g B
"EXCELLERAT

Exploring the acceleration of Nekbone on
reconfigurable architectures

Nick Brown,
EPCC at the University of Edinburgh

2.11.2020 I

Background .
“ar:i:EXCELLERAT

e We are interested in the role of FPGAs in future exa-scale machines to
provide high performance and power efficiency

* |In the EXCELLERAT CoE this is mainly focussed on engineering codes

* Nekbone is a mini-app that captures the basic
structure of Nek5000

» Solves a standard Poisson equation using a Conjugate
Gradient (CG) iterative method with a simple preconditioner

* A useful tool for exploring the algorithmic elements that are
pertinent to Nek5000, and many other HPC codes

* Has been used extensively on CPUs and GPUs, so can FPGAs
can provide any performance/power efficiency benefits?

2.11.2020 2

Where our focus is: The AX kernel -
“ar:i:EXCELLERAT

llll
|
subroutine ax(n, nelt, w, u, g, dwml, dxtml) subroutine local grad3(ur, us, ut, u, n, duxml, dxm2)
integer, intent(in) :: n, nelt integer, intent(in) :: n
real{n,n,n,nelt), intent(in) :: u, g, dwml, dxtml realﬁn n nj intent{inj e u. dxml. dm2
real(n,n,n,nelt), intent(out) :: w poeas ! !

real(n,n,n), intent({out) ::ur, us, ut
do e=1, nelt

ax_e(n, nelt, w{:,:,:,e), u(:,:,1,e), ...)¢—— Iterate over elements call mum(dxml, n, u, n, ur, n*n)
enddo do k=8,n

end subroutine aﬂ call muem{u{:,:, k), n, dwtml, n, us{:,:,k), n)
enddo

Matrix
multiplications

subroutine ax_e(n, w, u, g, dxml, dxtml) call mem(u, n*n, dxtml, n, ut, n)
integer, inte?t(inj Bion end subroutine local grad3
real(n,n,n), intent(in) :: u, g, dxml, dxtml
real(n,n,n), intent(out) :: w .
* This AX kernel of the CG solver accounts for around 75% of the
real(n*n*n) :: ur, us, ut

real :: wr, ws, wt Overa” runt|me Of Nekbone
* Our experiments utilise 800 elements, and N=16 which means
4096 grid points per element

call lecal grad3(ur, us, ut, u, n, dwxml, dxtml)

do i=1,n*n*n

wr = ggl,i;*urﬁi; + gEz,i;*usEi; + gga,i;*utgi; * There are 831488 double precision floating point
ws = g(2,1)*ur{i) + g(4,i)*us(i) + g(5,1)*ut(li .
wt = g(3,1)*ur(i) + g(5,1)%us(i) + g(6,1)*ut(i) I\/Iultiply and add operations per element
ur(%j = wWr °
Eiﬁii - « values calculated Some challenges on the CPU ' |
I . * 35% of L1, and 10% of L2, cache reads missed for this
in local _grad3 cernel
call local grad3_t(w, ur, us, ut, n, dwxml, dxtml)
end subroutine ax e * Runs out of memory BW as we scale the CPU cores

Key question: If we port this to FPGAs and move to a dataflow algorithm relying on streaming data, can we ameliorate such memory overhead?

2.11.2020

Experimental set-up = N

* All FPGA runs done on a Xilinx Alveo U280
e 1.08 million LUTs, 4.5MB of on-chip BRAM, 30MB of
on-chip URAM, 9024 DSP slices, 8GB HBM2

* We use Xilinx’s Vitis 2020.1 throughout, writing
our code in C++

* From the view point of HPC software developers
exploring the role of FPGAs to accelerate their codes

e All Nekbone runs use 800 elements, and
polynomial order (N) of 16

* For comparison, CPU runs performed on a 24 core Intel Xeon Platinum Cascade Lake
(8260M), and unless otherwise stated all cores were used.

 GPU runs (a little later in the paper) were done on a NVIDIA V100 GPU using CUDA

2.11.2020 4

]
| N
a*si:EXCELLERAT

Description Performance % CPU % theoretical
GFLOPs performance performance

Overview of single kernel performance

24 cores of Xeon (Cascade Lake) CPU 65.74 -
Initial FPGA port 0.020 0.03% 0.29% Von-Neumann based algorithm
Optimised for dataflow 0.28 0.43% 4.06% " g
Optimised memory access 0.42 0.63% 6.09% § §
Optimise matrix multiplications 12.72 19.35% 20.85% i &%
Ping-pong buffering 27.78 42.26% 45.54% §§
Remove pipeline stalls 59.14 89.96% 96.95% A v
Optimised dataflow based
Increase clock frequency to 400 Mhz 77.73 118% 95.73% algorithm

2.11.2020

The first step....

void ax_kernel(double * w, double * u, double * gxyz,
double * ut, double * wk, int nx1, int nyl,

#pragma HLS INTERFACE m_axi port=w offset=slave
#pragma HLS INTERFACE m_axi port=u offset=slave
#pragma HLS INTERFACE m_axi port=gxyz offset=slave
#pragma HLS INTERFACE m_axi port=dxml offset=slave
#pragma HLS INTERFACE m_axi port=dxtml offset=slave
#pragma HLS INTERFACE m_axi port=ur offset=slave
#pragma HLS INTERFACE m_axi port=us offset=slave
#pragma HLS INTERFACE m_axi port=ut offset=slave
#pragma HLS INTERFACE m_axi port=wk offset=slave
#pragma HLS INTERFACE s axilite port=nx1 bundle=control
#pragma HLS INTERFACE s axilite port=nyl bundle=control
#pragma HLS INTERFACE s axilite port=nzl bundle=control
#pragma HLS INTERFACE s axilite port=nelt bundle=control
#pragma HLS INTERFACE s axilite port=ldim bundle=control
#pragma HLS INTERFACE 5 axilite port=return bundle=control

for (int e=0;e<nelt;e++) {
ax_e(&w[nx1l*nyl*nzl*e],

}

&u[nxl*nyl*nzl*e],

}

int nzl, int nelt,

int ldim) {

&gxyz[nx1l*nyl*nzl*2*ldim*e], dxml,

double * dxml, double * dxtml, double * ur,

dxtml, ur, us,

double * us,

ut, wk, nxl, nyl,

nzl);

> v++ -t hw --config design.cfg -03 -c

-k ax_ kernel

-o’"ax.hw.xo'

device.cpp

Description Performance % CPU % theoretical
GFLOPs performance | performance

24 cores of Xeon (Cascade Lake) CPU 65.74 - -

Initial version 0.020 0.03% 0.29%

Initial version around 3287 times slower than the CPU — Thing can only get better!

2.11.2020

v e mxmi6.1 - - - - -

i
s EXCELLERAT

* The initial version simply used
pragmas to decorate arguments as
ports

* On host side hooked it up via
OpenCL

Negative Slack BRAM DSP FF LUT L
« @ ax_kernel 0.39 4 182 65210 42524
'ax e 0.39 0 173 62095 39963
+ o |ocal_grad3_t 0.39 78 2B760 18725

m-mll

Imxm16_4 0.39 0 9046 5194
i mxm16_3 0.39 0 21 8645 5406
add2 0.01 0 3 1282 1069

~ @ local_grad3 0.39 0 72 28311 18239
'mxm16 0.39 0 24 9495 5723
mxm16_2 0.39 0 21 9250 5657
' mxm16_1 0.39 0 24 9080 5964

Pipelined Latency Iteration Latency| Initiation Interval

e Loop1 vyes - 108 102 .

Redesigning the algorithm for dataflow .
“ar:i:EXCELLERAT

double a temp[NX], c_ temp[MCNX][MX]5

dxm1 U #pragma HLS array_partition variable=a_temp complete
B for (int k = 85 k < NX; k++) {
¥ Y v — .. \4 v C dsto fD; (;;t éi:Giii{:x*Nx;iirj k
- . . arresponas ouble b_val=b.rea H
multiplication multiplication multiplication : if (k==0) c_temp[j][i]=2.2;
us i if (j==0) a_temp[i]=a.read();
ur——___ ut | {c_temp[j][i]+=a_temp[i] * b_val;
B ¥ a— POAf (k==NX-1) cowrite{c_temp[§][i]);
| g I—v{ Local accumulation of values ‘ }
wr ws) ‘___deml_‘ Wi } The MM algorithm from Vitis
Matrix Matrix Matrix open source BLAS library
multiplication multiplication multiplication
Corresponds to
Ad_d TTocal_grad3._t
T A = Description Performance % CPU % theoretical
GFLOPs performance | performance
W _
_ 24 cores of Xeon (Cascade Lake) CPU 65.74
For each element e in nelt, execute this dataflow, with grid points of U, D Optimised for dataflow 0.28 0.43% 4.06%

and Dt as input, generating result grid points of W. All stages connected

. . . Over ten times faster than our initial version, but performance still sucks!
via HLS streams and (ideally) running concurrently. f perj

2.11.2020

Getting smart on data transfer = N
“ar:i:EXCELLERAT

* Profiled via Vitis analyser to understand where the bottlenecks might be

Data Transfer: Kernels to Global Memory

Device Compute Unit/ Kernel Memory Transfer MNumber Of Transfer Average Bandwidth Average Average
Port Mame Arguments Resources Type Transfers Rate (MBfs) | Utilization (%) Size (KB) Latency (ns)
xilink_u280 xdma_ 201920 1-0 ax_kernel 1/m_axi_dxml_port dxml HBM[O] READ 1600 172,577 1.498 0.128 741,697
xilink_u280 xdma_ 201920 _1-0 ax_kernel_1/m_axi_dxtml_port dxtml HEM[0] READ 25600 35.885 0.312 0.008 477.914
xilinx_u280_xdma_201920 1-0 ax_kernel_1/m_axi_gwyz_port gryz HEM[O] READ 2457600 28,714 0.249 0.008 1508.410
xilinx_u280_xdma_201920_1-0 ax_kernel_1/m_axi_u_port u HBM[O] READ 25600 474,967 4,123 0.128 3821.410
xilinx_u280 xdma_ 201920 _1-0 ax_kernel_1/m_axi w_port W HEM[O] WRITE 25600 946,319 8.215 0.128 135.8265

e Data transfer between the on-device HBM?2 and kernel is terrible!

» Aggregate BW of 952 MB/s, whereas the HW specification says we could expect a
maximum of 460 GB/s

* |Lots of individual small transfers too

2.11.2020

Getting smart on data transfer — -

O
.
I — l.f:#XI:ELLERAT
|
R e e i e 8GB of HBM s split up into 32 banks of 256MB

4:4 4:4

[IXTY
[]
by

x4 E a4 ‘ * 16 memory controllers, each with a channel connecting two banks.
* By default, all memory in bank 0

Y 'y Y

Uﬂ_ [_L || (o] o] o] el] | We made each argument an explicit, separate, AXI4 port and
Jl”” then configured Vitis to place each input or output argument in

[H” diff%rent HBM banks (ideally with diﬁ%rent memory controllers
| o1 too!

~=0TD
0 =0T
wrnoD [

| ~M0OT .

| oNOm
I =MOT |

["oov |+
Ceson]

[Roou |+
| MO T [
| ;MO D -
[ernmow |

| NN O T .

BN Stack ™ HEM Stack * HBM memory controllers optimised for 256- or 512-bit
daccesses
struct packaged double { * As we are double precision, all our accesses were 64 bits so
double data[8]; combined these into 512-bit width structures
|5
Description Performance % CPU % theoretical
void ax kernel(struct packaged double * w,) { GFLOPs performance performance
#pragma HLS INTERFACE m axi port=w offset=slave bundle=w port
#pragma HLS data pack variable=w 24 cores of Xeon (Cascade Lake) CPU 65.74 - -
} Optimised memory access 0.42 0.63% 6.09%

Doubled our performance. Memory B/W now on average 95% for accesses, so worth doing but not a silver bullet!

2.11.2020

Improving the MM algorithm

double a_temp[NX], c_temp[MNX*NX][NX];

#pragma HLS array_partition wvariable=a_temp complete

for (int k = 85 k < NX; k++) {

]
| N
a*si:EXCELLERAT

double a_temp[MX][NX]s b_temp[MX];
#pragma HLS array_partition variable=a_temp dim=1 complete

for (int j=0;J<MNX*NX;i++) {
/¢ Load b values that are needed by the inner loop

for (int j=8; j<NX*NX;j++) 1
double b _wal=b.read();
for (int i=8;i<NX;i++) {
© i (k==0) c_temp[j][i]=0.%;
i (j==0) a_temp[i]=a.read();

é c_temp[j][i]+=a_temp[i] * b_wval;

struct packaged_double in_data=b.read();

for (int g=8;3g<3;g++) b_temp[gql=in_data.data[qg];
in_data=b.read();

for (int g=8;gq<3;g++) b_temp[g+&]=in_data.data[q];

Only generates results on the last iteration of k

for (int i=E;i<NX;i++) {

* Only generated a result on the

Poif (k==NX-1) c.write(c_temp[§]1[1]);

if (j==0) a_temp[e@][i]=a[e].read();
double temp_@=a_temp[@][i] * b_temp[&];

last iteration of k

¥
} } * Subsequent pipeline stages stalling Ezuﬁzﬂma_ﬁ:pgi[H;?E:]L];rﬁa:g;[1]_
” on this. P—7a_temp —CEmpLEL
D . .. ey
Dt * Algorithmic issues limiting what parts cwrite(C_temp_ 8 + C_temp_1); « (Generates immediately (or as
S =t e can run concurrently 1 soon as pipeline is filled anyway)
multiplication multiplication multiplication
ur ! ‘ ut * By refactoring reduced this delay to 45 cycles (the depth of the pipeline) & significantly
Dt [_Add and multiplyvalues | more DP ops running concurrently
wr , ws, N a awt
muli“i";ti;‘a"tion mmtl\iﬂpaﬁzz(non mul:‘;tizz‘tion Description Performance % CPU % theoretical Increases performance
. . GFLOPS performance | performance of pr e;";'és version by
Add aroun times.
24 cores of Xeon (Cascade Lake) CPU 65.74 C Theoretical performance
Add increased from 6.9 to 61
W Optimise matrix multiplications 12.72 19.35% 20.85% GFLOPS

2.11.2020

Ping pong buffering data between stages

Read U
v
B N - - e . "y v Data buffering
Matrix Matrix Matrix
multiplication multiplication multiplication
ur us - uf
- L 4 —
g Local accumulation of values
[dxtm1 | 7
S wr . ws, g wit Dato buffering
Matrix Matrix Matrix

multiplication

~a

multiplication

-~

Add

2.11.2020

multiplication

}..

Add

w

¥
Write W

]
Ji:EXCELLERAT

* Our current design is limited

 Each MM requires U in a different order
* This is also the case for D and Dt too

* Also data for wr, ws, wt needs to be
reordered

e Each MM is associated with a buffer of
grid points for that element.

* Once full, data is then served from the
buffers into their respective MM in the
specific order required.

e Causes three implicit phases of operation,
with only one active at any one time

Ping pong data between stages

Step 1: Fill chip-local Fill chip-local BRAM

BRAM with data lwith data for next e
BRAM BRAM BRAM
buffer buffer 1 buffer 2

l Step 2: Serve out of

Serve out of BRAM
BRAM in any order

for current e

Description Performance % CPU % theoretical
GFLOPS performance | performance

24 cores of Xeon (Cascade Lake) CPU 65.74

Ping pong buffering 27.78 42.26% 45.54%

Increased the performance of our kernel by over two times, but still less than half the performance of
either the CPU or our theoretical performance

2.11.2020

]
| N
a*si:EXCELLERAT

* Initially did this explicitly in the code
with buffers
e But this resulted in high resource

usage so moved to HLS’s ping pong
buffers (PIPO) with an inner dataflow

region
+1 [&m) T
= S o
v _— — ! 4 \4 v Data buffering
Matrix Matrix Matrix
multiplication multiplication multiplication
ur——_ us ot
e — | L
| g }—>| Local accumulation of values |
dxtm1 ——
Wr - WS o “a wt Data buffering
Matrix Matrix Matrix
multiplication multiplication multiplication
e N e 4
e-1 | Add |
| Add |
w

Removing pipeline stalls .
“ar:i:EXCELLERAT

double a_temp[MNX][NX], b_temp[NX]; H
#pragma HLS array_partition wvariable=a_temp dim=1 complete insﬁap_f(*a;_tentp';iﬁ"x) * Btrought. t_[]etrr]eadlng Oif the b
oL stream INto the Inner 100p
for (int j=0;5 J<NM*NXGJ++) { j"""f"l‘:;’s';i’(mp .
// Load b values that are needed by the inner loop I:[‘ihnsa(nsele)m * For our prOblem Size meant
struct packaged double in_data=b.read(); | o 2seleexd) oot going from 204800 batches of
for (int q=0jq<3;q++) b_temp[q]=in_data.data[q]; , oty aest P 4\\ 16 cycles (having to drain
]'I;;;d?ti:;h;:;?zgéfq-i—i—) b_temp[q+2]=in_data.data[q]; 5:225::223'333;) 7% N \\ between eaCh batCh), to 1
- - beme owdlend) — \ SN batch of 3276800 cycles
for (int i=o;iciXiee) { i o e Et—, e
if (j==0) a_temp[@][i]-a[@].read(); b_temp_load_(rea) o) -
double temp_8=a_temp[&][i] * b_temp[&]; E:EE:E::Z:::Z::::; o5
b_temp_load_24(read) itm|;7|n'|004(i(mp)
if (j==0) a_temp[1][i]=a[1].read(); e o e
double temp_l=a_temp[1][1i] * b_temp[1]; 0.1 1i(phi_mu)
i_0_i_i_i(phi_mux)
s e voctonsy
. or_n1004(])
c.write(C_temp @ + C_temp_1); icmp_n1005_1(icmp)
} js(e}l)e(tﬁlm 004_1(select)
} . . -
* Dependency between loading b_temp and reading it Description Performance % CPU % theoretical
e OQOurinner loop was being pipelined nicely, but GFLOPS | performance | performance
was filling and draining for every inner iteration 24 cores of Xeon (Cascade Lake) CPU 65.74
nl) rather than nelt*n3*n1l
() Remove pipeline stalls 59.14 89.96% 96.95%

* With a pipeline depth of 45 cycles, this was

. Achieving around 90% the performance of the 24 core Xeon CPU. The theoretical performance of our
EXPENSIVE HLS kernel was 61 GFLOPS, of which we were achieving almost 97%.

2.11.2020

Upping the clock frequency .
“ar:i:EXCELLERAT

* The theoretical performance of our kernel is 61 GFLOPS and the 24 core

Cne Clock
CPU is achieving around 66 GFLOPS “Period
* So focussed on the kernel itself, in order to increase performance and 1
potentially beat the CPU we need to increase the theoretical performance 0

TITE —

 The default clock on the Alveo U280 is 300Mhz

* This can be increased via a simple configuration change

e Butincreasing the clock frequency impacts the overall complexity of the kernel, for instance by increasing to 400Mhz the
depth of our matrix multiplication pipeline increased to 61 cycles.

* We found empirically that 400Mhz was the optimal clock frequency
* Beyond this the complexity of the matrix multiplications increased very significantly, with the pipeline Il increased to two.

* |t was possible to reduce this back down to one by using the bind_op Vitis HLS pragma to increase the latency of the
double precision floating point cores, but the performance we obtained by doing so never matched that of 400Mhz.

Description Performance % CPU % theoretical
GFLOPS performance | performance For the first time, with a

single kernel beating the
24 cores of Xeon (Cascade Lake) CPU 65.74 24-core Xeon Platinum

CcPU

Increase clock frequency to 400 Mhz 77.73 118% 95.73%

2.11.2020

Scaling to multiple kernels .
“ar:i:EXCELLERAT

* Now we had a good performing FPGA kernel, let’s see what we can
get when we scale it up!
* Also comparing power efficiency, not only against CPU but also a V100 GPU

* Used Vitis HLS’s bind _storage pragma to

Chip Component | SLR usage default | SLR usage with explicit direct explicit memory placement
memory placement * FIFO queues associated with the HLS streams, and

DSP slices 34% 34% arrays associated with the data-reordering ping
pong buffers into LUTRAM

(0] (o)
LUTs e — * Data storage associated with each matrix
Flip Flops 24% 29% multiplication dataflow region into the on-chip
BRAM 115% 329% Ultra-RAM (URAM)

. . * Was rather time consuming to figure out the best
URAM 0% 30% placement of different data regions and their
The Alveo U280 has three Super Logic Regions (SLRs) associated resource usage.

2.11.2020

optimisation by consolidating these together w

 Fixed by giving functions unique names between the Write W
CUs g

Splitting kernels up into Compute Units m .
|
. VXe initifally found that, as we scialed kernelsup + [Readv | o
the performance was surprisingly poor : U =
e : : [dxm1] _—

* Vitis/Vivado was dynamically down clocking our : as o : ?__»
kernels to meet timing ! v Vo N ! é

* Fixed it by splitting a single kernel up into three - sy LLEL S lieli s 1S
CUs connected via AXI streams L __ L multiplication | | | multiplication | | | SNSRI

Lﬂ') us - uf
* Initially this resulted in routing errors due to : [8 }—{ Localaccumulationof values | S
]gongestlon in the matrix multiplication of the el il vk inininininininin N T T T '
irst CU. e it nl bbbt kbbbt :
. : L [dxtm1 | / .,

* Using the Congestion _SpreadLogic_high ! - . v \ |
implementation strategy fixed the issue but | Matrix Matrix Matrix I o
resulted in poor performance, : multipli;ation multiplication multiplication : =

* Found was due to naming conflicts between the ! i — i
first and third CUs. Specifically, the names of the . Add , 1 3
MM functions were the same in each CU, and ! k | £
place and route was attempting to perform some : - Add 1 S

| :
| |
|

2.11.2020

]
| N
a*si:EXCELLERAT

Description el dne e Lo e e ey S g0 ¢ Four kernels achieve over four times the
(GFLOPS) (Watts) (GFLOPS/Watt) performance of the CPU, and 71% the

performance of the V100 GPU

Performance and power comparison

1 CPU core 5.38 65.16 0.08

24 CPU cores 65.74 176.65 0.37 * On average, adding an extra FPGA kernel
00 G 07 62 2 63 5 3 requires approximately an additional 7

Ve — L0 — - Watts, with a performance increase close

1 FPGA kernel 74.29 45.61 1.63 to 74 GFLOPS per kernel

2 FPGA kernels 146.94 52.47 2.80 * 4 kernels on FPGA is almost twice as power

4 FPGA kernels 289.02 71.98 4.02 efficient as the GPU

* We found it important to connect different FPGA kernels to different HBM memory controllers and keep them
separate in this manner
* Not doing so meant that we were prone to hold conflicts during building

* This is potentially one of the reasons why our kernels scale well, as there is no contention on memory access between
them

2.11.2020

Conclusions and further work -
“ar:i:EXCELLERAT

* In summary, | think our results on the Alveo U280 are positive for FPGAs:
* Significantly out-performs the CPU at two and a half times less power consumption
* Achieves 71% the performance of the V100 but at 2.4 times less power draw and almost twice the power efficiency
* We had a few headaches scaling up to four kernels, but doable with some trial and error

» Lots of steps required to optimise the kernel for dataflow and the performance difference by doing so is
approximately 4000 times from the Von-Neumann to optimised dataflow version
* We found the theoretical performance a very helpful measure to calculate and compare against
* Found that it’s still critical to use the Vitis-HLS IDE for analysis of code to understand what potential issues there might be

* In the future could potentially increase the number of kernels by:
* Exploring reduced precision and fixed point, along with the accuracy impacts it makes within Nekbone
* Experiments with other polynomial orders as N=16 is rather high, and reducing this will reduce our resource requirements

* Exploring next generation FPGAs such as Versal, although to be fair would need to compare against the A100
GPU which is also likely to provide improved performance.

 Based our work on the original Fortran Nekbone version, updatinﬁ this to the newer C++ version would be
useful and enable more convenient use of our dataflow code by the community.

2.11.2020

