— Traverse AST to identify SystemC constructs
• Objects: SC_MODULE, SC_METHOD
• Templated data types: sc_in, sc_out, sc_signal

— Optimize simulation

▪ Team with Waterloo to extend systemc-clang for synthesis
— (Waterloo) Improved template class handling, type infrastructure
— (LLNL) Add HDL plugin to generate HDL IR for modules and methods
— (Waterloo) Translate HDL IR to Verilog, test on FPGA board

A. Kaushik and H. D. Patel, "Systemc-
clang: An open-source framework for 
analyzing mixed-abstraction SystemC
models," Proceedings of the 2013 
Forum on specification and Design 
Languages (FDL), Paris, France, 2013, 
pp. 1-8.

https://github.com/anikau31/systemc-clang
https://github.com/anikau31/systemc-clang
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Full open source tool chain to generate RTL
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Recent progress

▪ Our test cases are taken from a floating 
point compression hardware IP library by 
Scott Lloyd https://github.com/LLNL/zhw
— Complex pipeline in synthesizable SystemC

— FPGA vendor tool was unable to synthesize 
simple library components to hardware

▪ Systemc-clang automatically translates 
SC_METHODs in modules of 
“zhw_encode” to hardware that runs 
correctly on FPGA
— Xilinx tool fails on this and simpler modules

▪ Collaborators welcome!

https://github.com/LLNL/zhw


▪ FPGAs have seen as dramatic innovation in architecture as CPUs

▪ FPGA applications are diverse: no one killer app

▪ Leveraging MPSoC hard processors enables fast design space exploration of fixed 
function near memory units

▪ Emulation+simulation enables larger design space exploration

▪ Open source tools can enable wider adoption of reconfigurable computing 
technologies

Summary 



Emulator Team

Scott Lloyd
All aspects of the implementation

Abhishek Jain
Port to Zynq UltraScale+

Chris Macaraeg
Trace Capture enhancements
Variable Latency Delay Unit



Team (2)

▪ Joshua Landgraf (student intern): 
simulation + emulation

▪ Chris Hajas (student intern): DRE studies

▪ Prateek Srivastava (student intern): 
initial variable latency delay unit

▪ Nelson Ho (student intern, staff): Linux 
port

▪ Eric Green (student intern, staff): Linux 
support, trace collection

Hirel Patel and Zhuanhao Wu, Waterloo



Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United 
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or 
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, 
LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government 
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.
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CHIME radio telescope

CHIME Radio Telescope with 
F-Engine Containers

Canadian Hydrogen Intensity Mapping Experiment

• Map the history of the expansion rate of the Universe by observing hydrogen gas in distant galaxies that were very strongly affected by dark 
energy.

• Detect FRBs (fast radio bursts) to act as an early warning system for the wider astrophysical community.

• Monitor known pulsars in the Northern sky to investigate the properties of neutron stars and ionized gas in the interstellar medium to help 
verify the predictions of general relativity and the search for gravitational waves.

Other than electrons, the CHIME radio telescope has no moving parts. Instead, the telescope consists of four parallel, adjacent cylindrical cylinders 
measuring 20x100m and oriented north-to-south. The telescope scans the heavens as the Earth turns. CHIME’s four reflectors feed 256 focal-point 
antennas located along each cylindrical axis (for a total of 1024 antennas) and each antenna generates signal feeds from two polarizations for a total of 
2048 signal feeds. CHIME’s front-end electronics then sample each signal at 800Msamples/sec, resulting in 1.6384 Tsamples/sec, resulting in a front-
end feed of 13Tbps.

The CHIME F-Engine



CHIME processing architecture



64

F-Engine hardware and algorithms

The ICE motherboard incorporates a Kintex-7 FPGA 
connected to 16 ADCs mounted on the two FMC 
daughter cards

Kintex-7 provides twenty-eight 10Gbps serial ports for inter-board 
networking and data offload.
On-board ARM running Linux manages MB functions, runs user code 
algorithms.

• F-Engines convert each microsecond of raw data (2048 samples/usec) 
into spectral range spanning 400MHz-500MHz with frequency 
resolution of .39MHz. The binned spectral data is shipped to GPU-
based X-Engine via optical fiber.



Reconfigurable computing in space: Mars Perseverance Rover

https://www.fierceelectronics.com/electronics/nasa-mars-rover-perseverance-launches-thursday-to-find-evidence-life-red-planet

The Mars rover Perseverance illustrated 
here will carry a lunchbox-size PIXL device to 
analyze rocks and soil quickly in hopes of 
finding evidence of ancient life on the Red 
Planet. Virtex 5 accelerates specific stereo 
and visual tasks like image rectification, 
filtering, detection, and matching (NASA) 

Virtex 2 Pro chips in multiple instruments
• Electra-lite instrument maintains UHF Transceiver and runs relay 

telecommunications and navigation.
• Radar Terminal Descent Sensor (TDS) is a Ka-band radar that provides 

range and velocity measurements through all phases of (post-heatshield 
separation, including Entry, Descent, and Landing (EDL).

• Mastcam-Z is a mast-mounted camera system that can zoom in, focus, and 
take 3D pictures and video at high speed to allow detailed examination of 
distant objects.

• SHERLOC (Scanning Habitable Environments with Raman & Luminescence 
for Organics & Chemicals) is for the fine-scale detection of minerals, 
organic molecules, and potential biosignatures. 



LiME (Logic in Memory Emulator)

Implementation

LLNL Hardware IP Blocks

AXI Shim

AXI Delay

AXI Trace 
Capture Device 

LiME uses only 13% of the device resources



DRE Architecture

Data Rearrangement Engine

(DRE)

Data Mover Control Processor

AXI Memory Interface

Local

Memory

Bus

Command Messages

(address, length…)

BRAM

To Peripheral 

Interconnect

AXI Interconnect

Memory

Read and Write

Stream Switch FIFO
Host

Adapter

DMA operations MicroBlaze


