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Network Inference on FPGAs 
with FINN & LogicNets

@ H2RC at Supercomputing, 2020-11-10
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Xilinx Research,   
Dublin

• Established over 14 years ago
• Slowly expanding and increasingly leveraging 

external funding (IDA, H2020)

• 6 full-time researchers + interns

• Applications & Architectures
• Quantifying the value proposition of Xilinx 

devices in machine learning

• In collaboration with Partners, Customers 
and Universities

Lucian Petrica, Giulio Gambardella, Alessandro Pappalardo, 
Ken O’Brien, Michaela Blott (leader), Nick Fraser, Yaman Umuroglu 

(from left to right)
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DNNs in Extreme-Throughput Applications
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How do we mix DNNs into extreme-throughput applications?

 Need DNNs running at 100Ms of FPS, sub-microsecond latency 
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How Efficient Does Your DNN Need To Be?
A Spectrum of FPGA Inference Alternatives

less efficient

generic

broad scope

more efficient

co-designed

specialized
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How Efficient Does Your DNN Need To Be?
A Spectrum of FPGA Inference Alternatives

Layer-by-layer compute

(Matrix of Processing Engines)

Optimizing compiler/scheduler

Down to 4-bit

DPU, overlays 

(10k+ FPS)

less efficient

generic

broad scope

more efficient

co-designed

specialized

FINN

(10M+ FPS)

Generated heterogeneous 

streaming architecture

Custom topologies,  

arithmetic and hardware
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Customization for Efficient Inference
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Customization 

of Algorithm

Customization 

of Hardware 

Architecture
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dogcat catdog

Two Key Techniques for Customization
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FPGA

CNN
allocated resource ~ 

compute requirement

per layer

sum

+2

-4

+1

act.

* +1

* -1

* -1

+1

k-bit weights and 

activations, k <= 4

keep all on-chip!

Streaming dataflow architecture

(tailored to requirements)

Few-bit weights & activations

(tailored to requirements) +
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Error vs Compute Cost

Float 8-bit Reduced Precision

Accuracy-Performance Trade-offs
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Floating point 

networks

Different 

network 

topologies

8-bit networks

Highly Quantized 

Neural Networks 

(<4b)

Use precision which
• Provides required accuracy
• At minimal computational cost

Pareto frontier
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Few-bit QNNs + FPGA Dataflow: Showcases
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ResNet-50 on Alveo U250

2000 FPS @ 70 W

2 ms latency

Complex

Topologies

High Throughput

& Low Latency

MNIST MLP on ZC706

12.3 M FPS @ 20 W

310 ns latency

Low-Power, Real-Time

Image Classification

CIFAR-10 CNV on Pynq-Z1

3000 FPS @ 2.5 W

1 ms latency
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End-to-end flow to lower 

adoption barrier

The FINN Project: Mission

Codesign

Support hardware 

architecture exploration 

around dataflow execution

Support customizing 

the algorithms with 

precision, layer types, 

topologies

Open source from the 

ground-up to 

encourage community 

contributions

Transparency and 

flexibility through open 

source (if not supported, 

add your own!)

Flexibility

on 

Algorithms

Flexibility

on 

Architectures
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The FINN Project: Components of the Stack
From PyTorch to FPGA
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QNN training in PyTorch

Brevitas

Frontends, Transformation, 

Dataflow Backend

FINN Compiler

Deployment with 

Customization 

of Algorithm

Customization 

of Hardware 

Architecture

Gitter Channel

Jupyter Notebooks

readthedocs

Support

End2End examples

for Alveo or Zynq
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QNN training in PyTorch

Brevitas

Frontends, Transformation, 

Dataflow Backend

FINN Compiler

Deployment with 

Quantization-Aware 

Training in PyTorch 

with Brevitas
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accuracy loss 

Brevitas: 
A PyTorch library for Quantization-Aware Training

Precision

Preset or

learned

Scaling Factors

Granularities, 

strategies and 

constraints

Target Tensors

Weights, 

activations,

accumulators

Loss Function

to take HW 

implementation 

cost into account

add quantization

resize layers

change hyperparameters

retrain

FP32 INT

13
https://github.com/Xilinx/brevitas

https://github.com/Xilinx/brevitas
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The FINN Compiler
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QNN training in PyTorch

Brevitas

Frontends, Transformation, 

Dataflow Backend

FINN Compiler

Deployment with
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dogcat catdog

Goal of the FINN compiler:
Transform QNN into custom dataflow architecture
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› Map each layer to HLS 

description

› Connect with FIFOs/streams

› Stitch together in IPI

FPGA

CNN
allocated resource ~ 

compute requirement

per layer
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An Overview of the FINN Compiler

16

› Python library of graph transformations

» Each consumes and produces an ONNX graph

› User calls sequence of transformations to 

create their own flow

» Example end-to-end flows to get started 
Code Generator

Import

FINN HLS Library

Synthesizable 

description

Hardware Cost Model

Vivado

Synthesis, PAR

Software Library

Host Run-time FPGA Platform

ONNX

Streamlining

Hardware Mapping

Resource Allocation

https://github.com/Xilinx/finn

https://github.com/Xilinx/finn
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The FINN HLS Library
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Customizable parallelism

Control resource footprint 

& throughput

Streaming I/O

Easily compose modules 

together, low latency

Customizable datatypes

Flexibility through C++ 

templates

ap_uint<2> ap_uint<2>

› An optimized, templated Vivado HLS C++ library of 10+ common DNN layers

› Key component: MVTU (Matrix Vector Threshold Unit)

https://github.com/Xilinx/finn-hlslib

https://github.com/Xilinx/finn-hlslib
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How does the generated architecture look?
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Frontends, Transformation, 

Dataflow Backend

FINN Compiler

ONNX

Stitched IP 

Design

› Stream-in, stream-out FPGA IP block

» Easy "bump-in-the-wire" integration into 
streaming systems

» Simple data movement, fully deterministic



© Copyright 2020 Xilinx

Deployment with PYNQ
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QNN training in PyTorch

Brevitas

Frontends, Transformation, 

Dataflow Backend

FINN Compiler

Deployment with
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Deployment with                   for Python Productivity
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Use PYNQ-provided Python abstractions and drivers

User provides Numpy array in, calls driver, gets Numpy array out

 Internally use PYNQ DMA driver to wr/rd NumPy arrays into I/O streams

# numpy.ndarray shapes for i/o

ishape_packed = (1, 49, 2)

oshape_packed = (1, 1, 40)

# set up the DMA

dma.sendchannel.transfer(in_buf : numpy.ndarray)

dma.recvchannel.transfer(out_buf : numpy.ndarray)

# wait until all transfers complete

dma.sendchannel.wait()

dma.recvchannel.wait()

https://github.com/Xilinx/PYNQ

https://github.com/Xilinx/Alveo-PYNQ

https://github.com/Xilinx/PYNQ
https://github.com/Xilinx/Alveo-PYNQ
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Upcoming FINN Features
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Distributed (Multi-FPGA) Dataflow Automated Floorplanning for Multi-SLR FPGAs

Automated Folding Video Tutorials

Scale-out performance

Quickly scale performance & resources without synthesis

Extract more performance from Alveo

How to train QNNs and deploy them with FINN

SLR0 SLR1 SLR2

100k LUT

10M FPS
10k LUT

1M FPS
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LogicNets

22
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How Efficient Does Your DNN Need To Be?
A Spectrum of FPGA Inference Alternatives

Layer-by-layer compute

(Matrix of Processing Engines)

Optimizing compiler/scheduler

DPU, overlays 

(10k+ FPS)

less efficient

generic

broad scope

more efficient

co-designed

specialized

FINN

(10M+ FPS)

Generated heterogeneous 

streaming architecture

Custom topologies,  

arithmetic and hardware

LogicNets

(100M+ FPS)

The DNN is the circuit

Fully unfolded, pipelined, 

feedforward datapaths

LUT

LUT

LUT

LUTLUT
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LogicNets at a Glance
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PyTorch FPGA

Specialized DNN 

Topology

(with high sparsity

+ activation quantization)

Fully-Spatial

Circuit Implementation

convertDataset training

one full sample every clock

low logic depth, high 𝑭𝒄𝒍𝒌
100M’s of samples per second
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Neuron Equivalent (NEQ)

Key idea: Quantized Neurons as Truth Tables

25

Total input: 6 bits

Total output: 1 bit

Total input: 6 bits

Total output: 1 bit

PyTorch FPGA

convert

(enumerate inputs)

Hardware cost: 1 x LUT6

Hardware Building Block (HBB)
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Prohibitive Cost of Implementing Large Truth Tables
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Σ 𝜑

3 bit

3 bit

3 bit

3 bit

3 bit

.

.

.

.    .    .

.    .    .

.

.

.

LUT6 cost of the neuron: 

~4095 LUT6s

0 1 0 0 1 1 0

0 0 1 0 1 1 1

0 1 1 0 0 0 0

1 1 1 0 1 1 0

Truth Table Size: 4096 × 15 = 23∗4 × 3 ∗ 5

Co-design DNN 

topology to avoid 

intractably large LUTs:

high sparsity +

few-bit activations

Total input: 12 bits

Total output: 3 bit
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LogicNets Key Results
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UNSW-NB15 Network Intrusion Detection 

dataset [Moustafa et al.]hls4ml JSC dataset [Duarte et al.]

Jet Tagging (CERN LHC) Network Intrusion Detection

~72% accuracy

using ~38k LUTs

at 427 M samples / second

with 13 ns latency

~91% accuracy

using ~16k LUTs

at 471 M samples / second

with 9 ns latency [U
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https://arxiv.org/pdf/2004.03021
https://youtu.be/qCyK5v84jpI
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Conclusion
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FINN

 QNN solution stack from training to custom dataflow architecture

 Full co-design environment with growing library examples

 Flexible, customizable open-source compiler framework

LogicNets

 Sparse + quantized topology converts directly to LUT circuit

 Many exciting future research directions

 To be open-sourced as part of FINN ecosystem (~Q1 2021)
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Join our Growing Open-Source Community!
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Japanese documentation effort + «cucumber sorting»

University courses, student/hobbyist projects

Sketch Recognition (Xilinx Edinburgh)
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Thank You
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