
Exploring the acceleration of Nekbone on 
reconfigurable architectures

Nick Brown, 

EPCC at the University of Edinburgh

12.11.2020 1



Background

• We are interested in the role of FPGAs in future exa-scale machines to 
provide high performance and power efficiency
• In the EXCELLERAT CoE this is mainly focussed on engineering codes

12.11.2020 2

• Nekbone is a mini-app that captures the basic 
structure of Nek5000
• Solves a standard Poisson equation using a Conjugate 

Gradient (CG) iterative method with a simple preconditioner

• A useful tool for exploring the algorithmic elements that are 
pertinent to Nek5000, and many other HPC codes

• Has been used extensively on CPUs and GPUs, so can FPGAs 
can provide any performance/power efficiency benefits?



Where our focus is: The AX kernel

12.11.2020 3

Matrix 
multiplications

Multiply and add 
values calculated 
in local_grad3

Iterate over elements

• This AX kernel of the CG solver accounts for around 75% of the 
overall runtime of Nekbone

• Our experiments utilise 800 elements, and N=16 which means 
4096 grid points per element
• There are 831488 double precision floating point 

operations per element
• Some challenges on the CPU

• 35% of L1, and 10% of L2, cache reads missed for this 
kernel

• Runs out of memory BW as we scale the CPU cores

Key question: If we port this to FPGAs and move to a dataflow algorithm relying on streaming data, can we ameliorate such memory overhead?



Experimental set-up

• All FPGA runs done on a Xilinx Alveo U280
• 1.08 million LUTs, 4.5MB of on-chip BRAM, 30MB of 

on-chip URAM, 9024 DSP slices, 8GB HBM2

• We use Xilinx’s Vitis 2020.1 throughout, writing 
our code in C++
• From the view point of HPC software developers 

exploring the role of FPGAs to accelerate their codes

• All Nekbone runs use 800 elements, and 
polynomial order (N) of 16

12.11.2020 4

• For comparison, CPU runs performed on a 24 core Intel Xeon Platinum Cascade Lake 
(8260M), and unless otherwise stated all cores were used.

• GPU runs (a little later in the paper) were done on a NVIDIA V100 GPU using CUDA



Overview of single kernel performance

12.11.2020 5

Description Performance
GFLOPs

% CPU 
performance

% theoretical 
performance

24 cores of Xeon (Cascade Lake) CPU 65.74 - -

Initial FPGA port 0.020 0.03% 0.29%

Optimised for dataflow 0.28 0.43% 4.06%

Optimised memory access 0.42 0.63% 6.09%

Optimise matrix multiplications 12.72 19.35% 20.85%

Ping-pong buffering 27.78 42.26% 45.54%

Remove pipeline stalls 59.14 89.96% 96.95%

Increase clock frequency to 400 Mhz 77.73 118% 95.73%

Von-Neumann based algorithm

Optimised dataflow based 
algorithm

A
p

p
ro

x.
 4

0
0

0
 t

im
es

 
d

if
fe

re
n

ce
 in

 p
er

fo
rm

a
n

ce



The first step….

• The initial version simply used 
pragmas to decorate arguments as 
ports 

• On host side hooked it up via 
OpenCL

12.11.2020 6

> v++ -t hw --config design.cfg -O3 -c -k ax_kernel –o’ax.hw.xo' device.cpp

Description Performance
GFLOPs

% CPU 
performance

% theoretical 
performance

24 cores of Xeon (Cascade Lake) CPU 65.74 - -

Initial version 0.020 0.03% 0.29%

Initial version around 3287 times slower than the CPU – Thing can only get better!



Redesigning the algorithm for dataflow

12.11.2020 7

The MM algorithm from Vitis 
open source BLAS library

For each element e in nelt, execute this dataflow, with grid points of U, D 
and Dt as input, generating result grid points of W. All stages connected 

via HLS streams and (ideally) running concurrently.

Description Performance
GFLOPs

% CPU 
performance

% theoretical 
performance

24 cores of Xeon (Cascade Lake) CPU 65.74 - -

Optimised for dataflow 0.28 0.43% 4.06%

Over ten times faster than our initial version, but performance still sucks!



Getting smart on data transfer

• Data transfer between the on-device HBM2 and kernel is terrible!
• Aggregate BW of 952 MB/s, whereas the HW specification says we could expect a 

maximum of 460 GB/s
• Lots of individual small transfers too

12.11.2020 8

• Profiled via Vitis analyser to understand where the bottlenecks might be



Getting smart on data transfer

• 8GB of HBM is split up into 32 banks of 256MB
• 16 memory controllers, each with a channel connecting two banks.
• By default, all memory in bank 0

• We made each argument an explicit, separate, AXI4 port and 
then configured Vitis to place each input or output argument in 
different HBM banks (ideally with different memory controllers 
too!)

• HBM memory controllers optimised for 256- or 512-bit 
accesses
• As we are double precision, all our accesses were 64 bits so 

combined these into 512-bit width structures

12.11.2020 9

Description Performance
GFLOPs

% CPU 
performance

% theoretical 
performance

24 cores of Xeon (Cascade Lake) CPU 65.74 - -

Optimised memory access 0.42 0.63% 6.09%

Doubled our performance. Memory B/W now on average 95% for accesses, so worth doing but not a silver bullet!



Improving the MM algorithm

12.11.2020 10

• By refactoring reduced this delay to 45 cycles (the depth of the pipeline) & significantly 
more DP ops running concurrently 

• Only generated a result on the 
last iteration of k

• Subsequent pipeline stages stalling 
on this.

• Algorithmic issues limiting what parts 
can run concurrently

Only generates results on the last iteration of k

Generates immediately (or as 
soon as pipeline is filled anyway)

Description Performance
GFLOPS

% CPU 
performance

% theoretical 
performance

24 cores of Xeon (Cascade Lake) CPU 65.74 - -

Optimise matrix multiplications 12.72 19.35% 20.85%

Increases performance 
of previous version by 
around 30 times.
Theoretical performance 
increased from 6.9 to 61 
GFLOPS



Ping pong buffering data between stages

• Our current design is limited
• Each MM requires U in a different order

• This is also the case for D and Dt too 

• Also data for wr, ws, wt needs to be 
reordered

• Each MM is associated with a buffer of 
grid points for that element. 
• Once full, data is then served from the 

buffers into their respective MM in the 
specific order required. 

• Causes three implicit phases of operation, 
with only one active at any one time

12.11.2020 11



Ping pong data between stages

12.11.2020 12

BRAM 
buffer 1

BRAM 
buffer 2

Fill chip-local BRAM 
with data for next e

Serve out of BRAM 
for current e

BRAM 
buffer

Step 1: Fill chip-local 
BRAM with data

Step 2: Serve out of 
BRAM in any order

Description Performance
GFLOPS

% CPU 
performance

% theoretical 
performance

24 cores of Xeon (Cascade Lake) CPU 65.74 - -

Ping pong buffering 27.78 42.26% 45.54%

• Initially did this explicitly in the code 
with buffers

• But this resulted in high resource 
usage so moved to HLS’s ping pong 
buffers (PIPO) with an inner dataflow 
region

Increased the performance of our kernel by over two times, but still less than half the performance of 
either the CPU or our theoretical performance



Removing pipeline stalls

12.11.2020 13

• Dependency between loading b_temp and reading it
• Our inner loop was being pipelined nicely, but 

was filling and draining for every inner iteration 
(n1) rather than nelt*n3*n1

• With a pipeline depth of 45 cycles, this was 
expensive

Description Performance
GFLOPS

% CPU 
performance

% theoretical 
performance

24 cores of Xeon (Cascade Lake) CPU 65.74 - -

Remove pipeline stalls 59.14 89.96% 96.95%

• Brought the reading of the b 
stream into the inner loop

• For our problem size meant 
going from 204800 batches of 
16 cycles (having to drain 
between each batch), to 1 
batch of 3276800 cycles

Achieving around 90% the performance of the 24 core Xeon CPU. The theoretical performance of our 
HLS kernel was 61 GFLOPS, of which we were achieving almost 97%.



Upping the clock frequency

• The default clock on the Alveo U280 is 300Mhz
• This can be increased via a simple configuration change
• But increasing the clock frequency impacts the overall complexity of the kernel, for instance by increasing to 400Mhz the 

depth of our matrix multiplication pipeline increased to 61 cycles.

• We found empirically that 400Mhz was the optimal clock frequency 
• Beyond this the complexity of the matrix multiplications increased very significantly, with the pipeline II increased to two.
• It was possible to reduce this back down to one by using the bind_op Vitis HLS pragma to increase the latency of the 

double precision floating point cores, but the performance we obtained by doing so never matched that of 400Mhz.

12.11.2020 14

• The theoretical performance of our kernel is 61 GFLOPS and the 24 core 
CPU is achieving around 66 GFLOPS
• So focussed on the kernel itself, in order to increase performance and 

potentially beat the CPU we need to increase the theoretical performance

Description Performance
GFLOPS

% CPU 
performance

% theoretical 
performance

24 cores of Xeon (Cascade Lake) CPU 65.74 - -

Increase clock frequency to 400 Mhz 77.73 118% 95.73%

For the first time, with a 
single kernel beating the 
24-core Xeon Platinum 
CPU



Scaling to multiple kernels

• Now we had a good performing FPGA kernel, let’s see what we can 
get when we scale it up! 
• Also comparing power efficiency, not only against CPU but also a V100 GPU

12.11.2020 15

Chip Component SLR usage default SLR usage with explicit 
memory placement 

DSP slices 34% 34%

LUTs 28% 36%

Flip Flops 24% 29%

BRAM 115% 32%

URAM 0% 30%

• Used Vitis HLS’s bind_storage pragma to 
direct explicit memory placement
• FIFO queues associated with the HLS streams, and 

arrays associated with the data-reordering ping 
pong buffers into LUTRAM

• Data storage associated with each matrix 
multiplication dataflow region into the on-chip 
Ultra-RAM (URAM)

• Was rather time consuming to figure out the best 
placement of different data regions and their 
associated resource usage.The Alveo U280 has three Super Logic Regions (SLRs)



Splitting kernels up into Compute Units

• We initially found that, as we scaled kernels up 
the performance was surprisingly poor
• Vitis/Vivado was dynamically down clocking our 

kernels to meet timing
• Fixed it by splitting a single kernel up into three 

CUs connected via AXI streams

• Initially this resulted in routing errors due to 
congestion in the matrix multiplication of the 
first CU. 
• Using the Congestion_SpreadLogic_high

implementation strategy fixed the issue but 
resulted in poor performance.

• Found was due to naming conflicts between the 
first and third CUs. Specifically, the names of the 
MM functions were the same in each CU, and 
place and route was attempting to perform some 
optimisation by consolidating these together

• Fixed by giving functions unique names between the 
CUs

12.11.2020 16



Performance and power comparison

• Four kernels achieve over four times the 
performance of the CPU, and 71% the 
performance of the V100 GPU

• On average, adding an extra FPGA kernel 
requires approximately an additional 7 
Watts, with a performance increase close 
to 74 GFLOPS per kernel

• 4 kernels on FPGA is almost twice as power 
efficient as the GPU

12.11.2020 17

Description Performance 
(GFLOPS)

Power usage 
(Watts)

Power efficiency 
(GFLOPS/Watt)

1 CPU core 5.38 65.16 0.08

24 CPU cores 65.74 176.65 0.37

V100 GPU 407.62 173.63 2.34

1 FPGA kernel 74.29 45.61 1.63

2 FPGA kernels 146.94 52.47 2.80

4 FPGA kernels 289.02 71.98 4.02

• We found it important to connect different FPGA kernels to different HBM memory controllers and keep them 
separate in this manner
• Not doing so meant that we were prone to hold conflicts during building
• This is potentially one of the reasons why our kernels scale well, as there is no contention on memory access between 

them



Conclusions and further work

• In summary, I think our results on the Alveo U280 are positive for FPGAs:
• Significantly out-performs the CPU at two and a half times less power consumption

• Achieves 71% the performance of the V100 but at 2.4 times less power draw and almost twice the power efficiency

• We had a few headaches scaling up to four kernels, but doable with some trial and error

• Lots of steps required to optimise the kernel for dataflow and the performance difference by doing so is 
approximately 4000 times from the Von-Neumann to optimised dataflow version

• We found the theoretical performance a very helpful measure to calculate and compare against

• Found that it’s still critical to use the Vitis-HLS IDE for analysis of code to understand what potential issues there might be

12.11.2020 18

• In the future could potentially increase the number of kernels by:
• Exploring reduced precision and fixed point, along with the accuracy impacts it makes within Nekbone
• Experiments with other polynomial orders as N=16 is rather high, and reducing this will reduce our resource requirements

• Exploring next generation FPGAs such as Versal, although to be fair would need to compare against the A100 
GPU which is also likely to provide improved performance.

• Based our work on the original Fortran Nekbone version, updating this to the newer C++ version would be 
useful and enable more convenient use of our dataflow code by the community.


