
LLNL-PRES-816381

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

Architecture exploration through FPGA acceleration
Rapid System Level Design and Evaluation of Near Memory Fixed Function Units

Maya Gokhale11/13/2020
DMTS

▪ Trends in reconfigurable computing
— Architectures
— Tools
— Applications

▪ Targeting fast architecture design space exploration
— MPSoC to accelerate design and evaluation of heterogeneous function units
— Mixed hardware/software approaches for scaling studies for complex design space scenarios

▪ The perennial tools problem
— Need for a unified hardware/software development environment
— Open source

Outline

FPGA architecture has evolved as dramatically as CPU

▪ Xilinx 3000 series

— Configurable Logic Blocks “sea of gates”

— I/O Blocks high speed programmable input-
output

— Interconnect combining mesh and long lines

https://www.xilinx.com/support/documentation/data_sheets/3000.pdf

https://www.xilinx.com/support/documentation/white_papers/wp505-versal-acap.pdf

▪ Xilinx Versal

— Specialized DSP processors

— “Fabric” for data acquisition/pre-
processing

— Control processor

Progression of FPGA architecture evolution

▪ Embedded, distributed memories to
store local state

▪ DSP blocks for fast fixed point arithmetic

▪ I/O architecture optimization for fast
data ingest and generation

▪ Clock management for multiple clock
domains

▪ Host CPU integration

— HPC & ACP, CXL, CAPI

Specializations for application domains
Video codec
100 Gb EMAC, PCIe gen 4

FPGA tools have evolved from microprogramming to (highly
annotated) C++

// Ethernet FIFO interface
// Receives 128-bit wide data in
// Transmits a packet via PS Ethernet FIFO
// This version supports flushing out buffered data
void eth_fifo_interface(

u1t dma_tx_end_tog,
u1t tx_r_fixed_lat,
u1t tx_r_rd,
…) {

#pragma HLS PIPELINE II=1 enable_flush
#pragma HLS INTERFACE ap_ctrl_none port=return
#pragma HLS INTERFACE ap_none port=dma_tx_end_tog
#pragma HLS INTERFACE ap_none port=tx_r_fixed_lat
#pragma HLS INTERFACE ap_none port=tx_r_rd
#pragma HLS INTERFACE ap_none port=tx_r_status
…
// various state variables and useful constants
static enum state {IDLE, MAC_DST, MAC_SRC, TYPE, PAYLOAD, ZEROS, ID}

current_state = IDLE;
const u8t src_mac[6] = {0x00, 0x0A, 0x35, 0x03, 0x59, 0xF5};

#pragma HLS ARRAY_PARTITION variable=src_mac complete dim=1
…

static u8st data_buffer;
#pragma HLS STREAM variable=data_buffer depth=16384

▪ Signal and image processing
— Satellite, space application
— Instrument sensor data streams

▪ Network packet processing
— Routing
— In-stream processing
— Regular expression matching

▪ Finance
— Integrated with network packet processing
— High frequency trading
— Risk analysis

▪ Data center
— Microsoft investment in FPGAs to accelerate search, ML, etc.: the FPGA sits between the datacenter’s top-of-rack

(ToR) network switches and the server’s network interface chip (NIC). As a result, all network traffic is routed through
the FPGA, which can perform line-rate computation on even high-bandwidth network flows.

— Amazon F1 for individual, corporate, or FPGA as a service

▪ Logic emulation
— Use the sea of gates to emulate IP blocks, function units, full ASICs

Reconfigurable computing applications are diverse

CHIME Radio Telescope with
F-Engine Containers

Mars Perseverance Rover

▪ M. Butts, J. Batcheller and J. Varghese, “An efficient logic emulation system,” Proceedings 1992 IEEE
International Conference on Computer Design: VLSI in Computers & Processors, Cambridge, MA, 1992,
pp. 138-141.
— Realizer System: array of FPGAs for emulating large digital logic design

▪ Q. Wang et al., "An FPGA Based Hybrid Processor Emulation Platform," 2010 International Conference
on Field Programmable Logic and Applications (https://ieeexplore.ieee.org/document/5694215)
— Emulates Xeon processor on FPGA in a processor socket

▪ FireSim for many-core RISC-V simulation https://rise.cs.berkeley.edu/projects/firesim/
— Amazon F1 cloud
— Custom accelerators for RISC-V

▪ ESP for heterogeneous SoC design https://www.esp.cs.columbia.edu
— tile-based architecture built on a multi-plane network-on-chip
— prototype on FPGA

▪ Logic in Memory Emulator (LiME) follows a hybrid approach: keep the native hard IP cores/cache
hierarchy for the CPU complex and use the programmable logic to emulate widely varying memory
latencies and near memory accelerators

FPGAs can accelerate architecture exploration by orders of
magnitude over software

https://ieeexplore.ieee.org/document/5694215
https://rise.cs.berkeley.edu/projects/firesim/
https://www.esp.cs.columbia.edu/

Shift to heterogeneous computing has generated innovation in
purpose-built hardware blocks from exascale to IoT

LLNL NS61e True North boards with 16 TN chips

Habana Gaudi AI training chip

Intel CGRA
https://en.wikichip.org/wiki/intel/configurable_spatial_accelerator

Heterogeneous computing has
been dominated by GPUs, but
contenders abound:
For example, specialized tensor
processing cores with
embedded SRAM, HBM, fast
network

Focus on compute units

▪ Advances in memory technology and packaging
— High bandwidth memories – HBM, HMC
— Non-volatile memory – 3D Xpoint

— focuses attention on computer memory system design and evaluation
— Potential for logic and compute functions co-located with the memory

New memory technologies and packaging are needed to deliver
data to the compute units

Hongshin Jun, et. al. IMW 2017

Micron Technology

HMC HBM 3D XPoint
Singh, et. al.
https://arxiv.org/pdf/1908.
02640.pdf

Creative Commons Attribution

▪ Emerging memories exhibit a wide range
of bandwidths, latencies, and capacities
— Challenge for the computer architects to

navigate the design space

▪ Near-random and sparse access patterns
make performance prediction difficult
— Challenge for application developers to assess

performance implications

▪ Opportunities for near memory
acceleration emerge
— Large design space must be investigated

Memory landscape diversity presents challenges

HDD

SSD

NVM

Far DRAM

DDR DRAM

Near DRAM

SRAM
10 ns

45 ns

70 ns

100 ns

200 ns

50 us

10 ms

LatencyCapacity

MBs

Few GB

many GB

TB

TBs

10s TB

Many
TB

Memory/Storage Hierarchy

Experiments

45 ns

8000 ns

▪ Need for system level exploration of the design space
— Combinations of memory technology
— Various memory hierarchies
— Prototype architectural ideas in detail
— Potential benefit of near-memory accelerators

▪ Need to quantitatively evaluate the performance impact on applications – beyond an
isolated function
— Latency impact
— Scratchpad vs. Cache
— Cache size to working data set size
— Byte addressable vs. block addressable
— Accelerator communication overhead
— Cache management overhead
— Operating System overhead

Quantifying impact of memory interactions requires a global view

MPSoC can be an effective tool to
accelerate memory system investigations

Fidus Sidewinder and ZCU102 development boards with Xilinx Zynq UltraScale+ MPSoC device
Desktop, dedicated evaluation environment

A. K. Jain, S. Lloyd and M. Gokhale, "Microscope on Memory:
MPSoC-Enabled Computer Memory System Assessments," 2018
IEEE 26th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), Boulder, CO,
2018, pp. 173-180, doi: 10.1109/FCCM.2018.00035.

LiME (Logic in Memory Emulator)

approach

▪ Use embedded CPU and cache
hierarchy in Zynq MPSoC to save
FPGA logic and development time

▪ Loopback path to route CPU
memory traffic through hardware IP
blocks

▪ Emulate the latencies of a wide
range of memories by using
programmable delay units in the
loopback path

▪ Capture time-stamped memory
transactions using trace subsystem

▪ Emulate Accelerator, including
CPU/Accelerator interactions

Open Source:
https://github.com/LLNL/lime and lime-apps

Programmable Logic (PL)

Processing System (PS)

Zynq UltraScale+ MPSoC

Tr
ac

e
Su

b
sy

st
em

M
em

o
ry

 S
u

b
sy

st
em

H
o

st
 S

u
b

sy
st

em

Trace DRAM

P
ro

g
ra

m
 D

R
A

M

AXI Performance

Monitor (APM)

ARM

Core

L2 Cache

Accelerator

Trace Capture

Device

Monitor

AXI Peripheral

Interconnect

L1

Delay Delay

DDR Memory

Controller

ARM

Core

L1

ARM

Core

L1

ARM

Core

L1

Not Used

Main Switch

Coherent Interconnect

HPM1HP0,1HP2,3 HPM0

https://github.com/LLNL/lime

Emulation Method
Delay & Loopback

▪ Address ranges R1, R2
intended to have different
access latencies (e.g.
SRAM, DRAM)

▪ Shims shift and separate
address ranges (R1, R2) for
easier routing

▪ Standard AXI Interconnect
routes requests through
different delay units

▪ Delay units have separate
programmable delays for
read and write access

Programmable Logic (PL)

Processing System (PS)

Zynq UltraScale+ MPSoC

M
em

o
ry

 S
u

b
sy

st
em

H
o

st
 S

u
b

sy
st

em

P
ro

g
ra

m
 D

R
A

M

AXI

Delay

AXI

Delay

DDR Memory Controller

Not Used

Main Switch

Coherent Interconnect

S_AXI_HP1S_AXI_HP0 M_AXI_HPM0

AXI

SmartConnect

AXI

Shim

AXI

Shim

0x04_0000_0000 (R1, R2)

0x08_0000_0000 (R1)

0x04_0010_0000 (R2)

0x08_0000_0000 (R1)

0x18_0010_0000 (R2)

0x08_0000_0000 (R1) 0x18_0010_0000 (R2)

Map Width: 20 bits

Map In: 0x04000

Map Out: 0x08000

Map Width: 8 bits

Map In: 0x04

Map Out: 0x18

0x08_0010_0000 (R2)0x08_0000_0000 (R1)

Addr Width:

36 bits

Addr Width:

36 bits

Addr Width: 40 bits

Data Width: 128 bits

R1: 1M range

R2: 4G range

APU

Shift R1

Shift R2

Route R1, R2

Emulation Method
Clock Domains

▪ ARM cores are slowed to run at a
frequency similar to programmable logic

▪ A scaling factor of 20x is applied to the
entire system

▪ Other scaling factors can be used
depending on the target peak
bandwidth to memory

▪ CPU peak bandwidth is limited to 44
GB/s

APU

2.75 GHz

Programmable

Logic (PL)

P
ro

g
ra

m

D
R

A
M

2.75 GHz

44 GB/s

Accelerator

1.25 GHz

Processing

System (PS)

6 GHz

96 GB/s

9.5 GHz

152 GB/s

19 GHz

DDR

304 GB/s 128

64H
o

st

Su
b

sy
st

em
M

e
m

o
ry

Su

b
sy

st
em

Zynq UltraScale+: Emulated at 20x

APU

137.5 MHz

Programmable

Logic (PL)

P
ro

g
ra

m

D
R

A
M

137.5 MHz

2.2 GB/s

Accelerator

62.5 MHz

Processing

System (PS)

300 MHz

4.8 GB/s

475 MHz

7.6 GB/s

950 MHz

DDR

15.2 GB/s 128

64H
o

st

Su
b

sy
st

em
M

em
o

ry

Su
b

sy
st

em

Zynq UltraScale+: Actual

Component Actual Emulated

Memory Bandwidth (PL) 4.8 GB/s 96 GB/s

Memory Latency (PL) 230 ns 12 ns (too low)

Memory Latency (PL) w/delay 230 ns 12+88 = 100 ns

CPU Frequency 137.5 MHz 2.75 GHz

CPU Bandwidth 2.2 GB/s 44 GB/s

Accelerator Frequency 62.5 MHz 1.25 GHz

Accelerator Bandwidth Up to 4.8 GB/s Up to 96 GB/s

Emulation Method
Scaling by 20 Example

Delay is programmable over a wide range: 0 - 174 us in
0.16 ns increments

Emulation Method
Macro Insertion

▪ Insert macros at the start and end of
the region of interest (ROI)

▪ CLOCKS_EMULATE/CLOCKS_NORMAL
— Modify the clock frequencies and

configure the delay units

▪ TRACE_START/TRACE_STOP
— Trigger the hardware to start/stop

recording memory events in Trace DRAM

▪ STATS_START/STATS_STOP
— Trigger the hardware to start/stop the

performance monitor counters

▪ TRACE_CAP
— Save captured trace from Trace DRAM to

SD card

▪ Uses 2nd DRAM so that memory system of device under test is unaffected

▪ Captures
— Timestamp
— Transaction type
— Source of request (CPU core, cache pre-fetch, accelerator)
— Type of memory

• Emulator supports two memory regions with separate read and write latencies
• Total of 8 individual delays

Trace capture subsystem stores memory accesses for analysis

Memory Trace Capture

LiME

trace.bin

parser.c

trace.csv

Each count represents 0.16 nsCPU = 0, Accelerator = 1

0.001

0.01

0.1

1

10

100

10 100 1000 10000

R
u

n
ti

m
e

 s
e

c

Latency ns

C:M 2:1

C:M 1:1

C:M 1:2

C:M 1:4

C:M 1:8

C:M 1:16

C:M 1:32

Can persistent memory serve as main memory for dense, regular
access patterns?
R:W 1:1, Regular Access Pattern

▪ At cache to memory ratios of 1:2 and lower, latency up to 800 ns can be tolerated

▪ At cache to memory ratios of 1:4 and higher, runtime increases linearly with latency

▪ Matrix multiply kernels for small (perhaps blocked) matrices can tolerate SCM latency

DGEMM

FPGA-accelerated
design space
evaluation:
9 latency levels and
7 cache-to-memory
ratios

0.1

1

10

100

10 100 1000 10000

R
u

n
ti

m
e

 s
e

c

Read Latency ns

R:W 1:1

R:W 1:2

R:W 1:4

R:W 1:8

Can persistent memory serve as main memory for dense, regular
access patterns?
C:M 1:1024, Irregular Access Pattern

▪ A read to write latency ratio up to 1:4 has little impact on performance

▪ Direct linear correlation between memory latency and runtime

▪ Concurrent threads could in aggregate compensate for longer SCM latency

RandomAccess

9 latencies, 4
read-write ratios

▪ Near memory data rearrangement engine for
gather/scatter
— Batch operation
— Indexed A[B[i]]
— Strided A[i+c]

▪ Key/Value Store lookup accelerator
— Gather values for batch of keys

▪ Floating point compression pipeline
— Tailored to scientific 1D, 2D, 3D data arrays
— Based on zfp library

Let’s add accelerators to the mix

Maya Gokhale, Scott Lloyd, and Chris Hajas. 2015. Near
memory data structure rearrangement. In Proceedings
of the 2015 International Symposium on Memory
Systems (MEMSYS '15). Association for Computing
Machinery, New York, NY, USA, 283–290.
DOI:https://doi.org/10.1145/2818950.2818986

A. K. Jain, S. Lloyd and M. Gokhale, "Performance
Assessment of Emerging Memories Through FPGA
Emulation," in IEEE Micro, vol. 39, no. 1, pp. 8-16, Jan.-
Feb. 2019, doi: 10.1109/MM.2018.2877291.

G. Scott Lloyd and Maya Gokhale. 2017. Near memory
key/value lookup acceleration. In Proceedings of the
2017 International Symposium on Memory Systems
(MEMSYS ‘17). Association for Computing Machinery,
New York, NY, USA, 26-33.
https://doi.org/10.1145/3132402.3132434

▪ Memory bandwidth to CPU limiting many applications
— Trend is downward with many-core processors
— 8 GB/s per core Intel Xeon X5550, Q1'09
— 5.6 GB/s per core Intel Xeon E7-4890 v2, Q1'14
— Large caches and more memory channels may help some applications

▪ Data-intensive applications
— Large application working sets
— Unstructured and irregular data access patterns
— Manipulate complex, linked data structures
— Benefit less from CPU caches
— Small portion of cache line actually used by CPU

▪ Approach
— Rearrange and reduce data near the source
— Move less data to CPU for energy and performance benefit
— Rearrangement hardware is generally applicable

Near memory data rearrangement can help applications with
sparse, irregular access patterns

Heterogeneous architecture targets interconnected, near
memory, configurable fixed function units

Memory Subsystem

CPU

Memory
Channel

Controller
Core 0

Memory Control and Interconnect

Memory
Channel

Load Store
Unit N

Memory
Channel

Memory

Memory
Channel

Host
Control
Interface

SRAM
Scratchpad

Hardware
building
blocks

Slave

Controller
Core N

Load Store
Unit 0

Slave

Slave Slave Slave Slave

Stream Interconnect

Hash Unit 0 Hash Unit N

MasterMaster Master Master

Traversal Reorganization

Lookup

Compare
Unit

Scott Lloyd

Use Cases
Evaluation of Near-Memory Data Rearrangement Engine

▪ Multiple Memory Channels

▪ Up to 16 concurrent memory requests

▪ DREs are located in the Memory Subsystem

▪ Scratchpad is used to communicate parameters
and results between CPU and accelerator

▪ DRE puts buffer data into a cache-friendly layout
to minimize wasted memory bandwidth

Load-Store

Unit

Control

Processor

Links
Scratchpad

Data Rearrangement Engine (DRE)

Memory Subsystem

Processor

Cache

CPU

Core

Cache

CPU

Core

To Switch
DRE

Memory

Channel

Memory

Channel

Memory

Channel

Memory

Channel

DRE DRE DRE

Shared Cache

Controller/Switch

Scott Lloyd and Maya Gokhale, “In-
memory data rearrangement for
irregular, data intensive computing,”
IEEE Computer, August 2015, v. 48, no.
8, pp. 18–25.

Page Rank
Edge List
Vertex i

Page Rank View
Vertex i

float

float

int

0

M

edges

0

M

edges

0

N

vertices

DRE
assembles view based on index array

Index
array

PageRank: DRE gathers a “view” of page ranks G[E[i]]

setup Specify the location and size of application data structures and other
parameters for gather/scatter

/* ImageDiff: Specify image location, dimensions, and decimation factor */
void setup(void *ref, size_t ref_width, size_t ref_height, size_t elem_sz, size_t decimate);
/* PageRank, RandomAccess, SpMV: Specify reference table and index array */
void setup(void *ref, size_t elem_sz, const void *index, size_t len);

fill Copy from DRAM to the view buffer according to the access pattern
established during setup

/* Specify view buffer and window offset */

void fill(void *buf, size_t buf_sz, size_t offset);

drain Copy from the view buffer into DRAM according to the access pattern
established during setup

/* Specify view buffer and window offset */

void drain(void *buf, size_t buf_sz, size_t offset);

API

On HMC-like memory, should near memory buffer be SRAM or
DRAM?

3.45

1.28

1.82

1.43

2.46

1.19
1.11

1.21

0

1

2

3

4

ImageDiff PageRank RandomAccess SpMV

One DRE

SRAM vb DRAM vb

5.78

2.47

4.02

3.60
3.46

2.17

2.74

2.44

0

1

2

3

4

5

6

7

ImageDiff PageRank RandomAccess SpMV

Upper Bound (tDRE = 0)

SRAM vb DRAM vb

Is there energy savings in using a narrow width memory?
Simple model: 19.4 pJ/bit for DRAM, 1.0 pJ/bit for SRAM, and 10.3 pJ/bit for off-chip traversal

2.62

1.50

1.95
1.87

1.32

1.01
0.90

1.12

0

1

2

3

ImageDiff PageRank RandomAccess SpMV

Full-Width (32B) Memory Access

SRAM vb DRAM vb

7.62

2.26

5.21

3.58
3.92

1.76

2.24 2.38

0

1

2

3

4

5

6

7

8

9

ImageDiff PageRank RandomAccess SpMV

Narrow-Width (8B) Memory Access

SRAM vb DRAM vb

RandomAccess Power Profile

(a) The entire run. (b) Enlarged segment of the run.

▪ One DRE provides a benefit
— Even when data rearrangement is not overlapped with CPU computation
— Computation can take advantage of vector and SIMD units
— View buffer contains only data that is needed by the CPU
— Speedup – up to 3.45x (SRAM view buffer)
— Reduces energy – up to 7.62x (Narrow DRAM access)

▪ An SRAM view buffer provides an advantage over DRAM
— Speedup – up to 1.64x
— Reduces energy – up to 2.17x

▪ Narrow-width (8B) memory access uses less energy than Full (32B)
— Reduces energy – up to 2.91x

▪ Further speedup expected based on upper-bound results
— Multiple cores
— Multiple DREs
— Overlapped computation with data rearrangement

What have we learned about Data Rearrangement Engine?

Near memory key/value store lookup accelerator

▪ Multiple Memory Channels

▪ Up to 16 concurrent memory requests

▪ Lookup accelerators are located in the Memory
Subsystem

▪ Scratchpad is used to communicate parameters
and results between CPU and accelerator

Links

Scratchpad

Lookup Accelerator (LA)

Memory Subsystem

Processor

Cache

CPU

Core

Cache

CPU

Core

To Switch
LA

Memory

Channel

Memory

Channel

Memory

Channel

Memory

Channel

LA LA LA

Shared Cache

Switch

Lookup pipeline connects simple IP blocks

LSU0-R Hash

Keys

Hash
Index

LSU1-R Comp
Select

Split LSU1-W

Buckets Values

ValuesBucketsKeys

Keys

Keys

FIFO

Stream Interconnect

Memory Interconnect

Memory
Channel

Memory
Channel

Memory
Channel

Memory
Channel

Control from CPU

Emulator predicts lookup performance over large design space
90% hit rate

64.32

9.13
5.02

2.60
0

10

20

30

40

50

60

70

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Lo
o

ku
p

s/
s

M
ill

io
n

s

Load Factor

ARM_32 - R85,W106 - Uniform - Hit 90%

Accel

Soft

STL

64.46

9.13

30.42

8.24
0

10

20

30

40

50

60

70

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Lo
o

ku
p

s/
s

M
ill

io
n

s

Load Factor

ARM_32 - Accel - Zipf=.99 - Hit 90%

R85,W106

R200,W400

Accelerator vs. Software Low vs. Moderate Latency

▪ Accel. performance does not vary with hit rate or key repeat frequency (scans entire PSL)

▪ Accel. performance decreases with increasing load (PSL) and memory latency

▪ Accel. performance comes from parallelism and more outstanding near memory requests

▪ Software is slower because of serialization and fewer outstanding far memory requests

▪ Emulator models an idealized memory.
— Can we generalize?

▪ Emulator studies focused on single core + single accelerator.
— What about multiple accelerators with realistic memory behavior?

▪ Building accelerators in RTL is time consuming
— Can we have a higher level of abstraction and still get meaningful, quantitative

answers?

Great insights, but what about …

▪ Fixed latency delay model is
simplistic (simulation 101!)

▪ Memories show considerable
variability in access latency

▪ Variable latency delay (VLD) unit can
improve prediction accuracy

▪ Delay profiles stored in table

▪ Each memory access delay amount is
chosen randomly from a table

Variable Latency Model improves accuracy of predictions

Packet Buffer

Each of the 64
MiniBuffers

contains 512
Bytes of storage

MiniCAM_top

MiniBuffer[n]

MiniBuffer[n-1]

MiniBuffer[1]

MiniBuffer[0]

Priority
Controller

(priority_controller)

AXI Packet Data

Buffer Input Processing
When a new event arrives:

1. MiniCAM determines the Packet Buffer address
(pb_ctr_ptr) for storage
2. The entire event (pb_info_data) is stored in a “MiniBuffer”
within the Packet Buffer
3. Subsequent events with TLAST deasserted are stored in the
same MiniBuffer
4. If an event is received with TLAST asserted, the event’s AXI
ID, MiniBuffer pointer, and Transmit Time Stamp are stored
in a free Shift Register Block within the Priority Queue.

Buffer Output Processing
When the Tx Timestamp of the packet stored at the head of the Priority Queue is
reached:
1. The content of the Shift Register Block (SRB) at the head of the Priority Queue
sends its contents (AXI ID, pb_cntr_ptr) to the Priority Controller
2. The Priority Controller uses pb_cntr_ptr to index the MiniBuffer containing the
packet to be transmitted, reads the packet out of the Packet Buffer, and transmits it
if the AXI bus is not busy

Readout Order
Read out order for each AXI ID must be
maintained. For example, if packets
arrive on AXI ID=5 in order a, b, c, d,
they must be read out from the stack in
the same order regardless of their TX
Timestamp.

free_ctr_ptr

clear

AXI Packet Data

AXI Packet Contents

Control and Management

Signal Legend

Priority Queue
(priority_queue)

AXI Parser
(axi_parser)

AXI ID
valid

pb_info_data
pb_cntr_ptr

Ctr_ptr
Ctr_ptr_wr

AXI ID
pb_cntr_ptr

RNG

Gaussian
Delay
Table

Tx Timestamp

AXI ID
pb_cntr_ptr

Chris Macaraeg

Variable latency reduces performance of some applications

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

image randa spmv rtb strm copy strm scale strm add strm triad

Execution Time Variable Latency
(normalized by Fixed Latency)

CPU,%diff VLDC CPU,%diff VLD ACC,%diff VLDC ACC,%diff VLD

▪ Model accelerator, CPU, and LiME memory model in Structural Simulation Toolkit (SST)

▪ LiME data
— Capture memory access traces through LiME
— Use memory traces to determine model parameters

▪ SST capabilities
— Plugin detailed memory model: use HMC-Sim to simulate a Hybrid Memory Cube (HMC)
— Can scale up to an arbitrary number of CPUs and accelerators

Best of both worlds: combine insights from FPGA emulator
with software simulator to study complex scenarios

https://github.com/sstsimulator

Joshua Landgraf, Scott Lloyd and Maya Gokhale. 2017. Combining Emulation and Simulation to Evaluate a Near Memory Key/Value
Lookup Accelerator. In Open Source Computing Workshop, SC17. Available at
https://www.researchgate.net/publication/330369517_Combining_Emulation_and_Simulation_to_Evaluate_a_Near_Memory_KeyValu
e_Lookup_Accelerator

https://github.com/sstsimulator
https://www.researchgate.net/publication/330369517_Combining_Emulation_and_Simulation_to_Evaluate_a_Near_Memory_KeyValue_Lookup_Accelerator

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

Lo
o

ku
p

s/
s

M
il

li
o

n
s

Load	Factor

Predicted	Performance	Improvements	of	
Optimizations

Lookup

Batch	Keys

2x	Bus	Width

2x	Max	Reqs.

Exploit low level memory features: optimization
predictions for lookup accelerator

93%
improvement

136%
improvement

0

20

40

60

80

100

120

140

160

0 0.2 0.4 0.6 0.8 1

Lo
o

ku
p

s/
s

M
il

li
o

n
s

Load	Factor

Predicted	Performance	Improvement	from	Multiple	
Accelerators

Full	Lookup

2	Accelerators

4	Accelerators

8	Accelerators

Scaling Predictions

2.7-5.7x improvement

▪ Goal is to find a simulation to emulation path:
— Enable full system evaluation combining software and hardware
— Provide flexible simulation during initial design
— Offer synthesis of promising design options for fast emulation
— Avoid writing two models, one for simulation and another for emulation

▪ LiME was implemented in RTL with heavy inclusion of Xilinx IP blocks: fifos, data
mover, APM, AXI stream, AXI lite
— Continual battle with the tools
— C++ HLS didn’t work well for our use case

• We want to design a system of communicating processes
• We want to develop a library of building blocks stitched together with custom stream interconnect
• Our fixed function units need independent, concurrent accesses from multiple modules to shared DRAM

— We need a communicating process model
• HLS from C/C++ tries to parallelize sequential programming model
• OpenCL and other parallel languages with data parallel model make it difficult to describe fixed function units

The tool problem: how can we speed up design of accelerators?

50
LLNL-PRES-xxxxxx

SystemC Language
https://www.accellera.org/downloads/standards/systemc
https://github.com/accellera-official/systemc

▪ Modeling and simulation language of
complex System on Chip hardware
architectures
— Event-driven simulation hardware

components

▪ Multiple levels of simulation
— Register/Transfer level
— Behavioral
— Transaction

▪ Parallel communicating process model
— Timing, event sequencing, process

concurrency

▪ C++ library of classes and macros

▪ Hierarchical model
— Modules, ports

▪ Scheduling and synchronization of
concurrent processes

▪ Separation of computation (process)
and communication (channel)

▪ Hardware oriented data types
— Digital logic
— Fixed point arithmetic

https://www.accellera.org/downloads/standards/systemc
https://github.com/accellera-official/systemc
https://www.accellera.org/downloads/standards/systemc
https://github.com/accellera-official/systemc

51
LLNL-PRES-xxxxxx

SystemC in action

{
bool last = (count.read() == 0);
FP fp = s_fp.data_r();
expo_t expo;
if (fp.expo == 0 && fp.frac == 0) {

expo = fp.expo;
} else {

expo = fp.expo + expo_t(1);
}
if (c_sync) {
if (last) {count = fpblk_sz(DIM)-1;}

else {count = count.read() - 1;}
}
if (emax_v && c_ex.ready_r()) {
if (s_fp.valid_r()) emax = expo; else emax = 0;

} else if (s_fp.valid_r() && expo > emax) {
emax = expo;

}
if (emax_v && c_ex.ready_r()) emax_v = false;
else if (c_sync && last) emax_v = true;
}

SC_MODULE(find_emax)
{

typedef typename FP::expo_t expo_t;
/*-------- ports --------*/
sc_in<bool> clk;
sc_in<bool> reset;
sc_stream_in <FP> s_fp;
sc_stream_out<FP> m_fp;
sc_stream_out<expo_t> m_ex;

/*-------- modules --------*/
sfifo_cc<FP,2*DIM+1,RLEVEL> u_que_fp;
sreg<expo_t,FWD_REV,RLEVEL> u_reg_ex;

▪ FPGA HLS tools focus on C/C++/OpenCL, lack equivalent robustness for SystemC

▪ Industrial strength SystemC synthesis tools cost $$$$$

▪ Let’s work on a community effort on an open source SystemC to RTL compiler!

▪ Leverage LLVM/CLANG C++ front end

▪ Identify and consolidate synthesizable SystemC constructs in CLANG AST

▪ Translate SystemC processes to RTL

▪ On-going open source effort

SystemC for FPGA System on Chip

53
LLNL-PRES-xxxxxx

Clang: front end for LLVM
https://clang.llvm.org

▪ Language front-end and tooling infrastructure for languages in the C language family

▪ Supports C++11, C++14, C++17

▪ Modular library based architecture

▪ Well documented internal data structures and AST

▪ Tools to process AST: visitor pattern, traverse, matchers

▪ Code examples of clang usage

https://clang.llvm.org/
https://clang.llvm.org/

54
LLNL-PRES-xxxxxx

8 SystemC: an overview

SystemC Design Flow

Functional

Specfication

SystemC

Functional

Model

Gate Level HDL

System

Validation

By TestBench

Software/

Hardware Tasks

Hardware

Synthesis SystemC-clang

Benefits:
• Open source
• Iterative refinement

• Functional to RTL
• Suitable for SoC design

• Not just
CPU/Accelerator

• C++ “carrier” language
enables easy sw/hw co-
design

Issues:
• Simulation language
• Synthesis requires vendor tools
• FPGA tools immature and buggy
• ASIC tools $$$$$

Vendor tools don’t handle complex C++ patterns very well: type hierarchies, typedefs, constexpr, etc.). We leverage Clang
technology.

https://cas.tudelft.nl/Education/courses/et4351/SystemC1.pdf

55
LLNL-PRES-xxxxxx

Systemc-clang with HDL plugin: open-source translator based on clang
https://github.com/anikau31/systemc-clang

▪ Translate synthesizable SystemC to HDL

▪ Build from prior work by U Waterloo
— Leverage clang parsing and semantic analysis

• Parse and build AST, type info from complex templated data types

— Traverse AST to identify SystemC constructs
• Objects: SC_MODULE, SC_METHOD
• Templated data types: sc_in, sc_out, sc_signal

— Optimize simulation

▪ Team with Waterloo to extend systemc-clang for synthesis
— (Waterloo) Improved template class handling, type infrastructure
— (LLNL) Add HDL plugin to generate HDL IR for modules and methods
— (Waterloo) Translate HDL IR to Verilog, test on FPGA board

A. Kaushik and H. D. Patel, "Systemc-
clang: An open-source framework for
analyzing mixed-abstraction SystemC
models," Proceedings of the 2013
Forum on specification and Design
Languages (FDL), Paris, France, 2013,
pp. 1-8.

https://github.com/anikau31/systemc-clang
https://github.com/anikau31/systemc-clang

56
LLNL-PRES-xxxxxx

Full open source tool chain to generate RTL

57
LLNL-PRES-xxxxxx

Recent progress

▪ Our test cases are taken from a floating
point compression hardware IP library by
Scott Lloyd https://github.com/LLNL/zhw
— Complex pipeline in synthesizable SystemC

— FPGA vendor tool was unable to synthesize
simple library components to hardware

▪ Systemc-clang automatically translates
SC_METHODs in modules of
“zhw_encode” to hardware that runs
correctly on FPGA
— Xilinx tool fails on this and simpler modules

▪ Collaborators welcome!

https://github.com/LLNL/zhw

▪ FPGAs have seen as dramatic innovation in architecture as CPUs

▪ FPGA applications are diverse: no one killer app

▪ Leveraging MPSoC hard processors enables fast design space exploration of fixed
function near memory units

▪ Emulation+simulation enables larger design space exploration

▪ Open source tools can enable wider adoption of reconfigurable computing
technologies

Summary

Emulator Team

Scott Lloyd
All aspects of the implementation

Abhishek Jain
Port to Zynq UltraScale+

Chris Macaraeg
Trace Capture enhancements
Variable Latency Delay Unit

Team (2)

▪ Joshua Landgraf (student intern):
simulation + emulation

▪ Chris Hajas (student intern): DRE studies

▪ Prateek Srivastava (student intern):
initial variable latency delay unit

▪ Nelson Ho (student intern, staff): Linux
port

▪ Eric Green (student intern, staff): Linux
support, trace collection

Hirel Patel and Zhuanhao Wu, Waterloo

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security,
LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

62

CHIME radio telescope

CHIME Radio Telescope with
F-Engine Containers

Canadian Hydrogen Intensity Mapping Experiment

• Map the history of the expansion rate of the Universe by observing hydrogen gas in distant galaxies that were very strongly affected by dark
energy.

• Detect FRBs (fast radio bursts) to act as an early warning system for the wider astrophysical community.

• Monitor known pulsars in the Northern sky to investigate the properties of neutron stars and ionized gas in the interstellar medium to help
verify the predictions of general relativity and the search for gravitational waves.

Other than electrons, the CHIME radio telescope has no moving parts. Instead, the telescope consists of four parallel, adjacent cylindrical cylinders
measuring 20x100m and oriented north-to-south. The telescope scans the heavens as the Earth turns. CHIME’s four reflectors feed 256 focal-point
antennas located along each cylindrical axis (for a total of 1024 antennas) and each antenna generates signal feeds from two polarizations for a total of
2048 signal feeds. CHIME’s front-end electronics then sample each signal at 800Msamples/sec, resulting in 1.6384 Tsamples/sec, resulting in a front-
end feed of 13Tbps.

The CHIME F-Engine

CHIME processing architecture

64

F-Engine hardware and algorithms

The ICE motherboard incorporates a Kintex-7 FPGA
connected to 16 ADCs mounted on the two FMC
daughter cards

Kintex-7 provides twenty-eight 10Gbps serial ports for inter-board
networking and data offload.
On-board ARM running Linux manages MB functions, runs user code
algorithms.

• F-Engines convert each microsecond of raw data (2048 samples/usec)
into spectral range spanning 400MHz-500MHz with frequency
resolution of .39MHz. The binned spectral data is shipped to GPU-
based X-Engine via optical fiber.

Reconfigurable computing in space: Mars Perseverance Rover

https://www.fierceelectronics.com/electronics/nasa-mars-rover-perseverance-launches-thursday-to-find-evidence-life-red-planet

The Mars rover Perseverance illustrated
here will carry a lunchbox-size PIXL device to
analyze rocks and soil quickly in hopes of
finding evidence of ancient life on the Red
Planet. Virtex 5 accelerates specific stereo
and visual tasks like image rectification,
filtering, detection, and matching (NASA)

Virtex 2 Pro chips in multiple instruments
• Electra-lite instrument maintains UHF Transceiver and runs relay

telecommunications and navigation.
• Radar Terminal Descent Sensor (TDS) is a Ka-band radar that provides

range and velocity measurements through all phases of (post-heatshield
separation, including Entry, Descent, and Landing (EDL).

• Mastcam-Z is a mast-mounted camera system that can zoom in, focus, and
take 3D pictures and video at high speed to allow detailed examination of
distant objects.

• SHERLOC (Scanning Habitable Environments with Raman & Luminescence
for Organics & Chemicals) is for the fine-scale detection of minerals,
organic molecules, and potential biosignatures.

LiME (Logic in Memory Emulator)

Implementation

LLNL Hardware IP Blocks

AXI Shim

AXI Delay

AXI Trace
Capture Device

LiME uses only 13% of the device resources

DRE Architecture

Data Rearrangement Engine

(DRE)

Data Mover Control Processor

AXI Memory Interface

Local

Memory

Bus

Command Messages

(address, length…)

BRAM

To Peripheral

Interconnect

AXI Interconnect

Memory

Read and Write

Stream Switch FIFO
Host

Adapter

DMA operations MicroBlaze

