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In the detector

Key: - * pMuon
Electron

e _harged Hadron (e.g. Pion)
— — — - Neutral Hadron (e.g. Neutron)
Photon

All reconstruction
IS separated on
an event by
event level

Iron return yoke interspersed
with Muon chambers

(1] im m 3m M 5n ém 7m
| | | | |

* A single particle can leave deposit iIn many detectors

e Each detector deposit a complex and different topology

 Reconstruction of particles/detectors can be parallelized



HCAL
Clusters

LHC reconstruction
iInvolves combining
many different
detectors in to
particles

6

Reconstruction Challenge

A single collision

Many particles lie on top of each
other making an event

With each collision aim to probe a
single event
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Reconstruction Challenge

HCAL (CMS 70 over applng
Clusters g A N ollisi

\\C

LHC reconstruction
iInvolves combining
many different
detectors in to
particles

Currently we have 70 collisions
lying on top of each other Event

In the future will be > 200 collisions
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Reconstruction Challenge

- H

HCAL
Clusters

LHC reconstruction
iInvolves combining
many different
detectors in to

particles
40 Million times per second
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Reconstruction Challenge

HCAL
Clusters

LHC reconstruction
iInvolves combining
many different
detectors in to

particles
40 Million times per second

Batch N per particles Batch 1 per Event



Data Flow in CMS

L1
40MHz . Trigger High speed
- subset dataiy o ere Low granularity
= CLD = P readout (10ps)
S S
*:B | HLT
—| Readout buffers
100 kHz See most collisions like this
_,C:) m Switching networks
© S Reco And throw away most collisions
3o HLT ) || Processor farms N
500 Hz

“Offline Computing” 4
Grid, O(10) Pb

Despite the large rate reduction we still store many
Petabvtes of data




Data Flow in CMS

L1

40 MRz detacions 1 119GET High speed

C "SR] Digitzers Low granularity
) = @ = [ readout (10ps)
- 2 ==
S0 g T HLT

- — Intermediate

LOO kHz speed (100ms)

S Swiching networks better readout
® S Reco
‘D" E Processor farms =

ull data readout
500 Hz (10s)

“Offline Computing”
Grid, O(10) Pb

Despite the large rate reduction we still store many
Petabvtes of data




How do we process data”

1 kHz
100 kHz 1 MB/evt
5 4 40 MHz “\ fb E Offline
/996 l’@/
1 ns 1 us 1 ms 1s

A single event is 1000-2000 particles
thats 8MB after zero suppression



The Physicist View
o

Level 1 High Level Full Reconstruction
Trigger M~ Trigger

Physics Data

Rate

&l :/:
All data Keep Iﬁl o

Full Intermediate Final

Energy



The Physicist Vlew
p‘«‘i

High Level | Full Reconstruction
Trigger

Physics Data

Intern

e know that we are &
throwing away ‘
a lot of good data




Hidden gems’.;

» There is a plethora of physics that we throw out

PT = 466 GeV
double-b = 0.95

msp = 126.2 GeV : _
N, DDT = -0.07 Higgs boson right on the

CMS Experiment at the LHC, CERN Cusp Of being th rown Out

Data recorded: 2016-Aug-15 04:31:20.039252 GMT
Run / Event / LS: 278822 / 1778731024 / 1026

Higgs boson discover at CERN
2013 Nobel Prize
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The dreamm

* At the moment:
e We only get a full data of one in 100,000 collisions

* There Is interesting physics that we have to throw away

 \We would like to analyze every collision at the LHC
* Jo deal with this we need to increase our throughput

e Ultimately this means going to 100s of Tb/s



The Challengé

_ _ _ End of Dennard Scaling
* Our event size will be 10 times larger is about to hit us hard

 We are upgrading the system

* And we have to take data at 5x the rate
* Need this just to preserve our existing physics

 10s of years of processing without modifying system

CPU seconds by Type
1600 y lyp

« | mmmuene  After upgrade

LHC MC
1200 { ™=m Non-Prompt Data
Prompt Data

?
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Petaflops
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ML in HEP

 High Energy Physics has been quick to adopt ML

& 2 400-  Weighted
e B, 200 Bump
90 0.5 0.0 0.5 1.0 ob— 1 L

di-photon MVA output 1= 148% (GeV)

x10’
< [ —— =
o 20 CMS Prelimirary -4~ Daty %;2000 - CMS Preliminary ¢ S/B Weighted Data
o F is=B8TeV L-5310 S Lved-Yan + Voy - 3 ¥ 1 —— S+B Fit
N 18 L@ [ TR T (91 800 el e 7TeV,L=5.1 'b1 ------ Bkg Fit Component
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Higgs Discovery had Machine Learning all over it



Mistagging rate (QCD)

'y
o

. CMS simulation Preliminar y

-y
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Higgs bosons
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.0 0.1 0.2 0.3 04 0.5

Deep

(
. LI L L L L
© 300 < jetpr < 2000 GeV
40 < jet mgp < 200 GeV

- DeepDoubleBvL, AUC = 97.3%
double-b, AUC = 91.3%

DNN of

50%
impLo ment?

_ -
% mislD rate

BETTER

|

2016 (13 TeV

NS FEETE PN PR PR
0.6 0.7 0.8 0.9 1.0

Tagging efficiency (H — bb)

Events / 18x10°° POT

Learning In
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| —— Appeared v,
| — Survived v,

— NC background

|- —— Beam v, background

CNN for
Neutrino physics

E—

| | | | | |

0.4
v. CC Classifier Output

0.6

With rise of deep learning we are quickly
coming up with new ways to interpret the data
and improve our Physics data analysis

0.8 1



Rest of This tallz

 (Going to look at what we are doing to improve data rates

h‘l.: Ultra low latency high throughput processing
FPGA+ASIC Based system

<10us latency

h’ﬁ One site accelerated processing of the data

* Accelerated based system
' < 500ms latency

¥

_ A Distributed processing of the data
f‘*j Cloud based system
y < 30s latency

o After this we will look at how this applies to Physics (#trending)



Rest of This tallz

 (Going to look at what we are doing to improve data rates

e

Custom Hardware

-
Fh,iq Edge
* All of these can or
» do use FPGAs

- * Cloud

!

o After this we will look at how this applies to Physics (#trending)



F.'i:40 MHz _ ?
(10us) L1 Trigger

A new event every 25ns

Interconnected FPGAs

Optical links between the chips
48-112 Links per chip

Links run at 10-25 Gbps

Full system is O(1000) FPGAs

- We have at MOST 1us to run an algorithm
- We aim for algorithms that are in the 100ns range

- Want to make the fastest possible algorithm

- Want to have the smallest initiation interval
- We apply algorithms to multiple subsets of total event



"':?100ng Capabilities

Before After
Tl 3 s b ‘_3;”*‘**; i i 3 R T R e e e e A
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Particle level reconstruction and event cleanup is a first step
Above algorithm takes roughly 700ns* on a Xilinx VU9P
Parallelize algorithm amongst regions

As physicists we wrote most of this in High Level Synthesis (HLS)
C-based compiler makes our code readable

*tested on AWS 1 instances



ol Deep Learning

Can we run deep learning
In our system?

his 4 ml

ML compiler targeting low latency

Yes

As physicists......
used HLS for our setup
Targeted low latency

Quickly being adopted:
Anomalies(Autoencoder)
Muon reconstruction

Tau Lepton reconstruction
Quark/Gluon showers
Many more




b What can we run?

Case Study: Input
Particle Jet classifier

1e3 hisdml 3-layer pruned, Kintex Ultrascale

.............. + Reuse Factor = 1
61 —=— Reuse Factor = 2
16 inputs L ) . —#—_Reuse Factor = 3 -_____NE)LES_P __________
8 AN —a— Reuse Factor = 4
64 nodes > = Reuse Factor = 5
activation: ReLU —=— Reuse Factor = 6
8 R —— 4
32 nodes La A= — o P run ed
activation: ReLU | ~ ———— 16764 0, del
8 = 6432 modage
32 nodes La A — +32732 p—————
activation: ReLU e — = +32*5 2 -
8 = 4,256 syr
5 outputs 1-
activation: SoftMax N
0 T T T T
<8,6> <16,6> <24,6> <32,6> <40,6>
7 5 n S I ate n Cy Fixed-point precision

new input every 5ns  Softmax
fits in a VU9P

Low latency support in HLS4ML for
MLPs,CNNs,Binary/Tenary NNs,BDTs,Graph NNs,LSTM/GRUs



ey, = ’
Takeaways

e |LHC has a unique role to play when processing data

e With the insanely large data rates
e | ow latency+high throughput demands specialized system
e Qur system will always be ASIC+FPGA-only

e Working to bring ML and complex algorithms to the system

e As part of this work we developed HLS4ML

e Quickly becoming a staple for L1 trigger development



100 kH !
M 500me)High Level Trigger

* 100 kHz of collisions Iin
1kHz of collisions out
<500ms to analyze collision
Currently

e A local computing cluster

e System is all CPUs

e Experiments are considering GPU/CPU system for 2022



2100 kHz
by ¥
"1 1(9500ms)

Configuration

—_—

Parameter
Sets

Input Source
(data or simulation)

\

Database

Event Setup

Reco Strategy

Event Processing Job

MODULE 1

MODULE 2

ML INFER 1

MODULE 6

MODULE 3

MODULE 4

Output 1
Output 2

MODULE 5

ML INFER 2

e Complicated scheme of modules

* While some parts are parallelizeable

* (Collision level analysis built in by construction (Batch 1)

28



' Improving Performance

e Buy a GPU/FPGA card for each node |dea #1

e Pro: Can be done now Con: Massive code rewrite

* Do onsite as-a-service processing

* Pro: build up system over time Con: Networking

ldea #3

 Port what we can to ML and rely on existing/new tools

* Pro: We like ML Con: Redisgn algorithms can be hard



ad Future Strategieg

Incorporating Heterogenous systems(GPU/FGPA)
|dea #3 Upgrade to

ML Algos
|dea #1 Rewrite all of Tools exist
Investigate | our code in TF/Pytorch/TRT
onboard CUDA/Kokkos Xilinx ML Suite
GPU/FPGA | HLS/RTL/?7?? Brainwave....
Idea #2 | o Tools exist:
Outsource | Write specialized | | I TRT-server

GPU/FPGA ' Interface Brainwave
to a service and in cloud!




¥ Future Strategieg

Incorporating Heterogenous systems(GPU/FGPA)

|dea #3 Upgrade to

'

ML Algos ©
=+ —~~
Idea #1 Rewrite all of Tools exist 0 g
Investigate | our code in TF/Pytorch/TRT < 3
onboard CUDA/Kokkos Xilinx ML Suite Y= S
GPU/FPGA| HLS/RTL/??? Brainwave.... O g
O ©
Idea #2 | o Tools exist: O 3
Outsource | Write specialized |} ITRT-server LL 2

GPU/FPGA ' Interface Brainwave
to a service and in cloud!

ML is highly parallelizeable—Biqg speed ups



PR |
ad ldea #1:External

* To run these algorithms within our software

Asynchronous task based processing

___________

External JFPGA,
processing / 'GPU, etc. _\
_ \"\
LHC o
Software acquire() | produce() |

Non-blocking: schedule other tasks while waiting

e Qur Strategy
* Pick benchmark ML examples+put them on FPGAs/GPUs

* Observe what level speed up we get over CPUs and how



Benchmark #1

TS3 pulse
TS4 pulse
I TS5 pulse

| TS9

TSO TSI TS2 TS3 TS4 TS6 TS7 TS8

Energy reconstruction of

Hadronic showers

Simple energy regression

16000 times per collision
Batch N per particles

ldea #133

Benchmark #2

QCD, averaged over 5k jets  top, averaged over 5K jets

Top quark identification
Here we use Resnetb0 as
benchmark

Complicated identification
Many inputs
1-2 times per collision

Batch 1 per Event



‘Al dea #1

Benchmark #1 Benchmark #2

& XILINX @

STRATIX" 10
ALL PROGRAMMABLE-

his 4 ml

—
8" Microsoft Rlif

_vbrainway

*Also investigating Xilinx ML suite(see backup) + Intel Open Vino
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Microsoft Brainwave

Cluster Switch
10
TOR Programmable HW Plane (FPGASs) 2:socket server blade
: /A\/ 2 AT A ,,,':«-""'::; .
I\~ 7 Wardware S;efvu;e’ ,_.;;?"" Brainwave supports:
WA r/ ..... NN e ResNet50
TN 77777 7 - e
ATy 2 7 / - * ResNetl52
i A a  DenseNetl21
LA LA LA Ll g g * VGGNetl6

©
-
o
o
-
o
-
=
o
[
g

Programmable SW Plane (CPUs)

 Full FPGA interconnected fabric setup-as-a-service
e Capable of running many different NN architectures
* Relying on the NPU framework for ML compilation

* (Very) optimized use of ML on the FPGA



Benchmark #136

Energy reconstruction of

Hadronic showers

Simple energy regression
8% 16000 times per collision

aaaaaaaaaaa

Roughly 25% of our
computing budget

y . Network Arch
Seaant , 4 Layer MLP
2000 weights

Easy to put on an FPGA
Already developed algo w/good performance /70 of a Xilinx VU9P



How Fast is it’.;

e Unroll network on the FPGA with his4ml+SDAccel

e Actual network runs in 70ns on an FPGA with Il of 5ns
e For 16000 channels this equates to 80yus total
 Transfer back and forth on PCle is 700us each way

e Current non-ML-based algorithm takes 50ms

Algo Per Event

old 50ms

Significant speed ups
NN CPU 15ms
NN GPU(1080 Ti) 3ms (prelim)

NN FPGA 2ms
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al Benchmark #2

e Resnet50 on Azure FPGA cluster with <2ms/inference

e A standard ML benchmark: Top Tagging (resnet50 for physicists)
Approach bce [1on[conact | ommans VVO r|dS Best Tagger

€5=0.3)

AUC=98.4% acc.=93.7% 1/es = 1160

Leiss

LBN 0.981 | 0.931 | 863 Marcel Preliminary u
Rieger number l I r a g g e r
n
CNN 0.981 (0.93 |780 David Shih | Model from Pulling Out All the

Tops with Computer Vision and
Deep Learning (1803.00107)

AUC=98.3% acc.=93.5% 1/eg = 1000

10° 5
1 —— Floating point: AUC = 98.0%, acc. = 90.1%, 1/eg = 671

P-CNN 0.980 | 0.930 | 782 Huilin Qu, [ Preliminary, use kinematic info
(1D CNN) Loukas only

Gouskos | (https://indico.physics.Ibl.gov/i
ndico/event/546/contributions/1

270/)
6-body 0.979 | 0.922 | 856 Karl Based on 1807.04769 (Repo, ] Quant.: AUC = 97.5%, acc. = 84.1%, 1/eg = 415
(+mass and pT) o | eggerated: N-subjettindlt 1 —:— Quant, f.t.: AUC = 98.2%, acc. = 93.0%, 1/eg = 971
o Toggers Take On Jorl 10-1 4 Brainwave: AUC = 98.2%, acc. = 92.6%, 1/eg =
8-body 0.980 |0.928 (795 Karl Based on 1807.0476 . o
N-subjettiness Nordstrom | of My Demise Are ] — - Bralnwave, f.t.: AUC = 98-3%; acc. = 93.59
(+mass and pT) Exaggerated: N-syfijettiness 1
NN Taggers Take O, . .
Linear EFPs 0.980 |0.932 | 380 Patrick d<=7,chi<=3 ] T h IS tag g e r IS
Komiske, Based on 171 124: Energy/
Eric Is: A complete

Metodiev linear basisf¥pr jet substructure.

5 state of the art

Background efficiency

Particle Flow 0.982 |0.932 |888 Patrick r ten trainings. Based
Network (PFN) Komiske, in 1810.05165: Energy
Eric orks: Deep Sets for
Metodiev e Jets.
Energy Flow 0.979 |0.927 |619 Patrick edian over ten trainings. Based 10_3 |
Network (EFN) Komiske, on Table 5 in 1810.05165: Energy

Flow Networks: Deep Sets for
Particle Jets.

. /.a*" . m .
# Retraining w/Brainwave

J'
A
i_f!

, | Preliminary from
indico.cern.ch/event/745718/contri

Many different Top Tagging attempts

butions/3202526 f. d " "
, | Preliminary from 10~4 T Ixe T p re CI S| I O n T
rlﬂiigt:‘zgrzr;;;%vent/745718/c0ntri 0.0 0.2 0.4 0.6 0.8 1.0

Signal efficiency




12 1 @ azure resnet cpu 1-core
A azure resnet cpu 4-core
V azure resnet cpu 8-core
101 © resnet cpu 1-core
n % resnet cpu 8-core
~ P #* *
n
Q
O
(-
Q
| -
Q
y—
£
0

0 10 20 30 40 50 60
Batch size
Algo
CPU

GPU Batch 1

GPU Batch 32

FPGA

How Fast is It’.;

Inferences / s

1000

800 1

600 -

400 1

@® azure resnet gpu
A resnet gpu
¥V resnet gpu train

0 10 20 30 40 50 60 70

Batch size

With an FPGA can get 1.7ms inference time at batch 1
With a GPU can get 2ms/img time at batch 70

80
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™" Accelerators Takeaway

e FPGAs and GPUs both work FPGAs better(low batch)/as good

* Benchmark #1
* Latency lowest on FPGA despite a large batch process
* Limited by I/O considerations with PCle

* Benchmark #2
* FPGA dominates at batch 1

* With large throughput GPU can start to compete



External

Other Machine Processing

LHC
Software

Main Machine

e Strategy

e Use the same benchmarks as before

* Now wrap these with gRPC protocol between different machines



Service Optiong

Low Iaténcy Triggering
(previous slides)

CPU farm

CPU node
CPU node

e
| Network input |

| Prediction |

On-site as-a-service \

When latency not critical element : can go off-site to the cloud
Here latency needs to be < 500ms (consider just on the premises)



Benchmark #143

* GPU as a service e FPGA as a service
e Using tensor-rt-server e Numbers TBD (<10ms)
* |ndustry standard * Using Galapagos
Naif Tarafdar+Paul Chow
e Latency: 16ms  Heterogenous middleware

Per Event +0On-site aaS l I IFPGAI

VM VM

NN RelUIglo oMl 3ms (prelim) |  16ms====-; ¥ 8ms/event
( ) P ) w/concurrent JD[ I D [ I
NN FPGA 2ms TBD(<10ms) | calis CPU FPGA 3




Benchmark #244

 Three Options considered : all from computer in same cluster

GPU as a service Azure Cluster Microsoft Databox Edge
FrOm |Oca| CPU From |Oca| CPU FrOm |Oca| CPU
to GPU service to Brainwave to FPGA system at FNAL

Batch 1 latency: 23ms |Batch 1 latency: 15ms|Batch 1 latency: 20ms
Batch 32 latency: 230ms

Algo Per Event +On-site aaS
CPU

GPU Batch 1

GPU Batch 32

FPGA




Time|[s]

45

Services Takeaway

* Observe a ~10ms increase in latency when going to a service

6000 A

5000 A

4000 A

3000 A

2000 A

1000 A

* Have observed large variations across network

* Maintaining consistent network connection critical for running

On site at Fermilab:
Latency 20 ms 30

Databox edge

L—>

__T_

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175

Time|[s]

103'E

gn —— remote
u
I ——- onprem
] H ILinear x-axis
] HH
L]
1!
11
.d]i ‘L
|
H ] gy
|
u
|
” L]
| ] 1ral || 1
100 150 200 250 300
Time [ms]



fﬁi Throughput vs Latenc;

e Why are we limited to 500ms in latency?

e 500ms at 100 kHz is 400 GB of data —not that much
 With some redesign it is possible to increase this limit
e Just need more disk as a buffer
* We still need to be able to process this data quick

 That means we need to ensure throughput is high



1 kHZz !

LHC Computing Grid

11/22/2013,_5:55:18.p.m. : - Running jobs: 244151 .
' Transfer rate: 40.08 GiB/sec

14 ¥

US Dept of State Geographer

Data SIO, NOA(DA?(:}.;G?:):VQJ?NGA. GEBCO Google | ea rt h

Image Landsat




@1 kHz | “
1(10s) Offline Reco

* At the final tier of reconstruction
 Worldwide grid is roughly 0.75 Million cores 600 PB of data
e |atency is not a critical limitation

e Grid will have different technology all over (common protocol?)

Credit:
Naif Tarafdar




Service Optiong

Low latency Triggering
(previous slides)

CPU farm

CPU node

CPU node

e
| Network input |

| Prediction |

On-site as-a-service \

When latency not critical element : can go off-site to the cloud
At the offline tier can switch to the cloud no—Heterogeneity now



Service Optiong

Low latency Triggering
(previous slides)

CPU node

On-site as-a-service

Heterogeneity Now

When latency not critical element : can go off-site to the cloud
At the offline tier can switch to the cloud no—Heterogeneity now



£& Fermilab

Fermilab HEPCloud compared to global CMS Tier-1

Rum&l‘i)g jobs
30 Days from 2016-01-11 to 2016-02-11
v ; L Ll

Via Fermilab
HEPCloud:

CMS Amazon Web
Services (AWS)
Usage

Fermilab Tier-1

mol N nisel ) niesid nies n nies ol
Tier-1 (Italy) Tier-1 (Russia)
Tier-1 (Germany) Tier-1 (UK)

Tier-1 (Spain)

28 03/15/2016 Burt Holzman | Fermilab HEPCloud | OSG All-Hands Meeting

We have already done this with CPUs in the cloud



Throughpu;

 Despite the longer latency we can have one node serve many

N\

i Worker Node

JetImageProducer & Sty
o) . .
S / Sk Brainwave Service

p
Worker Node . SN HE BN
| JetImageProducer ) TT==ao__

o
[Worker Node

JetImageProducer

mEl \icrosoft
Hl Azure

Fermilab

e With this setup how many nodes until system has to throttle down

e Bottlenecks can come from network, not just service



Benchmark #153

 Throughput is driven by the actual minimum latency of algo

e For FPGA algo latency is 0.08ms—working to get there

 Cloud have to deal with additional slow down from networking

By
' uCsD

Per Event +On-site aaS +Cloud aaS Ping On/Cloud put

N/A N/A N/A

15ms N/A N/A N/A N/A
N Relo Ul vmp)) 3ms (prelim) 16ms 90ms /5ms 1ms/30ms*
NN FPGA 2ms TBD(<16ms) TBD TBD >0.1ms

*Cloud throughput on GPU still to be scrutinized



Benchmark #5

10% — 5
;i-lr-]lgreet]chrOCeSS one | Can Serve
w - = T 1T | [950-100 nodes
C  with 1 FPGA
: o 4. | and no loss
= =102 ) 4
1
%10 1ot 12 100 1 10 50 100 500
Simultaneous processes Simultaneous processes

Algo Per Event +On-site aaS +Cloud aaS On/Cloud* put

CPU N/A
GPU Batch 1 7ms 23ms 97ms 75ms 5ms/20ms*

GPU Batch 32 3ms 240ms 975ms 75ms 8ms/20ms™

FPGA 1.7ms 15ms 60ms 25ms 1.7 ms
*Cloud throughput on GPU still to be scrutinized



Ta keawayg

* When large speedups are present in overall throughput
* Where as-a-service starts to really shine
 (Can think about one service for many machines
o Will take a latency hit in our system from this
* This is something we can deal with
 Qur next step is bringing the studies to scale

e Can we serve many thousands of processes at once?



VWhat have we Iearned’;

 With large speedups we can redesign our system

" N
.....
L 4
L 4
L)
*
*

L ]

*
n
[ |

/

Process event by event Process (event by event)?
outsource to aaS




VWhat have we Iearned’.;

 With large speedups we can redesign our system

Aiming to test this to scale(in cloud)

" N
.....
L 4
L 4
L)
*
*
L ]
*
n
[ |

=
O
Z
=
=
C
)
(@)
O
)
| -
)
'
Q

/

Process event by event Process (event by event)?
outsource to aaS




58
Going Beyond

* To be really effective aim for flexibility in NN design

* Have many different NN architectures to solve many different probs

* Adapting to industry(Resnet50/Bert/...) not a good option
e Multi-FPGA/.... support

 Adapting to FPGAs/... will want to avoid CPU altogether

* (Can take advantage of inherent speedups and networking on FPGA
* Throughput adaptations in our computing model

e Latency limits not critical: can consider alternative computing models



VWhat about ML’.;

Rapid adoption to improve reconstruction quality
Effective for newer detectors with large numbers of channels

Large dedicated effort within HEP comunity

Prediction

1000 A
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l
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Beyond the LH(SO

https://fastmachinelearning.org/

e This talk has focused on data reconstruction at the LHC
* Are quickly identifying other cases with the same issues

* Have extended our collaboration to incorporate everybody

® Inaugural WOI’kShOp can be found here https://indico.cern.ch/event/822126/

* You too can join our Fast Machine Learning effort

Lets consider a few examples


https://fastmachinelearning.org/
https://indico.cern.ch/event/822126/
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Neutrlno Event Reconstructlon

Top Top View
C t CC Event
r..--" -
- Top View
— D
. ' _'_I_..-" v, CC Event
At
20 A -;:I'.‘?-"I '.
. X,
o ' P
Side View ' Side View .« Side View
CC Event 0 CC Event Il' CC Event
1 ' 1
09 ] _._.-'_I:I'I'-
30 ’ ._u-'l'-'—
| ] _-._._ LN |
20

Reconstruction can be performed with a CNN (Resnet-like)
Future detectors will have to deal with 40 Tb/s of data

They will aim for per-event latency < 2ms to find Supernovae
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Particle Accelerators

e Demands for high speed control of accelerator systems

e |Large data rates to monitor and control beam dynamics

* Have had continual success with ML solutions for modeling

Data Flow

—— Digitizer

GA |
\ ‘\ Digitizer i
j/ / Digitizer "

N A—pigitizer,

2 |
(" Digitizer
/ : - il FPG
/ — Digitizer
’ _— Digitizer

N ie ~ |
T~ Digitizer i
—— '

Analog signal 2> Digital signal > Compressed signal >Extracted information

:/v

“cookie box”

Data
FPGA S Reduction
Pipeline

| Only half of the detectors (8 shown, 16 total) are included for clarity.

160 -

=
HAN
o

& (MM — mrad)
= =
o N
o o

(00)
o
1

GA with Neural Network
—e— GA with Physics Simulation
Best Known Pareto Front

Physics Sim:
~95k core hrs, 66k sims
2246 cores, 36 hours

Neural Network:
~2 mins on a laptop
(500 sims for training)

0.35 0.40 0.45 0.50 0.55 0.60 0.65
AE (MeV)
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Gravitational Wave Detection

v - Gravitational Wave Detector ™™ Telescopes

= A
\\\ _ rDetectorarm

Fast identification of gravitational waveforms to signal satellite and other
telescopes for astronomical phenomenon multi-messenger astronomy



Survey

Galaxy

Lens type

Quasar Supernovae

120,000

170,000

Nord+2016; Collett+2015; Gavazzi+2008; Oguri+Marshall, 2010

SDSS |-l
2000-08
2.5-meter mirror
O(108) Galaxies
10k sq. deg.
0.2 TB/Night
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Astrophysics

LSST will
produce over 10
million transient
alerts per night.

With LSST in 2022

DES
2013-18
4-meter

O(108) Galaxies
ok sq. deg.
1 Th/Night

Astrophysics datasets
reach petabyte data
scales with large and
complicated feature
analysis

LSST
2022-32
8.4 -meter
O(1010) Galaxies
20k sq. deg.
20 Tb/Night

B |dentification of transients
| require real time
processing of all data
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Many More
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Everything Getting larger

LHC Science Facebook

data uploads SKA Phase 1
~200 PB 180 PB 2023
~300 PB/year
Google science data

searches
98 PB

50 PB raw data

Google
Internet archive Yearly data volumes

~15 EB
HL-LHC - 2026

~600 PB Raw data

SKA Phase 2 — mid-2020’s HL-LHC — 2026
~1 EB science data ~1 EB Physics data




67

Everything Getting larger

LHC Science Facebook
data | SKA Phase 1

~200 PB 130 PB 2023

~300 PB/year
Google science data

searches
98 PB

50 PB raw data

Google
Internet archive Yearly datea volumes

~15 EB
HL-LHC - 2026

\ o ~600 PB Raw data

Data 2026

Al 5KA Phase 2 — mid-2020's HL-LHC — 2026
~1 EB science data ~1 EB Physics data




Conclusions

e | arge scale campaign underway to adopt deep learning everywhere
e Scale of data processing in physics is getting larger

e With large datasets come huge scientific potential

e Processing of large data is a real challenge
e Have demonstrated ML+ Heterogeneous computing works

e Parallelization of NNs and eff of FPGAs give large speedups

e EXxploring cloud and edge based service solutions



Conclusions

Getting closer to analyzing all of our data

In science has the potential ’ new doors
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Benchmark #1

e Send our 16k inference from MIT to GPU at UCSD UEWSD

* Ping time is 75ms (speed of light google map distance is 32ms)

e To UCSD and back takes ping time + 16ms

e Still working on test with FPGA (soon)

Algo Per Event +On-site aaS +Cloud aaS

Oold 50ms N/A N/A N/A

NN CPU 15ms N/A N/A N/A

NN Eel UGl omE Il 3ms (prelim) 16ms 90ms 75ms

NN FPGA 2ms TBD(<16ms) TBD 1BD



Benchmark #5

| — remote

UCSD to MIT for GPU el ne s -~ onprem
FNAL to Azure for FPGA | .
9
%,
e FPGA P
W —> 0 s
Fermilab i Hﬂ ﬂ

100 150 200 250 300
Time [ms]

Algo Per Event +On-site aaS +Cloud aaS
CPU

GPU Batch 1

GPU Batch 32

FPGA
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In the detector

Key: - * pMuon
Electron

e _harged Hadron (e.g. Pion)
— — — - Neutral Hadron (e.g. Neutron)
Photon

All reconstruction
IS separated on
an event by
event level

Iron return yoke interspersed
with Muon chambers

(1] im m 3m M 5n ém 7m
| | | | |

* A single particle can leave deposit iIn many detectors

e Each detector deposit a complex and different topology

 Reconstruction of particles/detectors can be parallelized



Reconstruction of Objects

- fMuon

Electron

e _harged Hadron (e.g. Pion)
— — — - Neutral Hadron (e.g. Neutron)
Photon

Batch 1 Per Event

All reconstruction
IS separated on
an event by
event level

Iron return yoke interspersed
with Muon chambers

(1] im m 3m M 5n ém 7m
| | | | |

* A single particle can leave deposit iIn many detectors

e Each detector deposit a complex and different topology
Batch N Per Particle

 Reconstruction of particles/detectors can be parallelized
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Xilinx ML Suite

requests avg latency: 16.855598 ms

 Consider Googlenet example

time avg latency: 2.07637 ms
Throughput Rate end to end latency
700 25
600 ~— g y = 0.9355x + 0.7148
R?=0.98884
20
500
» 400 15
S~
0
T »
£ £
= 300
10
200
100 5
0
0 2 4 6 8 10 12 14 16 18 20
# Streams 0
0 5 10 15 20

Max FPGA Throughput =~ —@—Input Rate # Streams



Alternative GPU Modeyly

Baseline DAQ
( pp collisions )
40 Tbit/s ¢

0(250) —
[ <86 Servers ( event building )J

40 Thit/s ¢

(" 0(1000) x86 servers

( HLT1 )
Y

buffer on disk
calibration and alignment

Y
( HLT2 )

80 Gbit/s ¢

[ storage )

GPU-enhanced DAQ

pp collisions

40 Tbit/s ¢

-

\_

0O(250)
x86 servers

[ event building

S Com )

1-2 Tbit/s ¢

-
O(1000) x86 servers

buffer on disk
calibration and alignmen

J

Y

( HLT2

)

\_

J

80 Gbit/s ¢

[ storage

Full Reconstruction algorithm ported to GPU
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Alternative GPU Model

Raw data

Y

Selection decisions

Individual /

events \

(

\.

Process thousands of events in parallel

Single precision only

~N

Within one block:
intra-event parallelization

|| Block (0,n) |

| 1 | |

[ [ [ ]

[ | Block (1,n)

Block (0,0) | || Block (0,1) |
|1 1 | 1 | |
| 1 [ ] [ [ [ ]

| |Block (1,00 | | |Block(1,1) |
|1 | | | |
[ [ [ ] HEN
Block (m,0) | || Block (m,1)_|

I I

[ [ [ ]

| | Block (m,n) |

I

| [ ] ]

Thread Thread
(0,0) (0,1)
Thread Thread
(M,0) (M,1)

Thread
(O,N)

Thread
(M,N)




Alternative GPU Modeylg

0
-
1

~]
-
|

@)
O
1

&)
-
1

—
-

o)
O
|

Allen throughput [kHZ]
(NS
-

fd
O
1

LHCDb simulation
GPU R&D

‘Tesla T4

.Tesla V100 32GB

.Quadro RTX 2080 Ti
'GeForce RTX 2080 Ti

Operational limit

‘GeForce GTX 1080 Ti

.GeForce GTX TITAN X
.GeForce GTX 1060 6GB

GeForce GTX 680
ERED

-

GeForce GTX 670
2000 0L LD

10.0

125 150 175 700 205

Theoretical 32 bit TFLOPS



Another View of Same80

Collision rate is 40 MHz
A new collision every 25ns

Preprocessing of detectors
High radiation environment - g
High Magnetic field | 1

Specialized detectors We use to mnake

_ Changes with Access to all discoveries
Fixed LHC beam detectors

Latency : 10us 100ms 10s



%40 MHz ;
a (10us) Systems

Calorimeter trigger Muon trigger Track trigger

Detector Backend systems

EDES e
Local
Global C?alonmeter —_

Trigger
External Triggers
§ PF
BPTX Correlator Trigger
Global Trigger GT

Phase-2 trigger project

Each Block represents O(30) FPGAs w/50 Tb/s bandwidth 1us latency
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PYTORCH Summing Up the Data flow

Ny

M 2 Keras
Tensor
python keras-to-hls.py -c keras-config.yml
Keras
TensorFlow
PyTorch
Co-processing kernel
his 4 ml
model
compressed
model HLS —_—
conversion Tl Custom firmware
Usual ML f design
software workflow 7‘
\tune confi_guration /
precision
. . reuse/pipeline
Usual Training Step —
Targeting Ultra low . Final Product
HLS tuning Inal Froauc

latency applications



qu40 MHZz N
(10ps) Example Performance

_ 1e3 his4ml 3-layer pruned, Kintex Ultrascale
his4ml 3-layer pruned, Kintex Ultrascale
—#— Reuse Factor =1
—#— Reuse Factor=1 6 - =
50 - . e —#— Reuse Factor = 2 Max DSP
—#=— Reuse Factor = O I k_5 A m = _REUSE FACION = 3 o o o o o o o o o o o o o o e o o e e
—a— Reuse Factor = 3 ne CIOCK=oNs —=— Reuse Factor = 4
—@== Reuse Factor = 4 51 —#— Reuse Factor =5
40 1 —=— Reuse Factor =5 —=— Reuse Factor = 6
—#— Reuse Factor = 6 4-
. a Pruned
2 5
Q 3 I
mode
20 -
/ 2 .
f
X
10 A 11 /
Lm :Lmult+(R_ 1)Xllmult"‘LactiV EE=S = =7
0 1 1 1 1
0 T T T T T <8,6> <16,6> <24,6> <32,6> <40,6>
<8,6> <16,6> <24,6> <32,6> <40,6> Fixed-point precision

Fixed-point precision

3-Layer NN 75ns latency
with an |l of 1

Latency (in clocks) gets worse Tuneable reuse of DSPs
With reuse factor and BRAM to get latency

Consistent with sharing resources and Il in ns timeslaes



What is a collision?

e LHC collides 60 protons at the same time
* Eventually will become 200 protons at the same time
e Collisions occur at 40 MHz
 Expect roughly 1000(2000) particles per collision now(future)
e Particles can leave deposits in many detectors
 Aim to reconstruct aggregate properties of these collisions
e | HC Detector is roughly 100 Million channels

o After zero suppression we have 8MB per collision



A More detailed View

HL-LHC

— AhunlV ,,.V

LS2 14 TeV
5107 x

LHC

LS EYETS
13 TeV

R u n I splice consolidation g R u n l I I ominal
cryolimit B nomina

7 TeV 8 TeV button collimators R u n I I TOIS absorber interaction HL-LHC luminosity

— R2E project 11T dipole & collimator reaions installation p—
Civil Eng. P1-PS
2019

2015
ATLAS - Cms

2014
upgrade phase 2

ATLAS -CMS
upgrade phase 1

experiment
beam pipes
nominal AL'CE - LHCb
upgrade
— /
m 3000 fb™' S
FP7
MAJOR CIVIL WORKS TECHNICAL INFRASTRUCTURE

Hi-Lumi
DESIGN STUDY

PHYSICS

2040

MAIN ACCELERATOR COMPONENTS
INSTALLATION

ASSESS & TDR
CONSTRUCTION AND TEST

2022 2023

PDR PREPARATION

2024 2025 2026

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021



. Data Box Edge: V1O Databox Edge

A Microsoft hardware-as-a-
service solution with an FPGA
INside, installed at FNAL

iot service = \
ITotWebservice.deploy from 1mage ( _ -
e * Deploy pre-trained
1ot service name, NNS USing a Cl_l or
Image (ws, 1mage name),
deploy config, d py’[hOﬂ SDK

iothub compute

)

client = PredictionClient (
address = address.fnal.gov, port = ,
Inference from a Sce 251 — False,
Cllent by Seﬂd|ng service name = module name
)
data over gRPC result = client.score numpy arrays (

input map = {'Placeholder:0' : np array}
)



Jet Tagger Examplg

Distinguish between top
quarks and QCD using
224x224 single-color

images

* Images: collected
energy in the n/¢ plane

(detector coordinates)

Previous inference results
 On asingle CPU: ~500 ms

e On Azure Kubernetes Cloud
Service: ~60-80 ms

(depending on distance)

Deployed at Azure Data
Center in Viriginia (2018):
~10 ms

200 A

175 A1

150 A1

125 A

100 -

75 1

50 1

25 1

0

200 A

175

150

125 A

b= 4

100 A

75 1

50 1

25 1

0

0

50 100 150 200 0 50 100 150 200

Using Data Box Edge

* Docker container directly on DBE: 14
ms 25

From LPC: 20 ms £30
From laptop at FNAL: 68 ms +27
From LXPLUS @ CERN: 168 ms 62




Timing

6000 -

5000 -~

4000 -~

3000 A

2000 A

1000 ~

0.000

From LPC: 20 ms #*:

* |nference times per
image not very
Gaussian
distributed

More research to be
done on effects of
network stability/
latency

=.r

0.025

0.050

0.075

0.100

0.125 0.1'50 0.1'75
time (s)



Fll40 MHz _ -
(10us) _ L1 Trlgger

Have to take a new event every 25ns

Interconnected FPGAs

direct optical links between the chips
48-112 Links per chip

Links run at 10-25 Gbps

Full system is O(1000) FPGAs

TIIIIIIIIIIIIIIIIIiiiaoeg Q) I
............. N

B\

3

E



External Work in CMSSW (1)

Setup: .
External
* TBB controls running modules Controlling
* Concurrent processing of multiple events
* Separate helper thread to control external

« Can wait until enough work is buffered Running
before running external process

" MODULE ' MODULE

Waiting
To Run MODULE MODULE

MODULE MODULE

Event Loop Event Loop
1 2

LPC Topic of the Week Kevin Pedro 90



External Work in CMSSW (2)

Acquire:
External

* Module acquire() method called Controlling
Thread

e Pulls data from event

* Copies data to buffer

. - ' MODULE MODULE
 Buffer includes callback to start next phase | ~unnIng A A

of module running

Waiting
To Run MOE;ULE MODULE
MODULE MODULE
C

Event Loop Event Loop
1 2

LPC Topic of the Week Kevin Pedro 91



External Work in CMSSW (3)

Work starts:

External a
* External process runs Controlling

* Data pulled from buffer - n

* Next waiting modules can run

(concurrently) RUNNing MOl;ULE MOI;ULE

Waiting
To Run

MODULE MODULE
C C

Event Loop Event Loop
1 2

LPC Topic of the Week Kevin Pedro 92



External Work in CMSSW (4)

Work finishes:

External

* Results copied to buffer Controlling
Thread

 (Callback puts module back into queue

MODULE MODULE

Running c B

MODULE MODULE
A A
Waiting
To Run

MODULE
C

Event Loop Event Loop
1 2

LPC Topic of the Week Kevin Pedro 93



External Work in CMSSW (5)

Produce:
External

* Module produce() method is called Controlling
Thread

e Pulls results from buffer

* Data used to create objects to put into

event MODULE ' MODULE

Running c N

MODULE
~ A(prod)
Waiting
To Run

MODULE
C

Event Loop Event Loop
1 2

LPC Topic of the Week Kevin Pedro 94



Sonic and Friendg




