
© Copyright 2020 Xilinx

Fast, Scalable Quantized Neural
Network Inference on FPGAs
with FINN & LogicNets

@ H2RC at Supercomputing, 2020-11-10

Yaman Umuroglu, Senior Research Scientist

Xilinx Research Labs

© Copyright 2020 Xilinx

Xilinx Research,
Dublin

• Established over 14 years ago
• Slowly expanding and increasingly leveraging

external funding (IDA, H2020)

• 6 full-time researchers + interns

• Applications & Architectures
• Quantifying the value proposition of Xilinx

devices in machine learning

• In collaboration with Partners, Customers
and Universities

Lucian Petrica, Giulio Gambardella, Alessandro Pappalardo,
Ken O’Brien, Michaela Blott (leader), Nick Fraser, Yaman Umuroglu

(from left to right)

© Copyright 2020 Xilinx

DNNs in Extreme-Throughput Applications

3

How do we mix DNNs into extreme-throughput applications?

 Need DNNs running at 100Ms of FPS, sub-microsecond latency

S
o

u
rc

e
:
T

h
o

m
a

s
 J

a
m

e
s
,

C
E

R
N

Level 1 Trigger

Front End

Pipelines

Trigger
FPGAs / ASICs

Coarse-Grained

Data

Readout

Buffers

CERN CMS Experiment Network Intrusion Detection

~ 7 Tb/s

3 𝝁s
~ 500 Tb/s

3 𝝁s

~ 1.2 Tb/s

1
0
-1

0
0
s
 G

b
/s

1
0
-1

0
0
s
 G

b
/s

© Copyright 2020 Xilinx

How Efficient Does Your DNN Need To Be?
A Spectrum of FPGA Inference Alternatives

less efficient

generic

broad scope

more efficient

co-designed

specialized

© Copyright 2020 Xilinx

How Efficient Does Your DNN Need To Be?
A Spectrum of FPGA Inference Alternatives

Layer-by-layer compute

(Matrix of Processing Engines)

Optimizing compiler/scheduler

Down to 4-bit

DPU, overlays

(10k+ FPS)

less efficient

generic

broad scope

more efficient

co-designed

specialized

FINN

(10M+ FPS)

Generated heterogeneous

streaming architecture

Custom topologies,

arithmetic and hardware

© Copyright 2020 Xilinx

Customization for Efficient Inference

6

Customization

of Algorithm

Customization

of Hardware

Architecture

© Copyright 2020 Xilinx

dogcat catdog

Two Key Techniques for Customization

7
FPGA

CNN
allocated resource ~

compute requirement

per layer

sum

+2

-4

+1

act.

* +1

* -1

* -1

+1

k-bit weights and

activations, k <= 4

keep all on-chip!

Streaming dataflow architecture

(tailored to requirements)

Few-bit weights & activations

(tailored to requirements) +

© Copyright 2020 Xilinx

E
R

R
O

R

COMPUTE COST

Error vs Compute Cost

Float 8-bit Reduced Precision

Accuracy-Performance Trade-offs

8

Floating point

networks

Different

network

topologies

8-bit networks

Highly Quantized

Neural Networks

(<4b)

Use precision which
• Provides required accuracy
• At minimal computational cost

Pareto frontier

© Copyright 2020 Xilinx

Few-bit QNNs + FPGA Dataflow: Showcases

9

ResNet-50 on Alveo U250

2000 FPS @ 70 W

2 ms latency

Complex

Topologies

High Throughput

& Low Latency

MNIST MLP on ZC706

12.3 M FPS @ 20 W

310 ns latency

Low-Power, Real-Time

Image Classification

CIFAR-10 CNV on Pynq-Z1

3000 FPS @ 2.5 W

1 ms latency

© Copyright 2020 Xilinx

End-to-end flow to lower

adoption barrier

The FINN Project: Mission

Codesign

Support hardware

architecture exploration

around dataflow execution

Support customizing

the algorithms with

precision, layer types,

topologies

Open source from the

ground-up to

encourage community

contributions

Transparency and

flexibility through open

source (if not supported,

add your own!)

Flexibility

on

Algorithms

Flexibility

on

Architectures

10

© Copyright 2020 Xilinx

The FINN Project: Components of the Stack
From PyTorch to FPGA

11

QNN training in PyTorch

Brevitas

Frontends, Transformation,

Dataflow Backend

FINN Compiler

Deployment with

Customization

of Algorithm

Customization

of Hardware

Architecture

Gitter Channel

Jupyter Notebooks

readthedocs

Support

End2End examples

for Alveo or Zynq

© Copyright 2020 Xilinx12

QNN training in PyTorch

Brevitas

Frontends, Transformation,

Dataflow Backend

FINN Compiler

Deployment with

Quantization-Aware

Training in PyTorch

with Brevitas

© Copyright 2020 Xilinx

accuracy loss 

Brevitas:
A PyTorch library for Quantization-Aware Training

Precision

Preset or

learned

Scaling Factors

Granularities,

strategies and

constraints

Target Tensors

Weights,

activations,

accumulators

Loss Function

to take HW

implementation

cost into account

add quantization

resize layers

change hyperparameters

retrain

FP32 INT

13
https://github.com/Xilinx/brevitas

https://github.com/Xilinx/brevitas

© Copyright 2020 Xilinx

The FINN Compiler

14

QNN training in PyTorch

Brevitas

Frontends, Transformation,

Dataflow Backend

FINN Compiler

Deployment with

© Copyright 2020 Xilinx

dogcat catdog

Goal of the FINN compiler:
Transform QNN into custom dataflow architecture

15

› Map each layer to HLS

description

› Connect with FIFOs/streams

› Stitch together in IPI

FPGA

CNN
allocated resource ~

compute requirement

per layer

© Copyright 2020 Xilinx

An Overview of the FINN Compiler

16

› Python library of graph transformations

» Each consumes and produces an ONNX graph

› User calls sequence of transformations to

create their own flow

» Example end-to-end flows to get started
Code Generator

Import

FINN HLS Library

Synthesizable

description

Hardware Cost Model

Vivado

Synthesis, PAR

Software Library

Host Run-time FPGA Platform

ONNX

Streamlining

Hardware Mapping

Resource Allocation

https://github.com/Xilinx/finn

https://github.com/Xilinx/finn

© Copyright 2020 Xilinx

The FINN HLS Library

17

Customizable parallelism

Control resource footprint

& throughput

Streaming I/O

Easily compose modules

together, low latency

Customizable datatypes

Flexibility through C++

templates

ap_uint<2> ap_uint<2>

› An optimized, templated Vivado HLS C++ library of 10+ common DNN layers

› Key component: MVTU (Matrix Vector Threshold Unit)

https://github.com/Xilinx/finn-hlslib

https://github.com/Xilinx/finn-hlslib

© Copyright 2020 Xilinx

How does the generated architecture look?

18

Frontends, Transformation,

Dataflow Backend

FINN Compiler

ONNX

Stitched IP

Design

› Stream-in, stream-out FPGA IP block

» Easy "bump-in-the-wire" integration into
streaming systems

» Simple data movement, fully deterministic

© Copyright 2020 Xilinx

Deployment with PYNQ

19

QNN training in PyTorch

Brevitas

Frontends, Transformation,

Dataflow Backend

FINN Compiler

Deployment with

© Copyright 2020 Xilinx

Deployment with for Python Productivity

20

Use PYNQ-provided Python abstractions and drivers

User provides Numpy array in, calls driver, gets Numpy array out

 Internally use PYNQ DMA driver to wr/rd NumPy arrays into I/O streams

numpy.ndarray shapes for i/o

ishape_packed = (1, 49, 2)

oshape_packed = (1, 1, 40)

set up the DMA

dma.sendchannel.transfer(in_buf : numpy.ndarray)

dma.recvchannel.transfer(out_buf : numpy.ndarray)

wait until all transfers complete

dma.sendchannel.wait()

dma.recvchannel.wait()

https://github.com/Xilinx/PYNQ

https://github.com/Xilinx/Alveo-PYNQ

https://github.com/Xilinx/PYNQ
https://github.com/Xilinx/Alveo-PYNQ

© Copyright 2020 Xilinx

Upcoming FINN Features

21

Distributed (Multi-FPGA) Dataflow Automated Floorplanning for Multi-SLR FPGAs

Automated Folding Video Tutorials

Scale-out performance

Quickly scale performance & resources without synthesis

Extract more performance from Alveo

How to train QNNs and deploy them with FINN

SLR0 SLR1 SLR2

100k LUT

10M FPS
10k LUT

1M FPS

© Copyright 2020 Xilinx

LogicNets

22

© Copyright 2020 Xilinx

How Efficient Does Your DNN Need To Be?
A Spectrum of FPGA Inference Alternatives

Layer-by-layer compute

(Matrix of Processing Engines)

Optimizing compiler/scheduler

DPU, overlays

(10k+ FPS)

less efficient

generic

broad scope

more efficient

co-designed

specialized

FINN

(10M+ FPS)

Generated heterogeneous

streaming architecture

Custom topologies,

arithmetic and hardware

LogicNets

(100M+ FPS)

The DNN is the circuit

Fully unfolded, pipelined,

feedforward datapaths

LUT

LUT

LUT

LUTLUT

© Copyright 2020 Xilinx

LogicNets at a Glance

24

PyTorch FPGA

Specialized DNN

Topology

(with high sparsity

+ activation quantization)

Fully-Spatial

Circuit Implementation

convertDataset training

one full sample every clock

low logic depth, high 𝑭𝒄𝒍𝒌
100M’s of samples per second

© Copyright 2020 Xilinx

Neuron Equivalent (NEQ)

Key idea: Quantized Neurons as Truth Tables

25

Total input: 6 bits

Total output: 1 bit

Total input: 6 bits

Total output: 1 bit

PyTorch FPGA

convert

(enumerate inputs)

Hardware cost: 1 x LUT6

Hardware Building Block (HBB)

© Copyright 2020 Xilinx

Prohibitive Cost of Implementing Large Truth Tables

26

Σ 𝜑

3 bit

3 bit

3 bit

3 bit

3 bit

.

.

.

. . .

. . .

.

.

.

LUT6 cost of the neuron:

~4095 LUT6s

0 1 0 0 1 1 0

0 0 1 0 1 1 1

0 1 1 0 0 0 0

1 1 1 0 1 1 0

Truth Table Size: 4096 × 15 = 23∗4 × 3 ∗ 5

Co-design DNN

topology to avoid

intractably large LUTs:

high sparsity +

few-bit activations

Total input: 12 bits

Total output: 3 bit

© Copyright 2020 Xilinx

LogicNets Key Results

27

UNSW-NB15 Network Intrusion Detection

dataset [Moustafa et al.]hls4ml JSC dataset [Duarte et al.]

Jet Tagging (CERN LHC) Network Intrusion Detection

~72% accuracy

using ~38k LUTs

at 427 M samples / second

with 13 ns latency

~91% accuracy

using ~16k LUTs

at 471 M samples / second

with 9 ns latency [U
m

u
ro

g
lu

 e
t
a
l.
,

F
P

L
'2

0
]

P
re

p
ri
n
t:

 h
tt
p
s
:/
/a

rx
iv

.o
rg

/p
d
f/

2
0
0
4
.0

3
0
2
1

V
id

e
o
:

h
tt
p
s
:/
/y

o
u
tu

.b
e
/q

C
y
K

5
v
8
4
jp

I

https://arxiv.org/pdf/2004.03021
https://youtu.be/qCyK5v84jpI

© Copyright 2020 Xilinx

Conclusion

28

FINN

 QNN solution stack from training to custom dataflow architecture

 Full co-design environment with growing library examples

 Flexible, customizable open-source compiler framework

LogicNets

 Sparse + quantized topology converts directly to LUT circuit

 Many exciting future research directions

 To be open-sourced as part of FINN ecosystem (~Q1 2021)

© Copyright 2020 Xilinx

Join our Growing Open-Source Community!

29

Japanese documentation effort + «cucumber sorting»

University courses, student/hobbyist projects

Sketch Recognition (Xilinx Edinburgh)

© Copyright 2020 Xilinx

Thank You

30

