ML Acceleration with Heterogenous computing for big data Physics Philip Harris(MIT)

Burt Holzman Sergo Jindariani Benjamin Kreis Mia Liu Kevin Pedro Nhan Tran Aristeidis Tsaris

Naif Tarafadar Paul Chow

Massachusetts Institute of **Technology**

Jeff Krupa Dylan Rankin Sang Eon Park

Scott Hauck Shih-Chieh Hsu Matthew Trahms

Dustin Werran

UNIVERSITY OF ILLINOIS AT CHICAGO

Zhenbin Wu

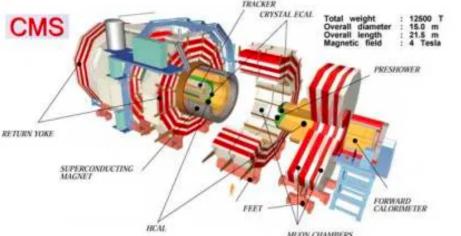
Mark Neubauer Markus Crisziani

Microsoft

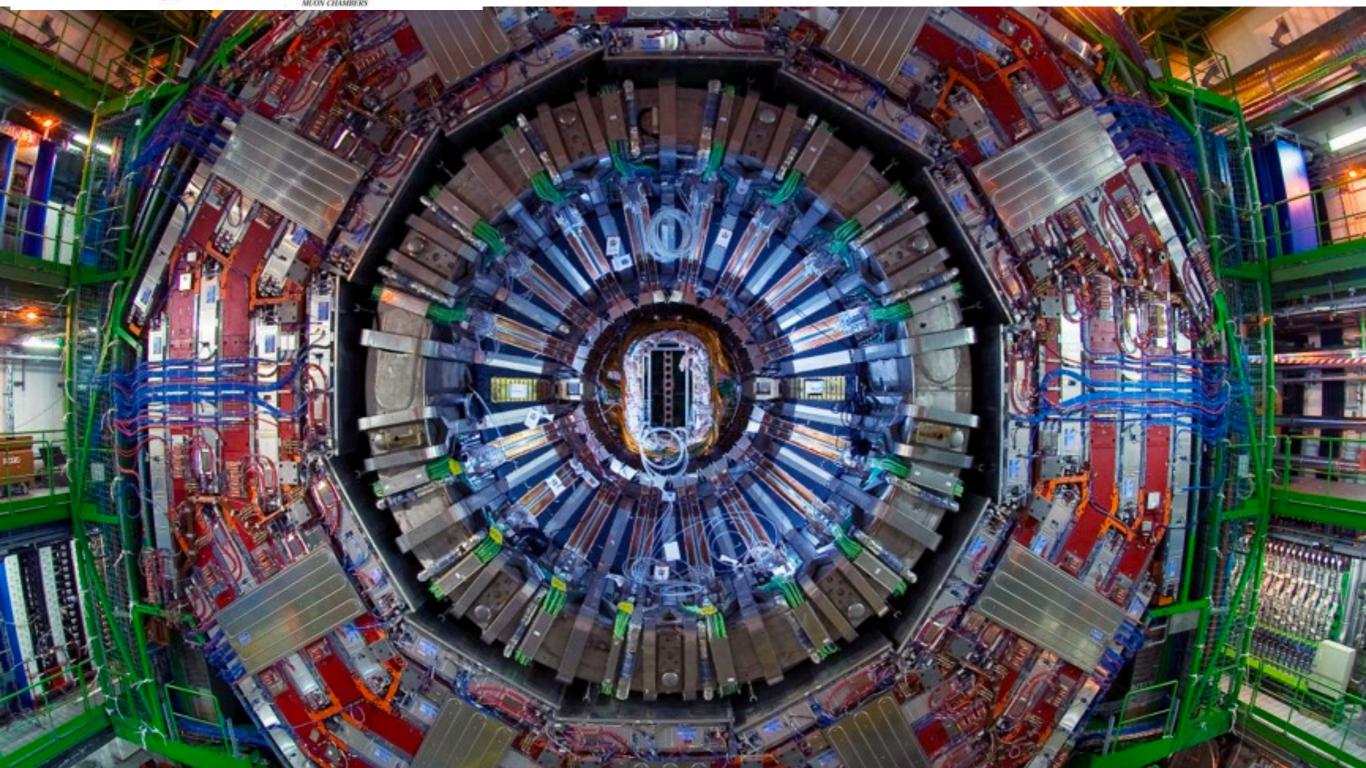
Suffian Khan Brandon Perez Colin Versteeg Ted W. Way Andrew Putnam Kalin Ovatcharov

Vladimir Loncar Jennifer Ngadiuba Maurizio Pierini

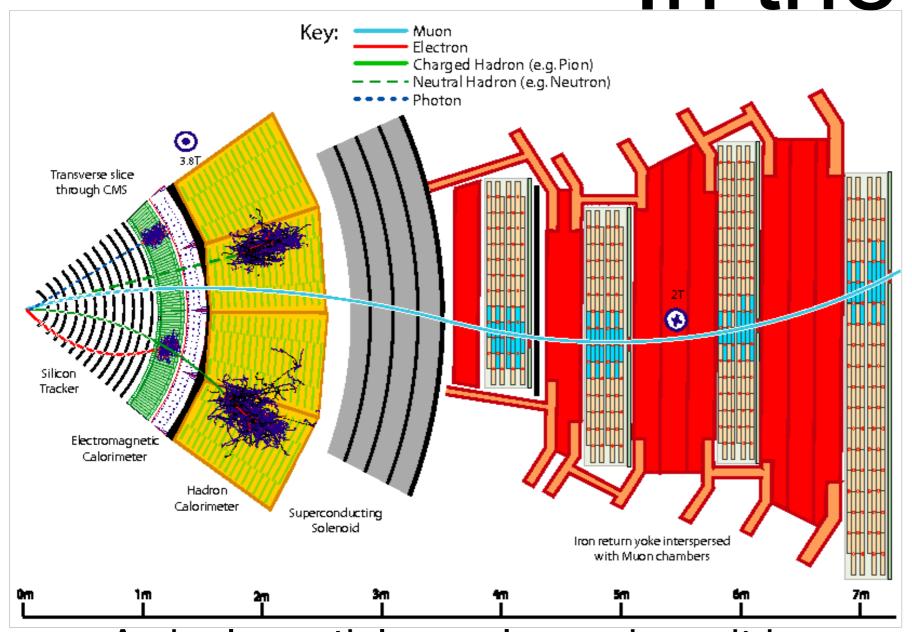
Giusppe Di Guglielmo



CMS detector

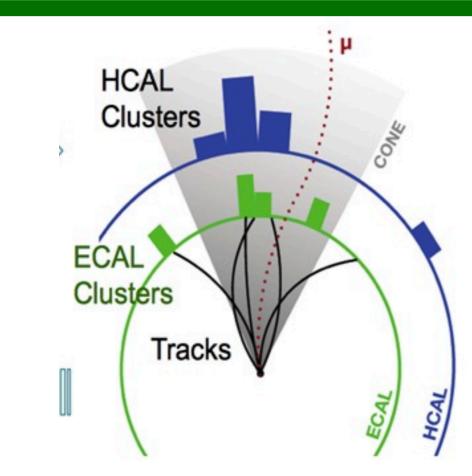


In the detector

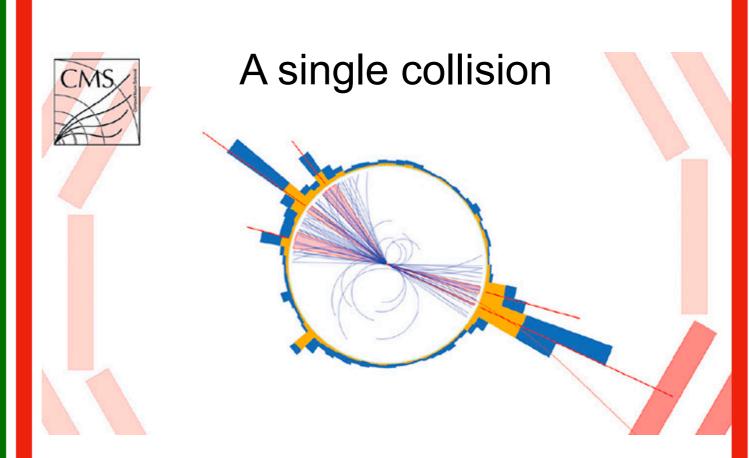


All reconstruction is separated on an event by event level

- A single particle can leave deposit in many detectors
 - Each detector deposit a complex and different topology
 - Reconstruction of particles/detectors can be parallelized

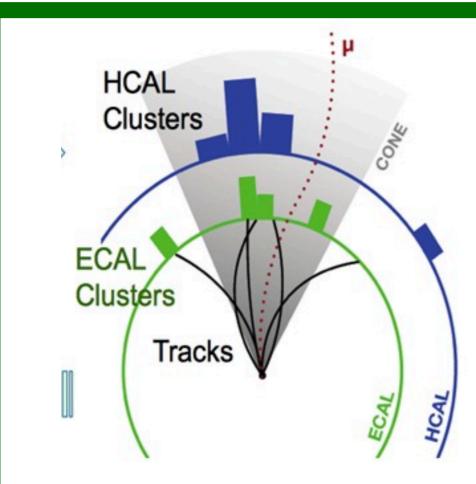


LHC reconstruction involves combining many different detectors in to particles

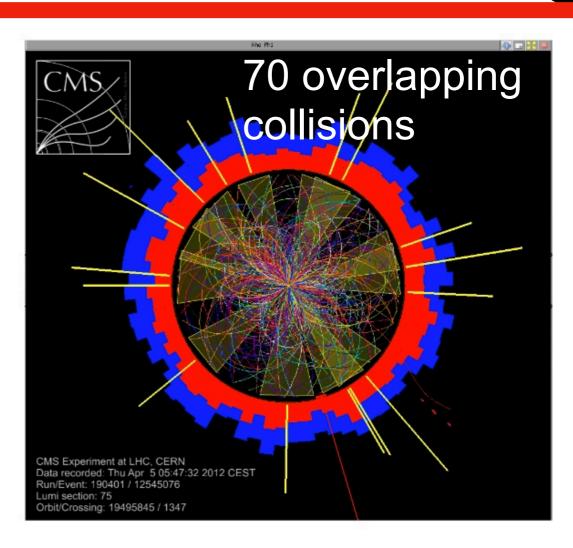


Many particles lie on top of each other making an event

With each collision aim to probe a single event

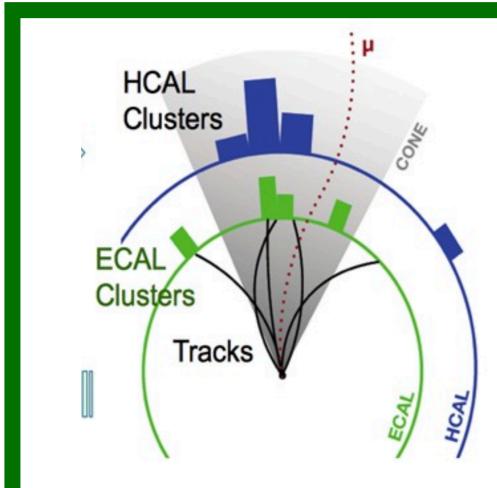


LHC reconstruction involves combining many different detectors in to particles

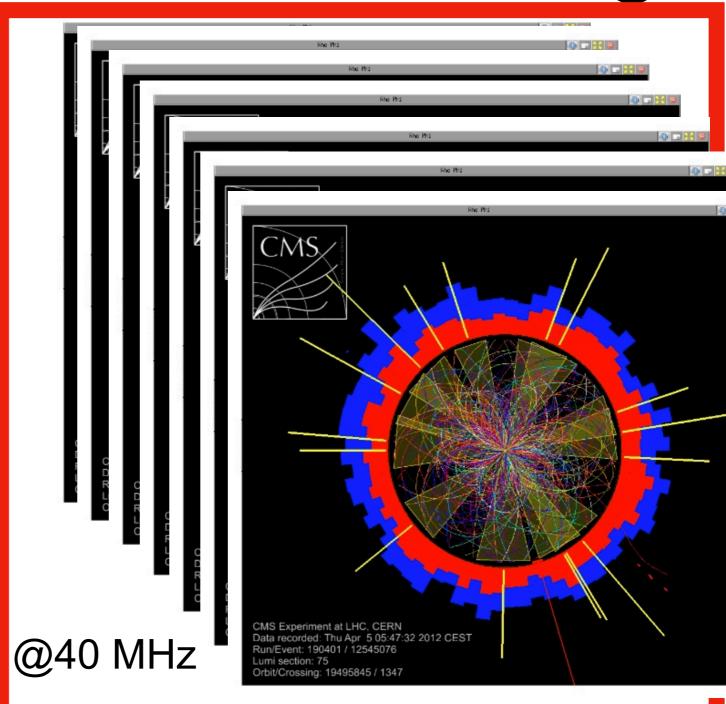


Currently we have 70 collisions lying on top of each other **Event**

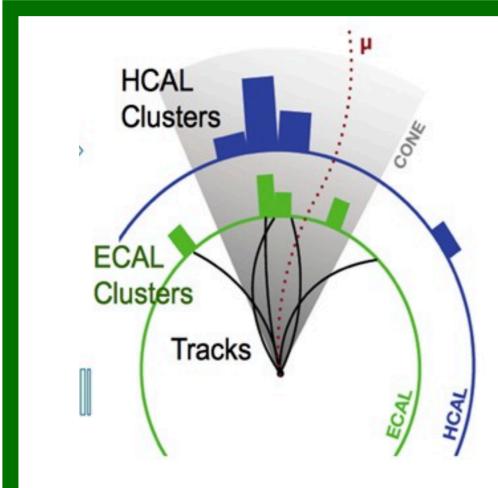
In the future will be > 200 collisions



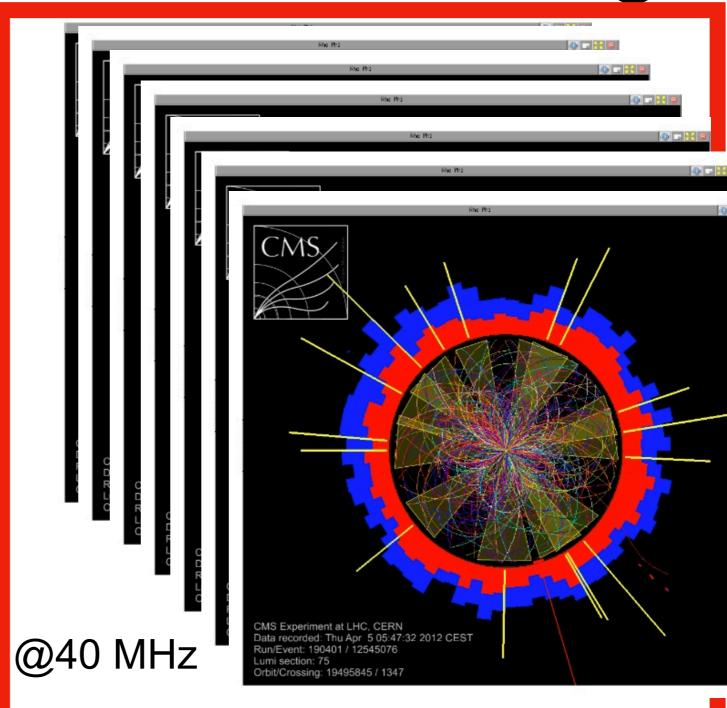
LHC reconstruction involves combining many different detectors in to particles



40 Million times per second



LHC reconstruction involves combining many different detectors in to particles

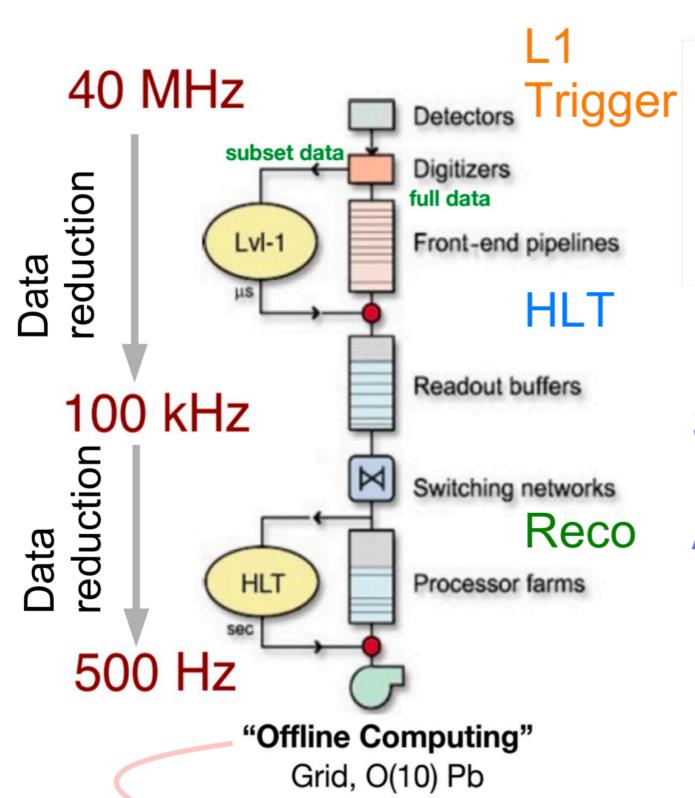


40 Million times per second

Batch N per particles

Batch 1 per Event

Data Flow in CMS



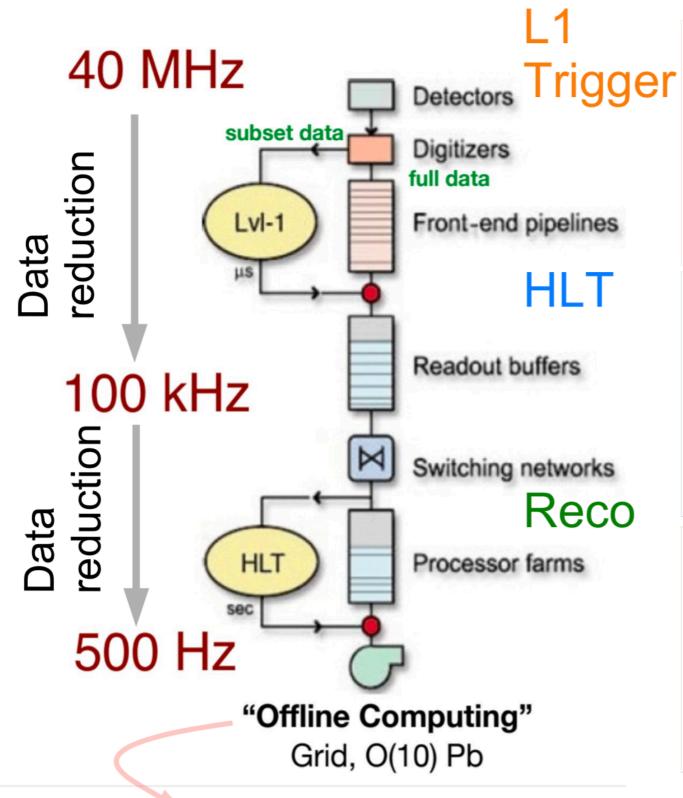
High speed
Low granularity
readout (10µs)

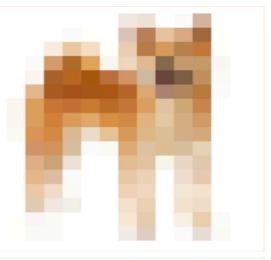
See most collisions like this

And throw away most collisions

Despite the large rate reduction we still store many Petabytes of data

Data Flow in CMS





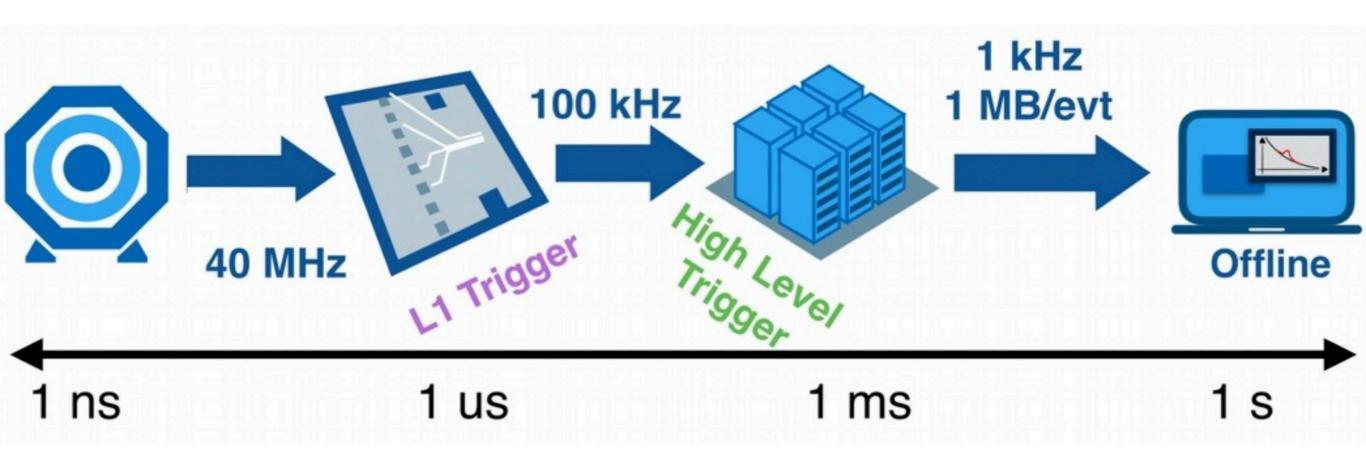
High speed Low granularity readout (10µs)

Intermediate speed (100ms) better readout

Full data readout (10s)

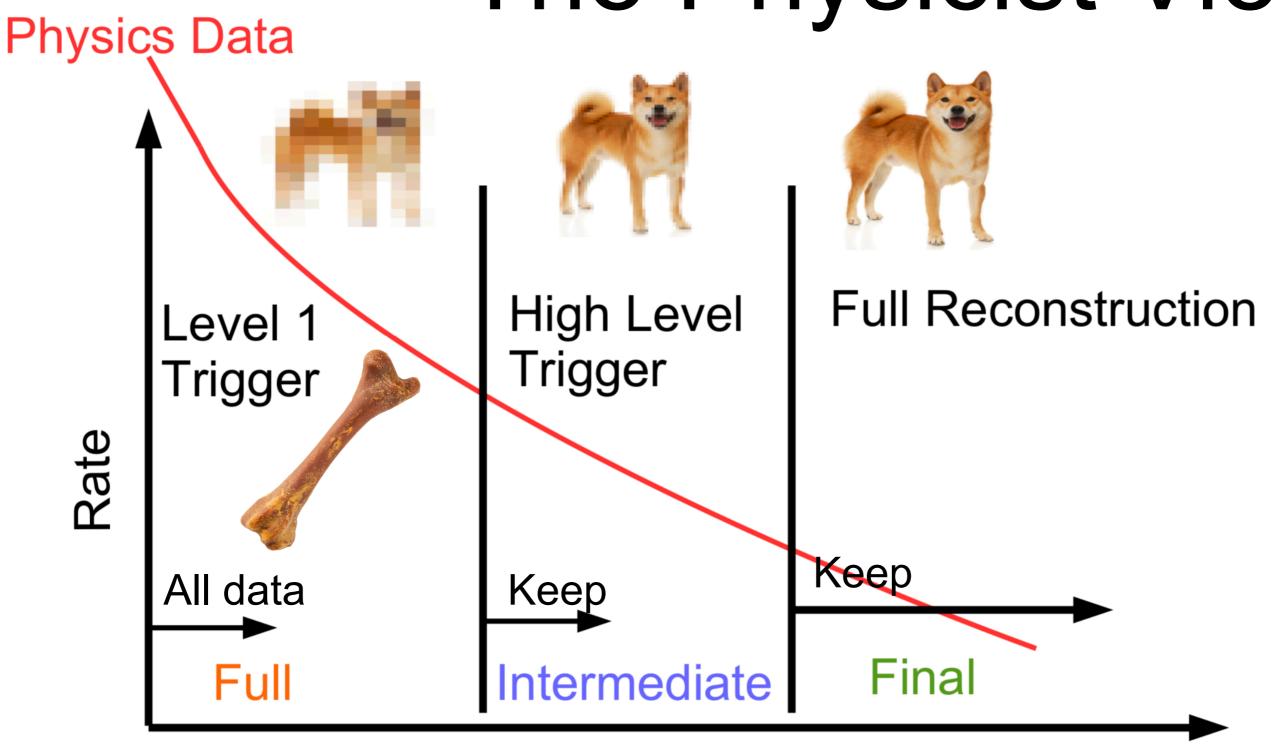
Despite the large rate reduction we still store many Petabytes of data

How do we process data?



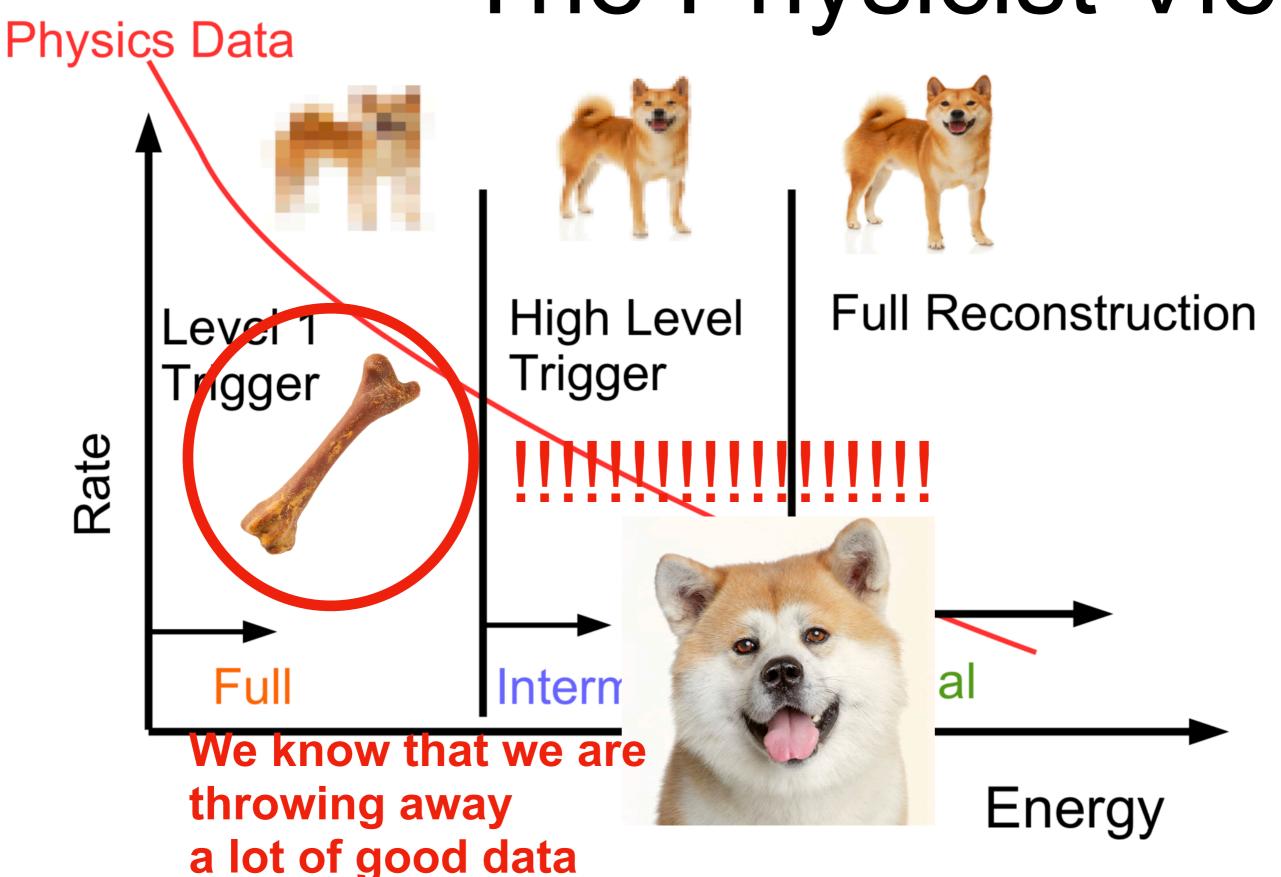
A single event is 1000-2000 particles thats 8MB after zero suppression

The Physicist View



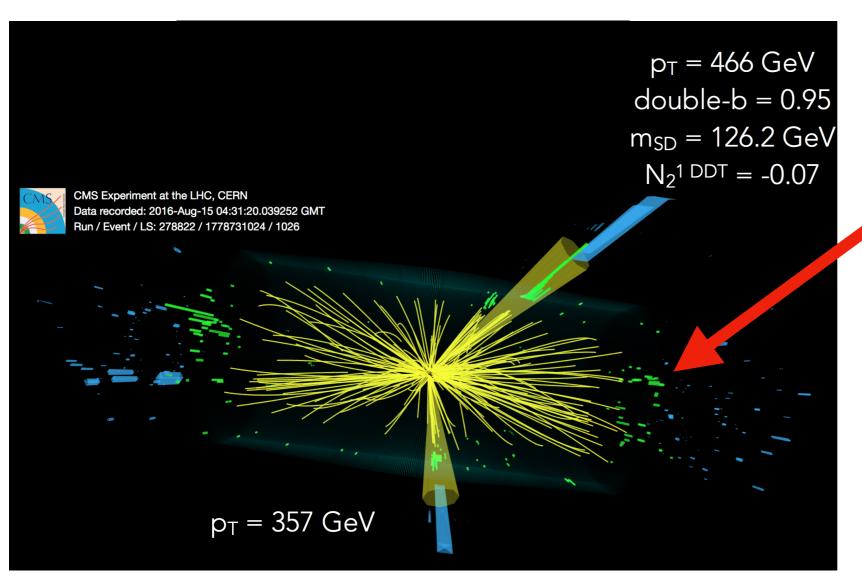
Energy

The Physicist View



Hidden gems?

There is a plethora of physics that we throw out



Higgs boson right on the cusp of being thrown out

Higgs boson discover at CERN 2013 Nobel Prize

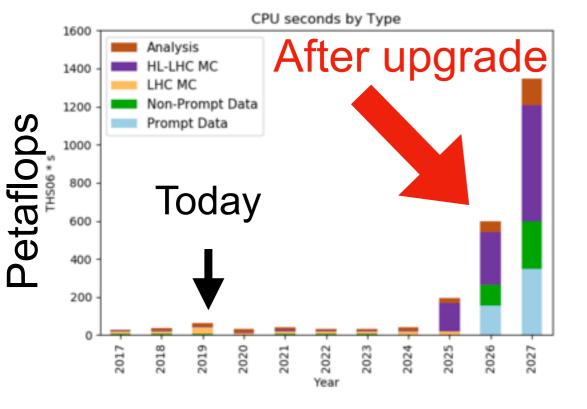
The dream

- At the moment:
 - We only get a full data of one in 100,000 collisions
 - There is interesting physics that we have to throw away

- We would like to analyze every collision at the LHC
 - To deal with this we need to increase our throughput
 - Ultimately this means going to 100s of Tb/s

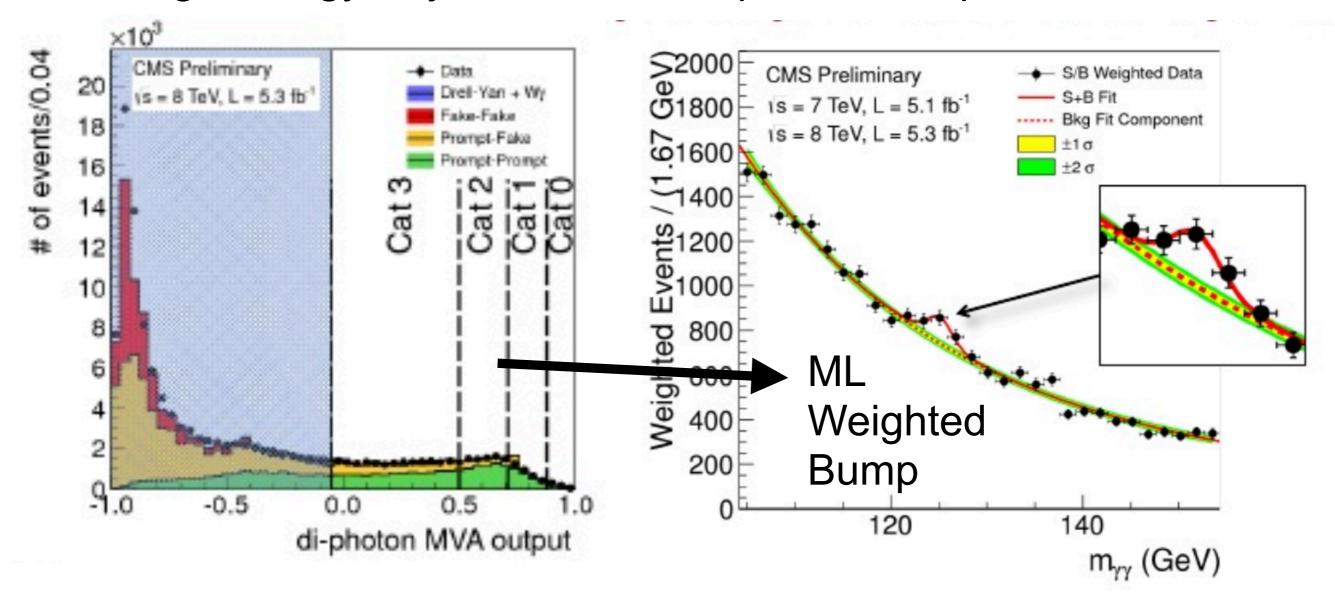
The Challenge

- We are upgrading the system
 - Our event size will be 10 times larger
- End of Dennard Scaling is about to hit us hard
- And we have to take data at 5x the rate
 - Need this just to preserve our existing physics
- 10s of years of processing without modifying system



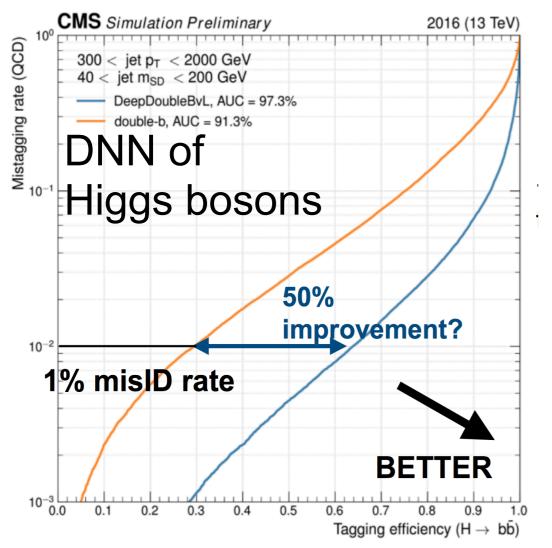
ML in HEP

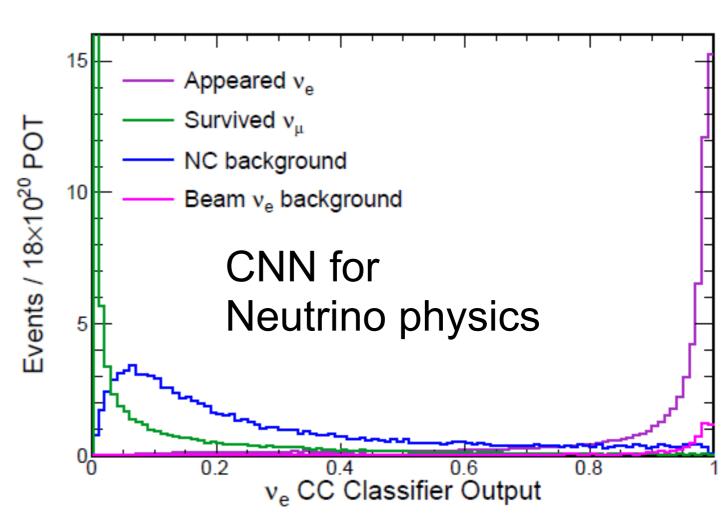
High Energy Physics has been quick to adopt ML

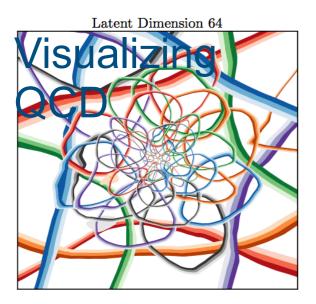


Higgs Discovery had Machine Learning all over it

Deep Learning in HEP



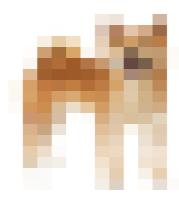




With rise of deep learning we are quickly coming up with new ways to interpret the data and improve our Physics data analysis

Rest of This talk

Going to look at what we are doing to improve data rates



Ultra low latency high throughput processing FPGA+ASIC Based system

<10µs latency

One site accelerated processing of the data Accelerated based system

< 500ms latency

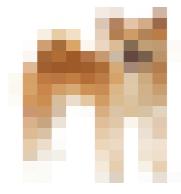
Distributed processing of the data Cloud based system

< 30s latency

After this we will look at how this applies to Physics (#trending)

Rest of This talk

Going to look at what we are doing to improve data rates



Custom Hardware

Edge

Cloud

All of these can or do use FPGAs

After this we will look at how this applies to Physics (#trending)

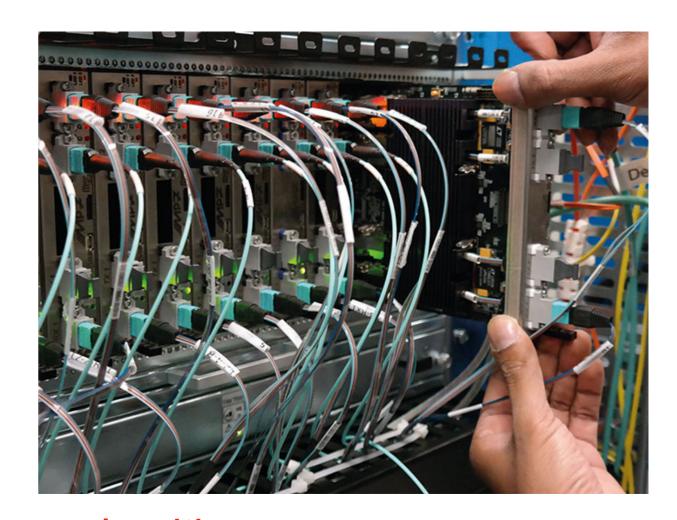
40 MHz (10µs)

L1 Trigger

A new event every 25ns

Interconnected FPGAs

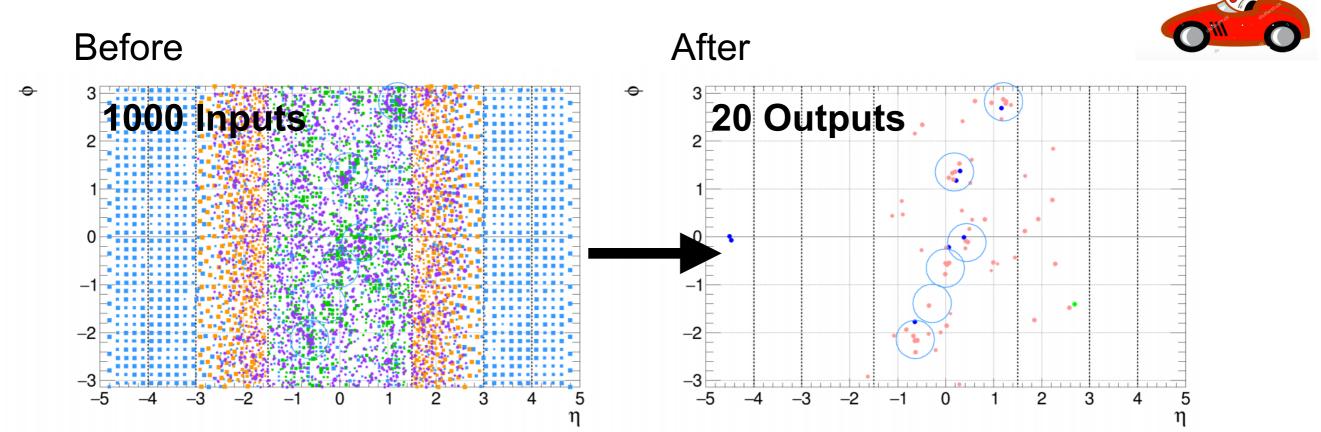
Optical links between the chips 48-112 Links per chip Links run at 10-25 Gbps Full system is O(1000) FPGAs



- We have at MOST 1µs to run an algorithm
 - We aim for algorithms that are in the 100ns range
- Want to make the fastest possible algorithm
- Want to have the smallest initiation interval
 - We apply algorithms to multiple subsets of total event

40 MHz (10µs)

Capabilities



Particle level reconstruction and event cleanup is a first step Above algorithm takes roughly 700ns* on a Xilinx VU9P Parallelize algorithm amongst regions

As physicists we wrote most of this in High Level Synthesis (HLS) C-based compiler makes our code readable

^{*}tested on AWS f1 instances

Deep Learning

Can we run deep learning in our system?

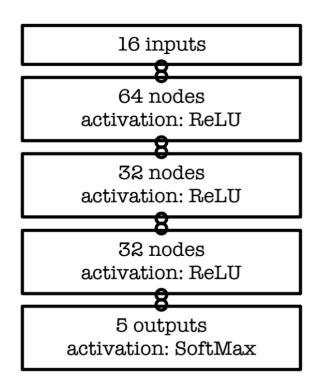
Yes

As physicists.....
used HLS for our setup
Targeted low latency

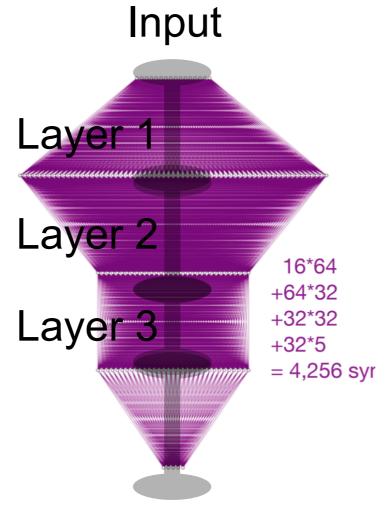
Quickly being adopted: Anomalies(Autoencoder) Muon reconstruction Tau Lepton reconstruction Quark/Gluon showers Many more

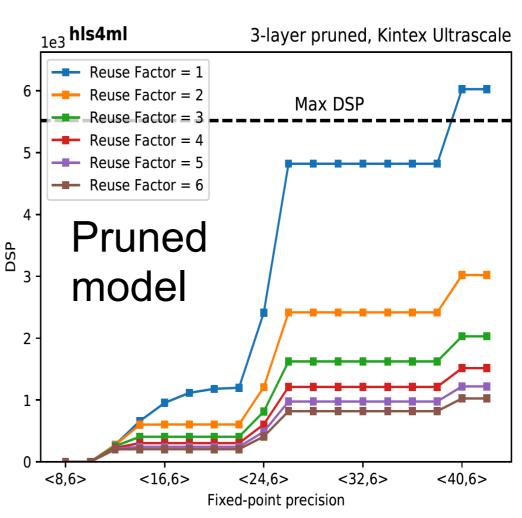
What can we run?

Case Study: Particle Jet classifier



75ns latency new input every 5ns fits in a VU9P



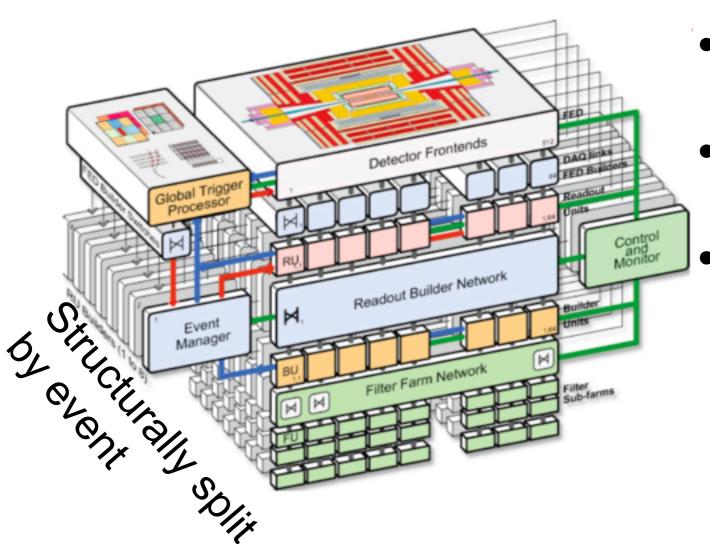


Low latency support in HLS4ML for MLPs, CNNs, Binary/Tenary NNs, BDTs, Graph NNs, LSTM/GRUs

Takeaways

- LHC has a unique role to play when processing data
 - With the insanely large data rates
 - Low latency+high throughput demands specialized system
 - Our system will always be ASIC+FPGA-only
 - Working to bring ML and complex algorithms to the system
- As part of this work we developed HLS4ML
 - Quickly becoming a staple for L1 trigger development

100 kHz (500ms) High Level Trigger

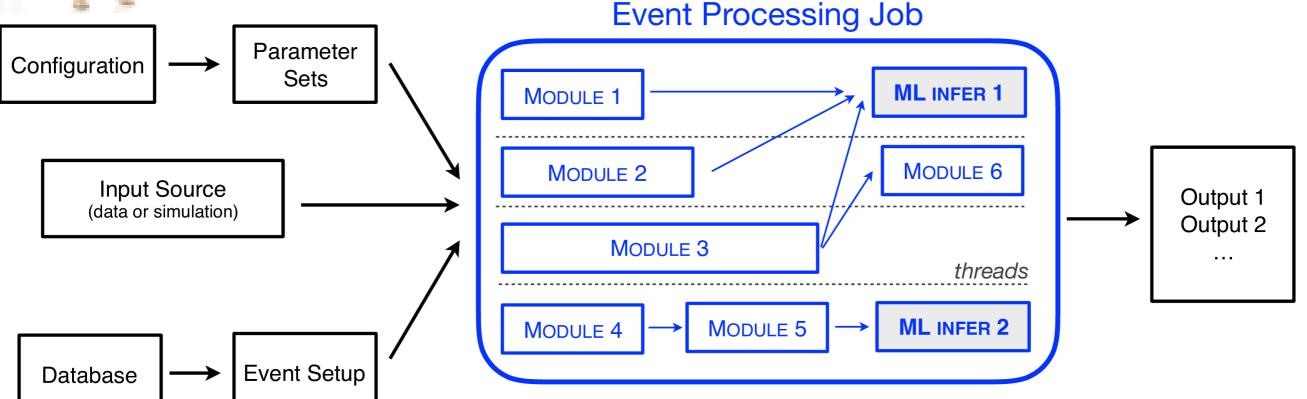


- 100 kHz of collisions in
- 1kHz of collisions out
- <500ms to analyze collision
- Currently
 - A local computing cluster
 - System is all CPUs

Experiments are considering GPU/CPU system for 2022

100 kHz (500ms)

Reco Strategy



- Complicated scheme of modules
 - While some parts are parallelizeable
 - Collision level analysis built in by construction (Batch 1)

Improving Performance

Buy a GPU/FPGA card for each node

Idea #1

Pro: Can be done now Con: Massive code rewrite

Do onsite as-a-service processing

Idea #2

Pro: build up system over time Con: Networking

Idea #3

- Port what we can to ML and rely on existing/new tools
 - Pro: We like ML Con: Redisgn algorithms can be hard

Future Strategies

Incorporating Heterogenous systems(GPU/FGPA)

Idea #0 Port Existing Algos Idea #3 Upgrade to ML Algos

Idea #1
Investigate
onboard
GPU/FPGA

Rewrite all of our code in CUDA/Kokkos HLS/RTL/???

Tools exist
TF/Pytorch/TRT
Xilinx ML Suite
Brainwave....

Idea #2
Outsource
GPU/FPGA
to a service

Write specialized interface

Tools exist:
TRT-server
Brainwave
and in cloud!

Future Strategies

Incorporating Heterogenous systems(GPU/FGPA)

Idea #0 Port Existing Algos

Idea #1
Investigate
onboard
GPU/FPGA

Rewrite all of our code in CUDA/Kokkos HLS/RTL/???

Idea #2
Outsource
GPU/FPGA
to a service

Write specialized interface

Idea #3 Upgrade to ML Algos

Tools exist
TF/Pytorch/TRT
Xilinx ML Suite
Brainwave....

Tools exist:
TRT-server
Brainwave
and in cloud!

Focus of this talk (see backup for others)

ML is highly parallelizeable→Big speed ups

Idea #1:External

To run these algorithms within our software

Asynchronous task based processing

External processing

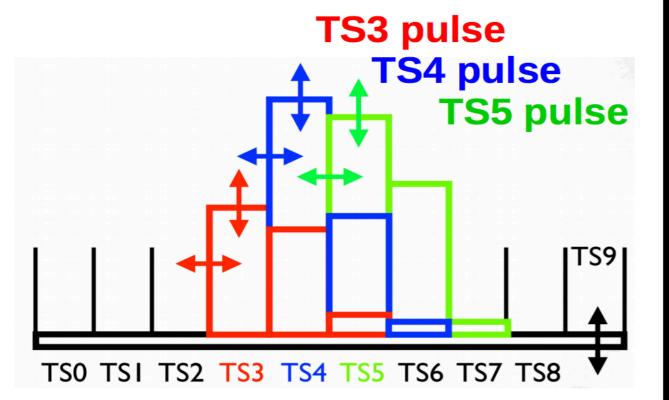
LHC Software acquire() produce()

Non-blocking: schedule other tasks while waiting

- Our Strategy
 - Pick benchmark ML examples+put them on FPGAs/GPUs
 - Observe what level speed up we get over CPUs and how

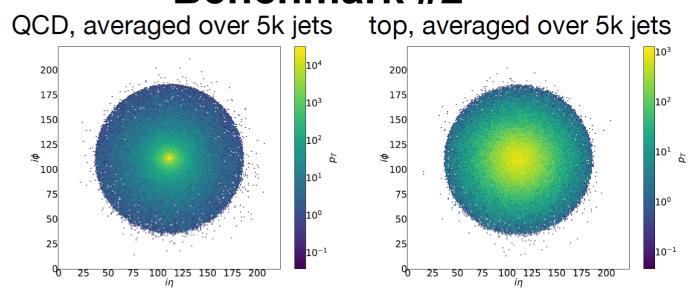
Idea #1

Benchmark #1



Energy reconstruction of Hadronic showers
Simple energy regression 16000 times per collision
Batch N per particles

Benchmark #2



Top quark identification Here we use Resnet50 as benchmark

Complicated identification Many inputs
1-2 times per collision

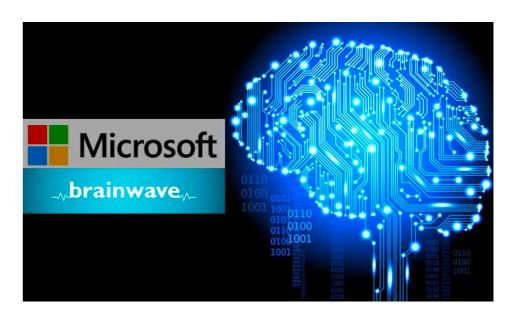
Batch 1 per Event

Idea #1

Benchmark #1

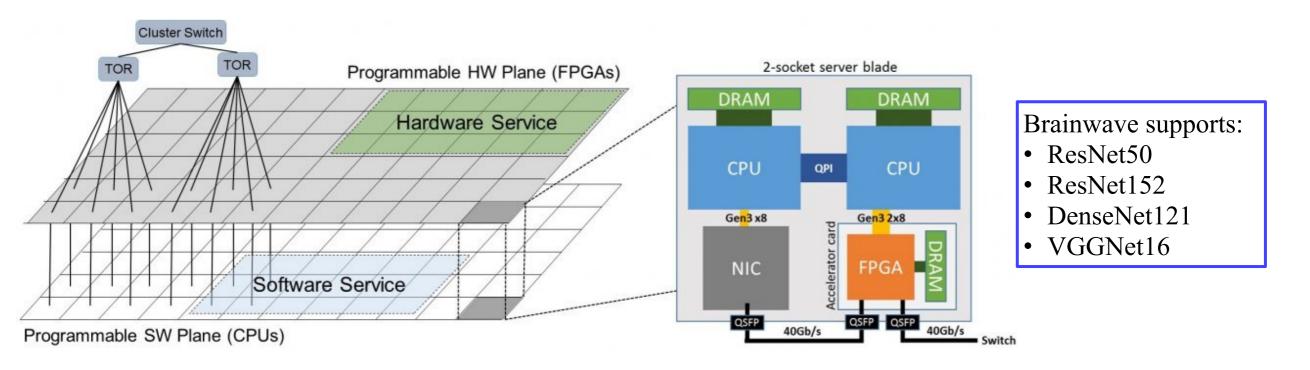


Benchmark #2



*Also investigating Xilinx ML suite(see backup) + Intel Open Vino

Microsoft Brainwave



- Full FPGA interconnected fabric setup-as-a-service
 - Capable of running many different NN architectures
 - Relying on the NPU framework for ML compilation
 - (Very) optimized use of ML on the FPGA

Benchmark #1

Time budget per algorithm

Energy reconstruction of Hadronic showers
Simple energy regression 16000 times per collision



Roughly 25% of our computing budget

Network Arch
4 Layer MLP
2000 weights
Easy to put on an FPGA
7% of a Xilinx VU9P

Already developed algo w/good performance

How Fast is it?

- Unroll network on the FPGA with hls4ml+SDAccel
- Actual network runs in 70ns on an FPGA with II of 5ns
 - For 16000 channels this equates to 80µs total
 - Transfer back and forth on PCIe is 700µs each way
- Current non-ML-based algorithm takes 50ms

Algo	Per Event	
Old	50ms	
NN CPU	15ms	
NN GPU(1080 Ti)	3ms (prelim)	
NN FPGA	2ms	

Significant speed ups

Benchmark #2

Resnet50 on Azure FPGA cluster with <2ms/inference

A standard ML benchmark: Top Tagging (resnet50 for physicists)

Approach	AUC	Acc.	1/eB (@ eS=0.3)	Contact	Comments
LoLa	0.980	0.928	680	GK / Slmon Leiss	Preliminary number, based on LoLa
LBN	0.981	0.931	863	Marcel Rieger	Preliminary number
CNN	0.981	0.93	780	David Shih	Model from Pulling Out All the Tops with Computer Vision and Deep Learning (1803.00107)
P-CNN (1D CNN)	0.980	0.930	782	Huilin Qu, Loukas Gouskos	Preliminary, use kinematic info only (https://indico.physics.lbl.gov/i ndico/event/546/contributions/1 270/)
6-body N-subjettiness (+mass and pT) NN	0.979	0.922	856	Karl Nordstrom	Based on 1807.04769 (Reports of My Demise Are Greatly Exaggerated: N-subjettings Taggers Take On Jet Images)
8-body N-subjettiness (+mass and pT) NN	0.980	0.928	795	Karl Nordstrom	Based on 1807.04769 Reports of My Demise Are Guatly Exaggerated: N-surgettiness Taggers Take On Set Images)
Linear EFPs	0.980	0.932	380	Patrick Komiske, Eric Metodiev	d<= 7, chi <= 3 F. Ps with FLD. Based on 1712 7124: Energy Flow Polynor als: A complete linear basis or jet substructure.
Particle Flow Network (PFN)	0.982	0.932	888	Patrick Komiske, Eric Metodiev	Median over ten trainings. Based on Tably 5 in 1810.05165: Energy Flow Letworks: Deep Sets for Particle Jets.
Energy Flow Network (EFN)	0.979	0.927	619	Patrick Komiske, Eric Metodiey	ledian over ten trainings. Based on Table 5 in 1810.05165: Energy Flow Networks: Deep Sets for Particle Jets.
2D CNN	•	0.550		Huilin Qu,	Preliminary from
[ResNeXt50]				Gou kos	indico.cern.ch/event/745718/contri butions/3202526

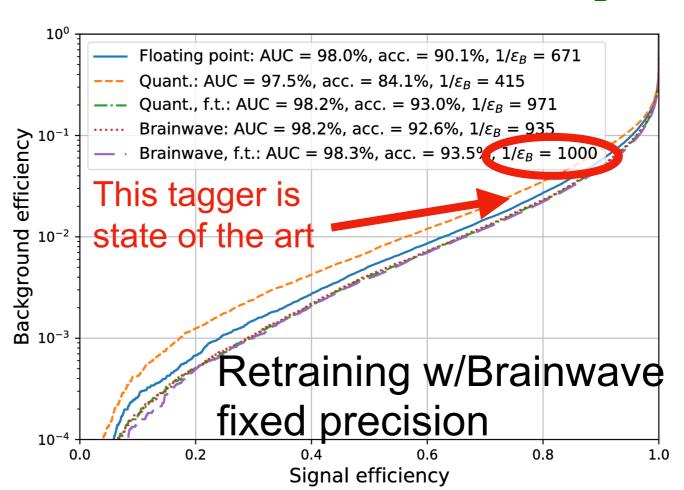
indico.cern.ch/event/745718/contr

Worlds Best Tagger:

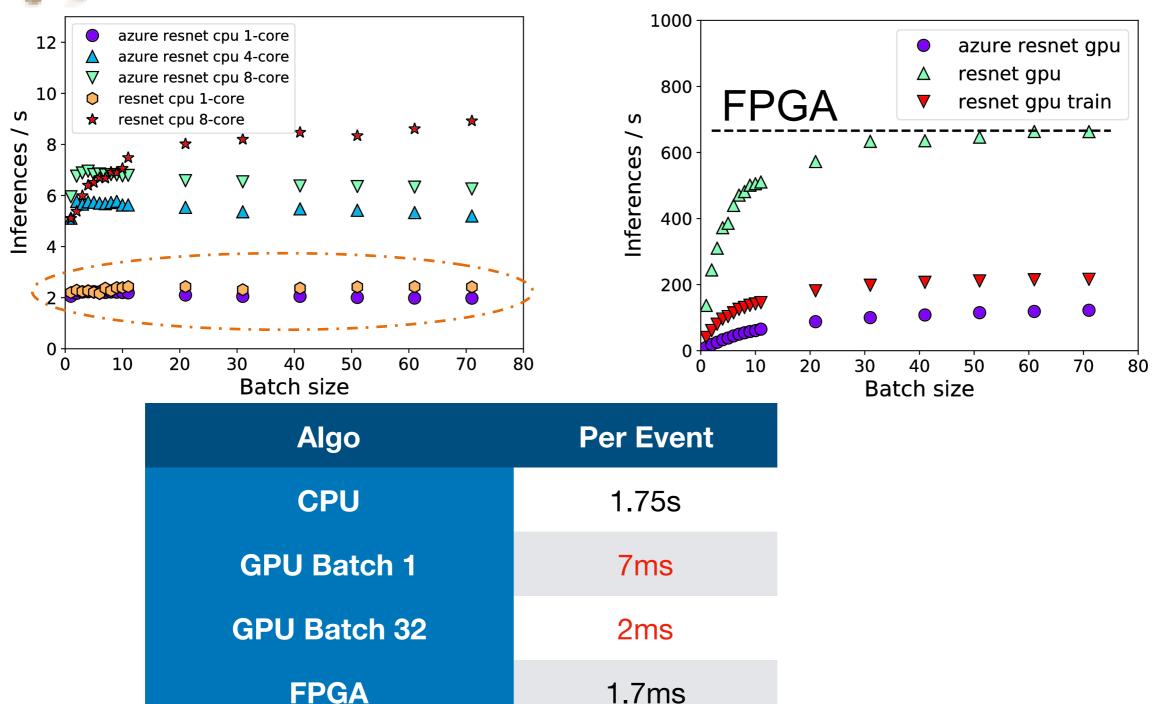
AUC=98.4% acc.=93.7% $1/\epsilon_B = 1160$

Our Tagger:

AUC=98.3% acc.=93.5% $1/\epsilon_B = 1000$



How Fast is It?



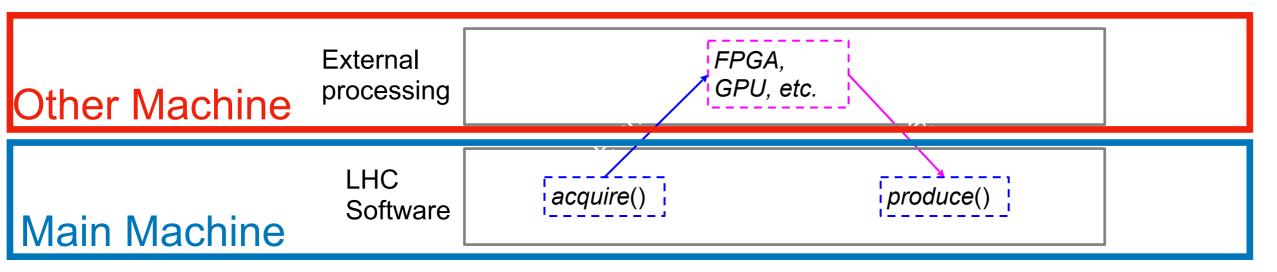
With an FPGA can get 1.7ms inference time at batch 1 With a GPU can get 2ms/img time at batch 70

Accelerators Takeaway

- FPGAs and GPUs both work FPGAs better(low batch)/as good
- Benchmark #1
 - Latency lowest on FPGA despite a large batch process
 - Limited by I/O considerations with PCIe
- Benchmark #2
 - FPGA dominates at batch 1
 - With large throughput GPU can start to compete

Idea #2: Services

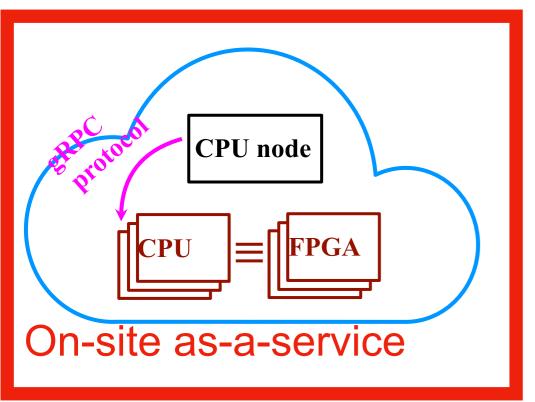
To run these algorithms within our software



- SONIC: Services for Optimized Network Inference on Coprocessors
- Strategy

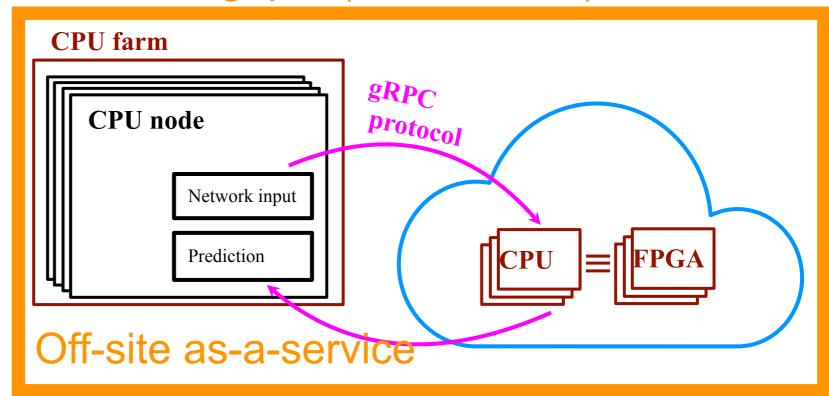
- Use the same benchmarks as before
- Now wrap these with gRPC protocol between different machines

Low latency Triggering (previous slides)



Service Options

Larger latency but still large throughput (future slides)



When latency not critical element: can go off-site to the cloud Here latency needs to be < 500ms (consider just on the premises)

Benchmark #1

- GPU as a service
 - Using tensor-rt-server
 - Industry standard
 - Latency : 16ms

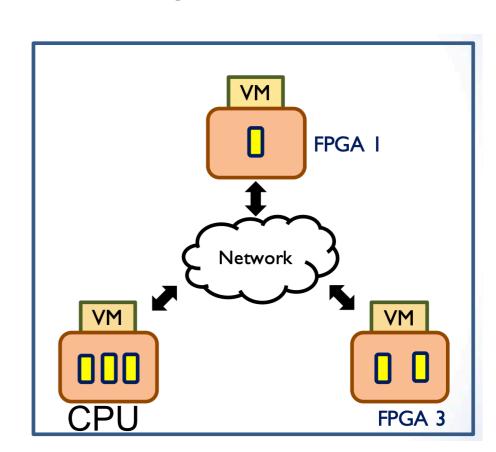
+On-site aaS Algo Per Event Old 50ms N/A **NN CPU** 15_{ms} N/A NN GPU(1080 Ti) 3ms (prelim) 16ms--→ 8ms/event **NN FPGA** 2ms TBD(<10ms)

FPGA as a service

w/concurrent

calls

- Numbers TBD (<10ms)
- Using Galapagos Naif Tarafdar+Paul Chow
 - Heterogenous middleware



Benchmark #2

Three Options considered : all from computer in same cluster

GPU as a service

From local CPU to GPU service

Batch 1 latency: 23ms

Batch 32 latency: 230ms

Azure Cluster

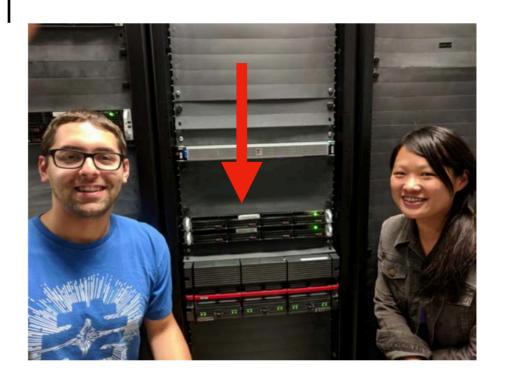
From local CPU to Brainwave

Microsoft Databox Edge

From local CPU to FPGA system at FNAL

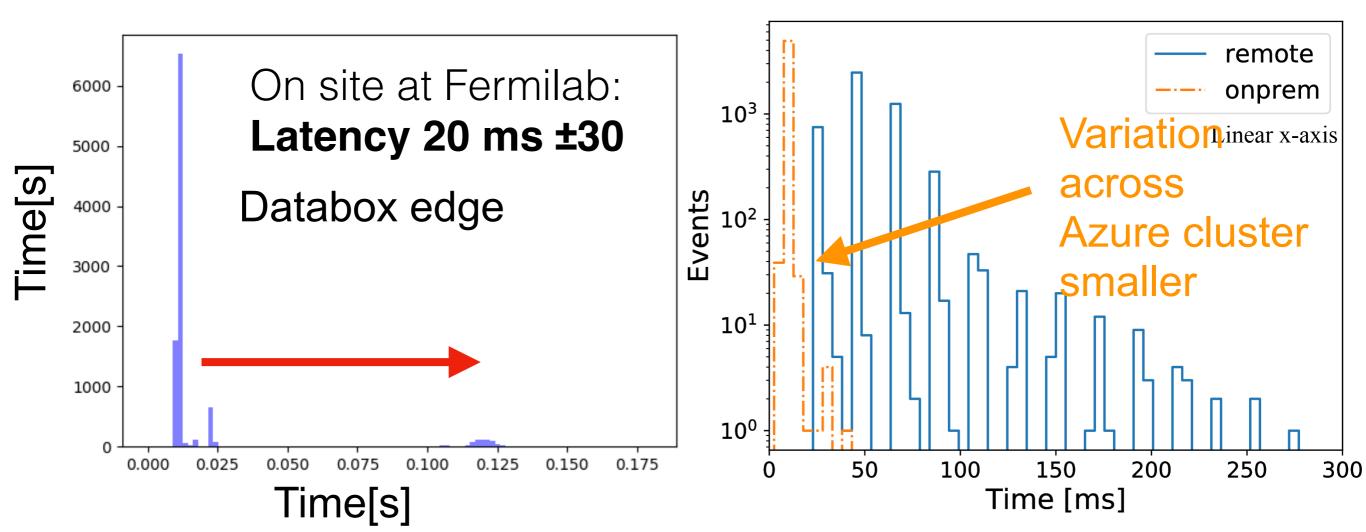
Batch 1 latency: 15ms Batch 1 latency: 20ms

Algo	Per Event	+On-site aaS
CPU	1.75s	N/A
GPU Batch 1	7ms	23ms
GPU Batch 32	2ms	230ms
FPGA	1.7ms	15ms



Services Takeaway

- Observe a ~10ms increase in latency when going to a service
 - Have observed large variations across network
 - Maintaining consistent network connection critical for running



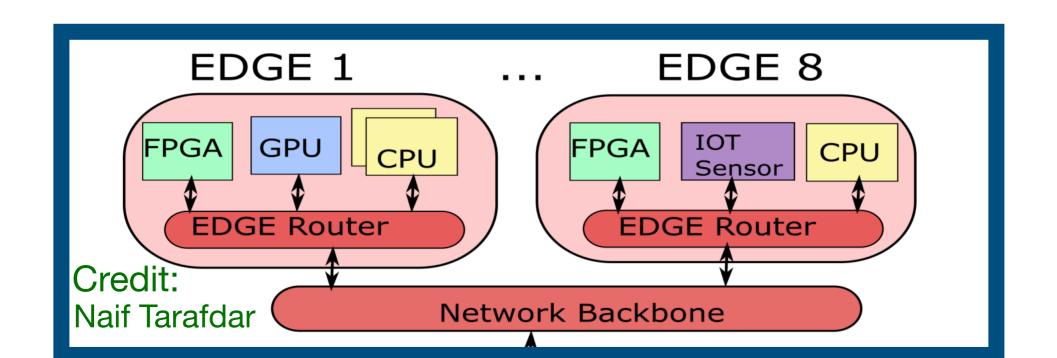
Throughput vs Latency

- Why are we limited to 500ms in latency?
 - 500ms at 100 kHz is 400 GB of data →not that much
 - With some redesign it is possible to increase this limit
 - Just need more disk as a buffer
- We still need to be able to process this data quick
 - That means we need to ensure throughput is high

1 kHz (10s) LHC Computing Grid

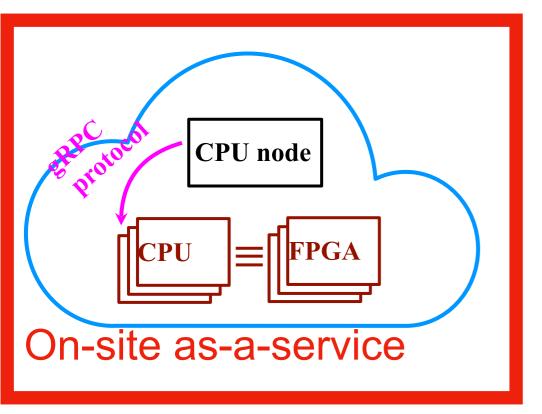
Offline Reco

- At the final tier of reconstruction
 - Worldwide grid is roughly 0.75 Million cores 600 PB of data
 - Latency is not a critical limitation
 - Grid will have different technology all over (common protocol?)

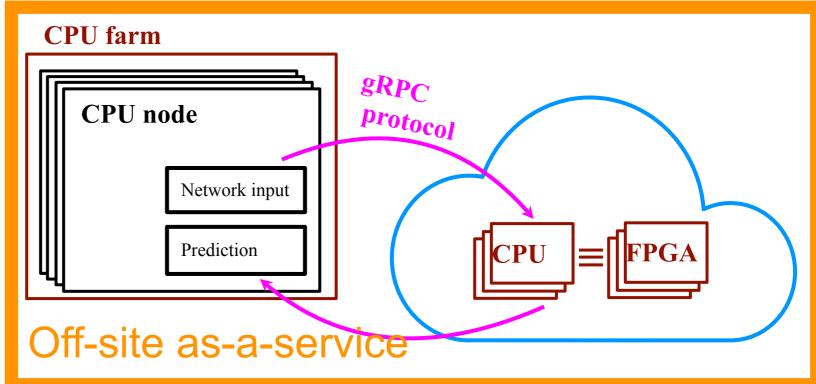


Service Options

Low latency Triggering (previous slides)



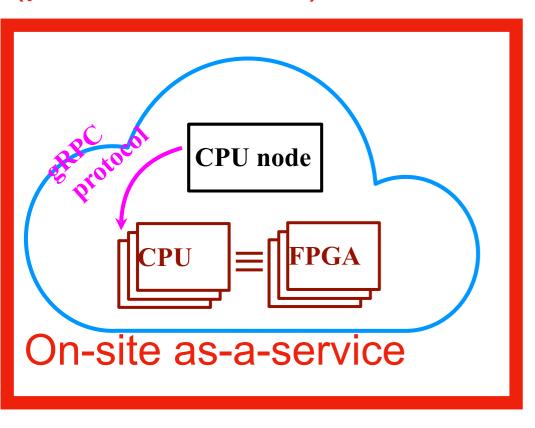
Larger latency but still large throughput (future slides)

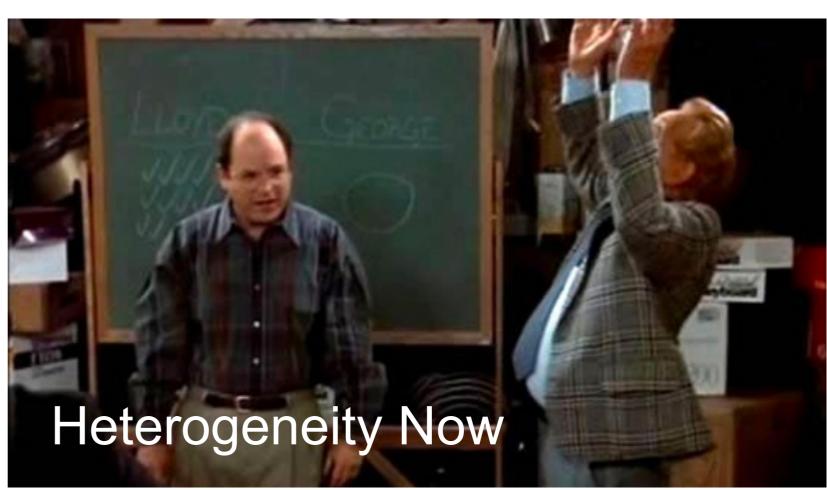


When latency not critical element : can go off-site to the cloud At the offline tier can switch to the cloud no→**Heterogeneity now**

Service Options

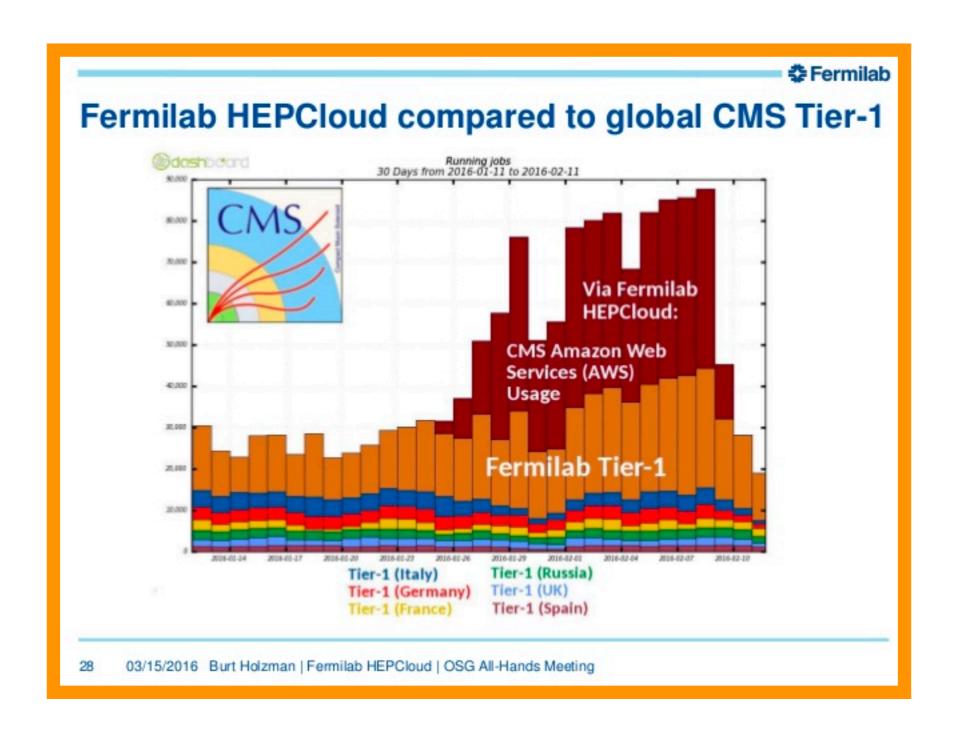
Low latency Triggering (previous slides)





When latency not critical element : can go off-site to the cloud At the offline tier can switch to the cloud no→**Heterogeneity now**

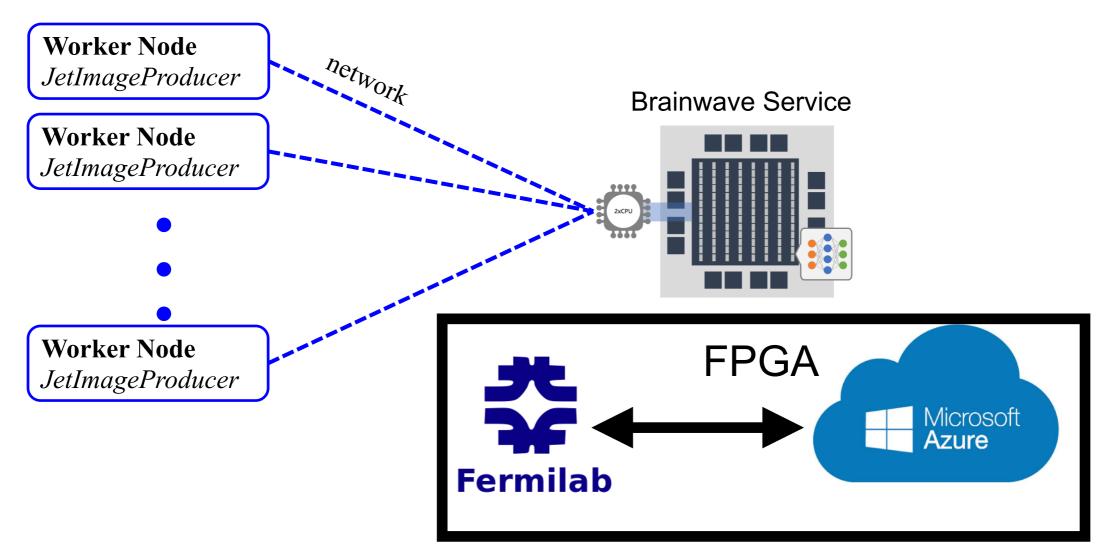
Service in Cloud



We have already done this with CPUs in the cloud

Throughput

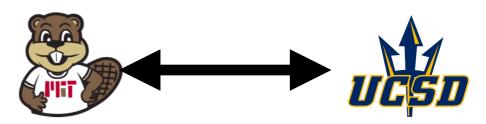
Despite the longer latency we can have one node serve many



- With this setup how many nodes until system has to throttle down
- Bottlenecks can come from network, not just service

Benchmark #1

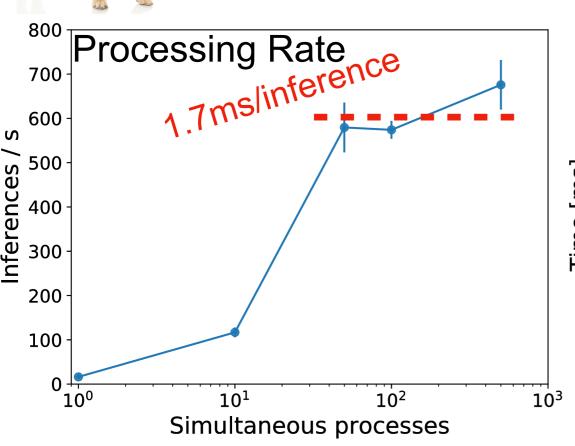
- Throughput is driven by the actual minimum latency of algo
 - For FPGA algo latency is 0.08ms→working to get there
- Cloud have to deal with additional slow down from networking

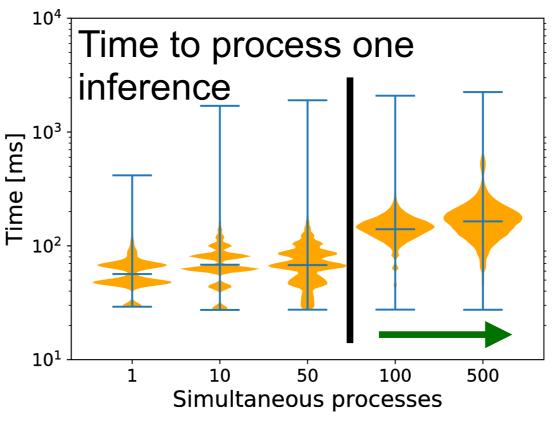


Algo	Per Event	+On-site aaS	+Cloud aaS	Ping	On/Cloud put
Old	50ms	N/A	N/A	N/A	N/A
NN CPU	15ms	N/A	N/A	N/A	N/A
NN GPU(1080 Ti)	3ms (prelim)	16ms	90ms	75ms	1ms/30ms*
NN FPGA	2ms	TBD(<16ms)	TBD	TBD	>0.1ms

^{*}Cloud throughput on GPU still to be scrutinized

Benchmark #2





Can Serve 50-100 nodes with 1 FPGA and no loss

Algo	Per Event	+On-site aaS	+Cloud aaS	Ping	On/Cloud* put
CPU	1.75s	N/A	N/A	N/A	N/A
GPU Batch 1	7ms	23ms	97ms	75ms	5ms/20ms*
GPU Batch 32	3ms	240ms	975ms	75ms	8ms/20ms*
FPGA	1.7ms	15ms	60ms	25ms	1.7 ms

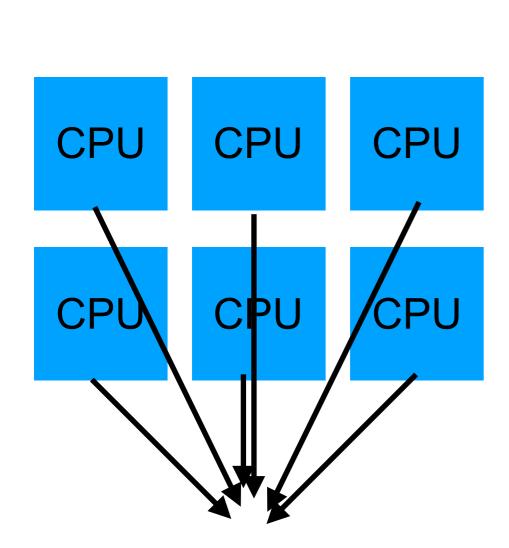
^{*}Cloud throughput on GPU still to be scrutinized

Takeaways

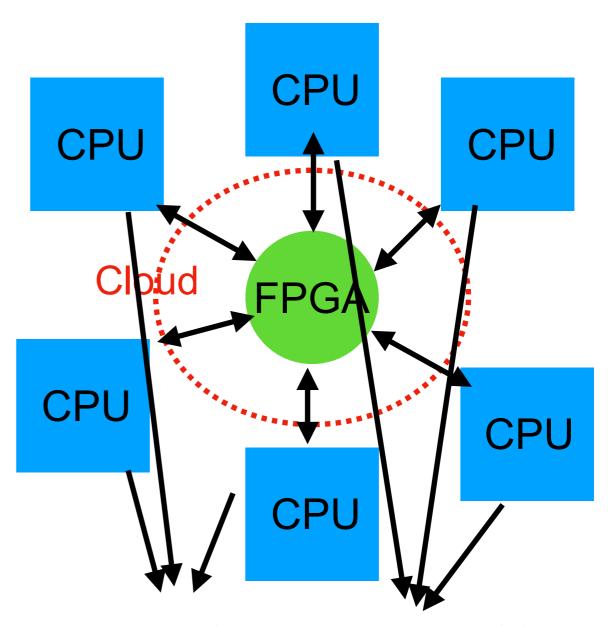
- When large speedups are present in overall throughput
 - Where as-a-service starts to really shine
 - Can think about one service for many machines
 - Will take a latency hit in our system from this
 - This is something we can deal with
- Our next step is bringing the studies to scale
 - Can we serve many thousands of processes at once?

What have we learned?

With large speedups we can redesign our system



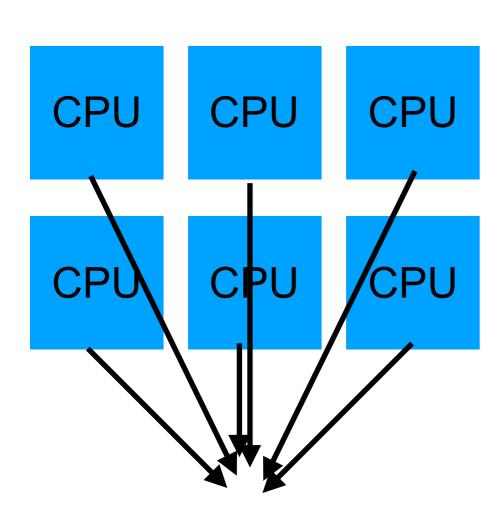
Process event by event



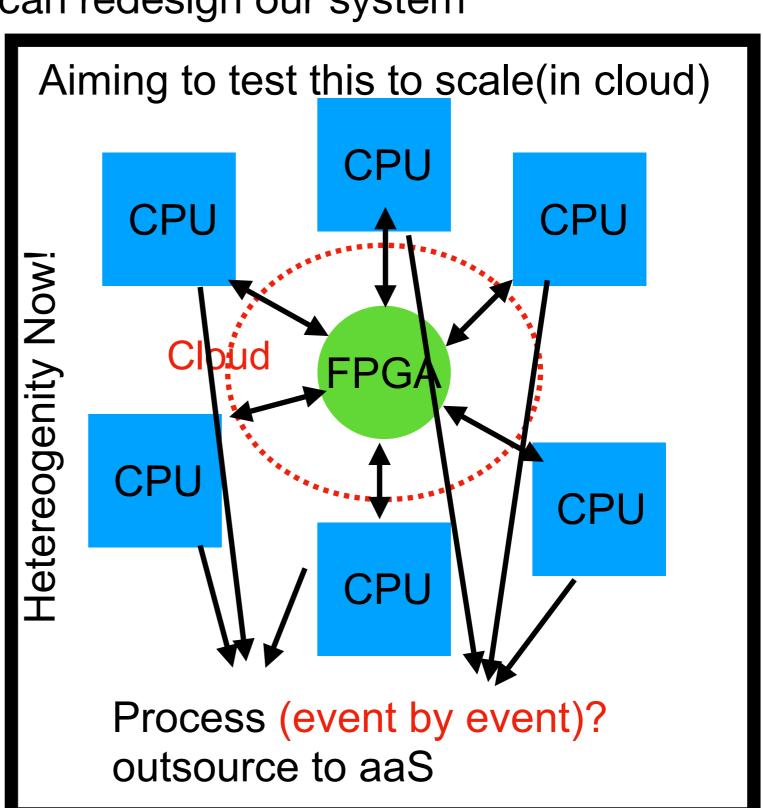
Process (event by event)? outsource to aaS

What have we learned?

With large speedups we can redesign our system



Process event by event

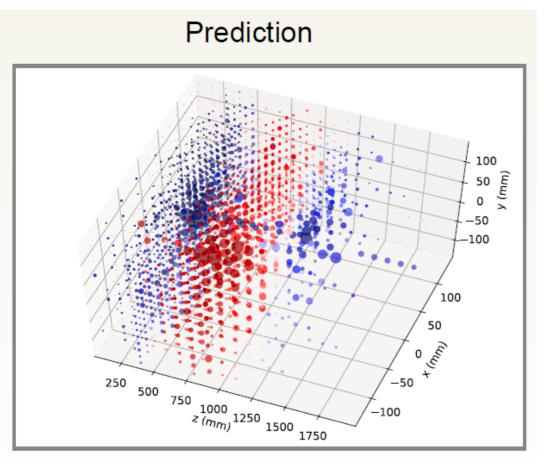


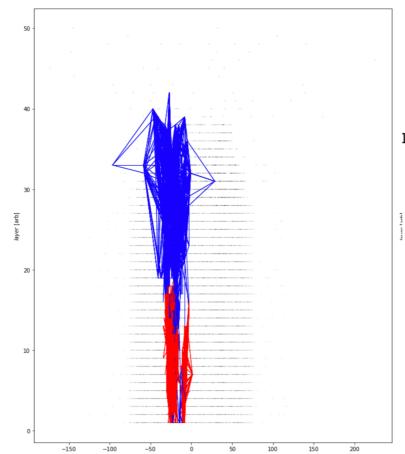
Going Beyond

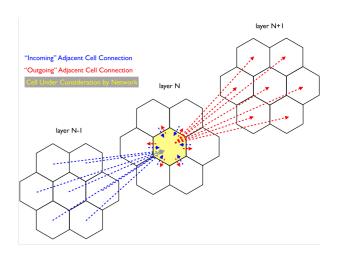
- To be really effective aim for flexibility in NN design
 - Have many different NN architectures to solve many different probs
 - Adapting to industry(Resnet50/Bert/...) not a good option
- Multi-FPGA/.... support
 - Adapting to FPGAs/... will want to avoid CPU altogether
 - Can take advantage of inherent speedups and networking on FPGA
- Throughput adaptations in our computing model
 - Latency limits not critical: can consider alternative computing models

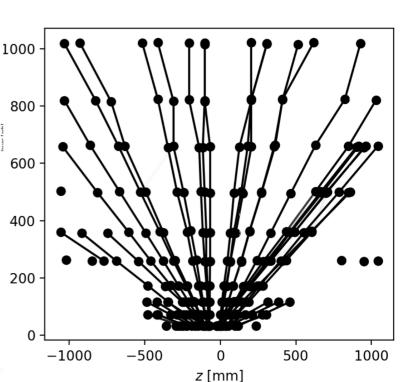
What about ML?

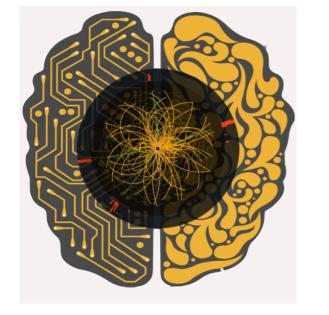
- Rapid adoption to improve reconstruction quality
- Effective for newer detectors with large numbers of channels
- Large dedicated effort within HEP comunity











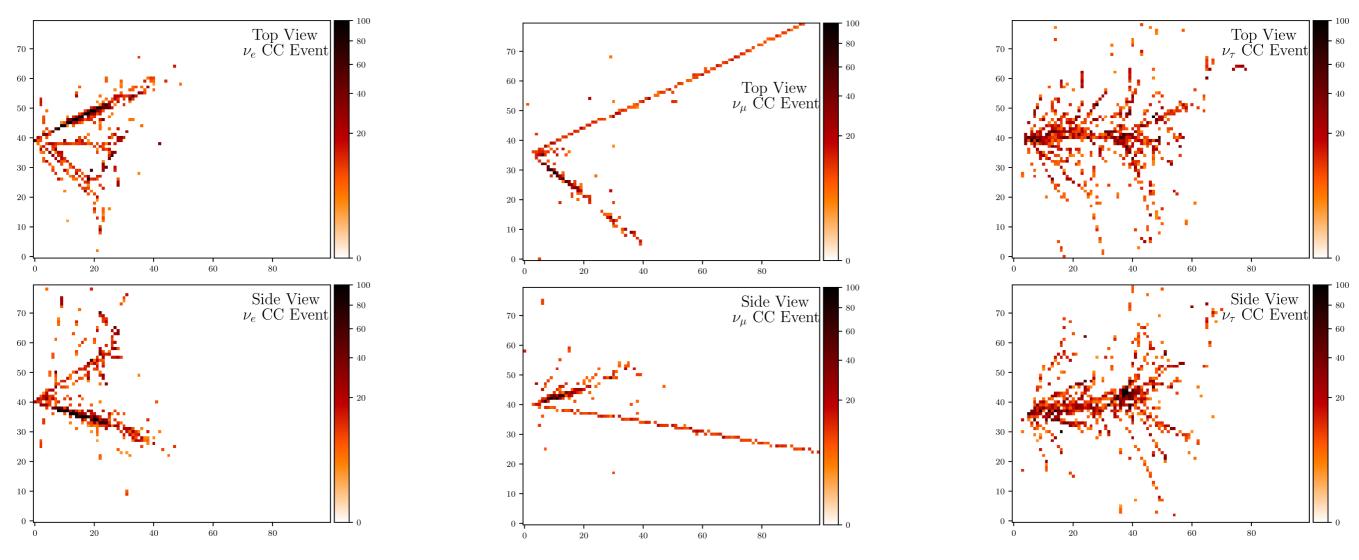
Beyond the LHC

https://fastmachinelearning.org/

- This talk has focused on data reconstruction at the LHC
- Are quickly identifying other cases with the same issues
- Have extended our collaboration to incorporate everybody
 - Inaugural workshop can be found here https://indico.cern.ch/event/822126/
 - You too can join our Fast Machine Learning effort

Lets consider a few examples

Neutrino Event Reconstruction



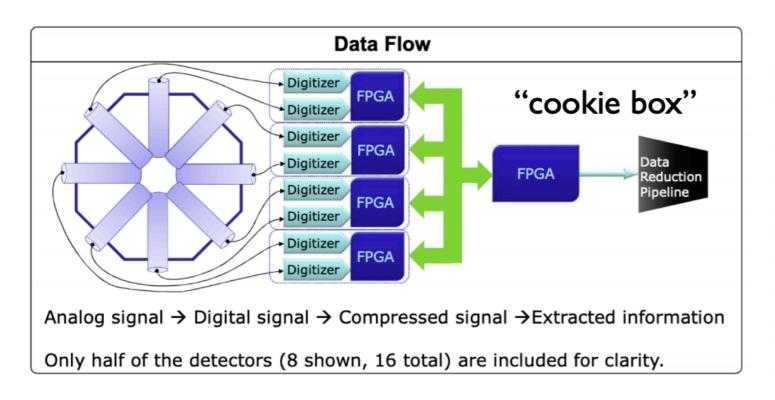
Reconstruction can be performed with a CNN (Resnet-like)

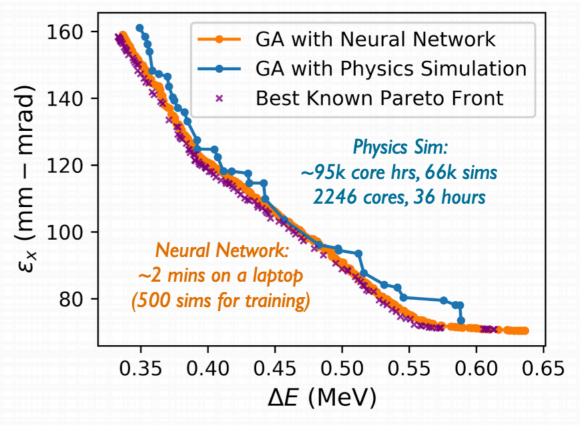
Future detectors will have to deal with 40 Tb/s of data

They will aim for per-event latency < 2ms to find Supernovae

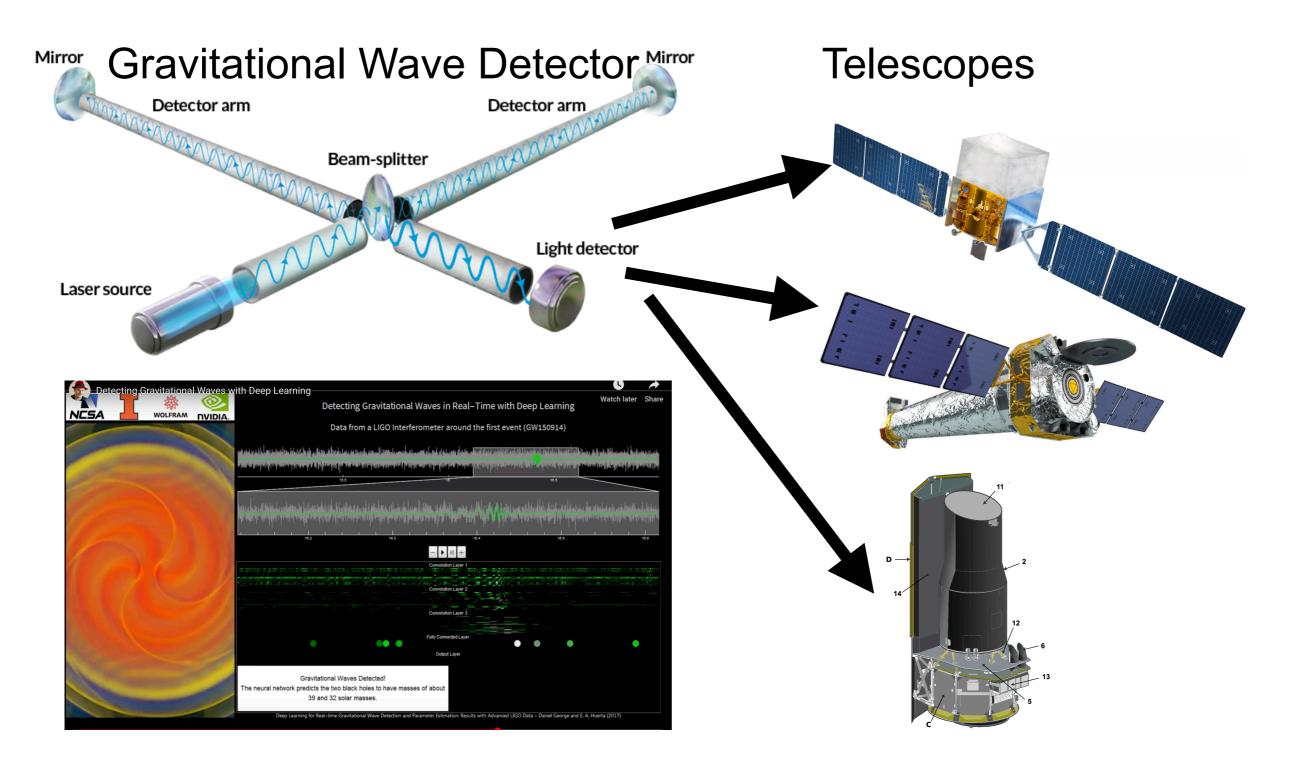
Particle Accelerators

- Demands for high speed control of accelerator systems
- Large data rates to monitor and control beam dynamics
- Have had continual success with ML solutions for modeling





Gravitational Wave Detection



Fast identification of gravitational waveforms to signal satellite and other telescopes for astronomical phenomenon multi-messenger astronomy

20110 19 00						
	Galaxy	Quasar	Supernovae			
Today (all)	1000	<50	2			
DES	2,000	120	5			
LSST	120,000	8,000	120			
Euclid	170,000	-	-			

Astrophysics

LSST will produce over **10 million** transient alerts per night.

Nord+2016; Collett+2015; Gavazzi+2008; Oguri+Marshall, 2010

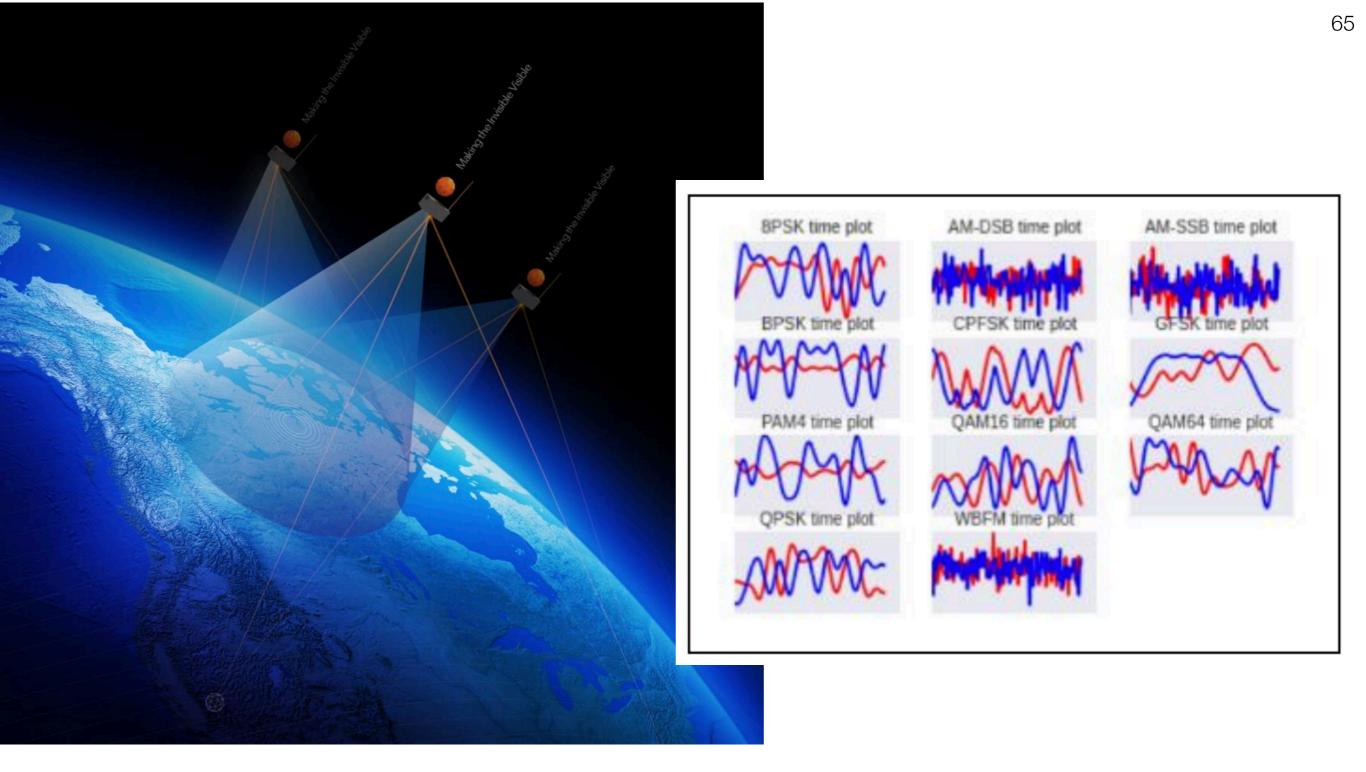
SDSS I-II 2000-08 2.5-meter mirror O(108) Galaxies 10k sq. deg. 0.2 TB/Night

DES
2013-18
4-meter
O(108) Galaxies
5k sq. deg.
1 Tb/Night

LSST
2022-32
8.4 -meter
O(10¹⁰) Galaxies
20k sq. deg.
20 Tb/Night

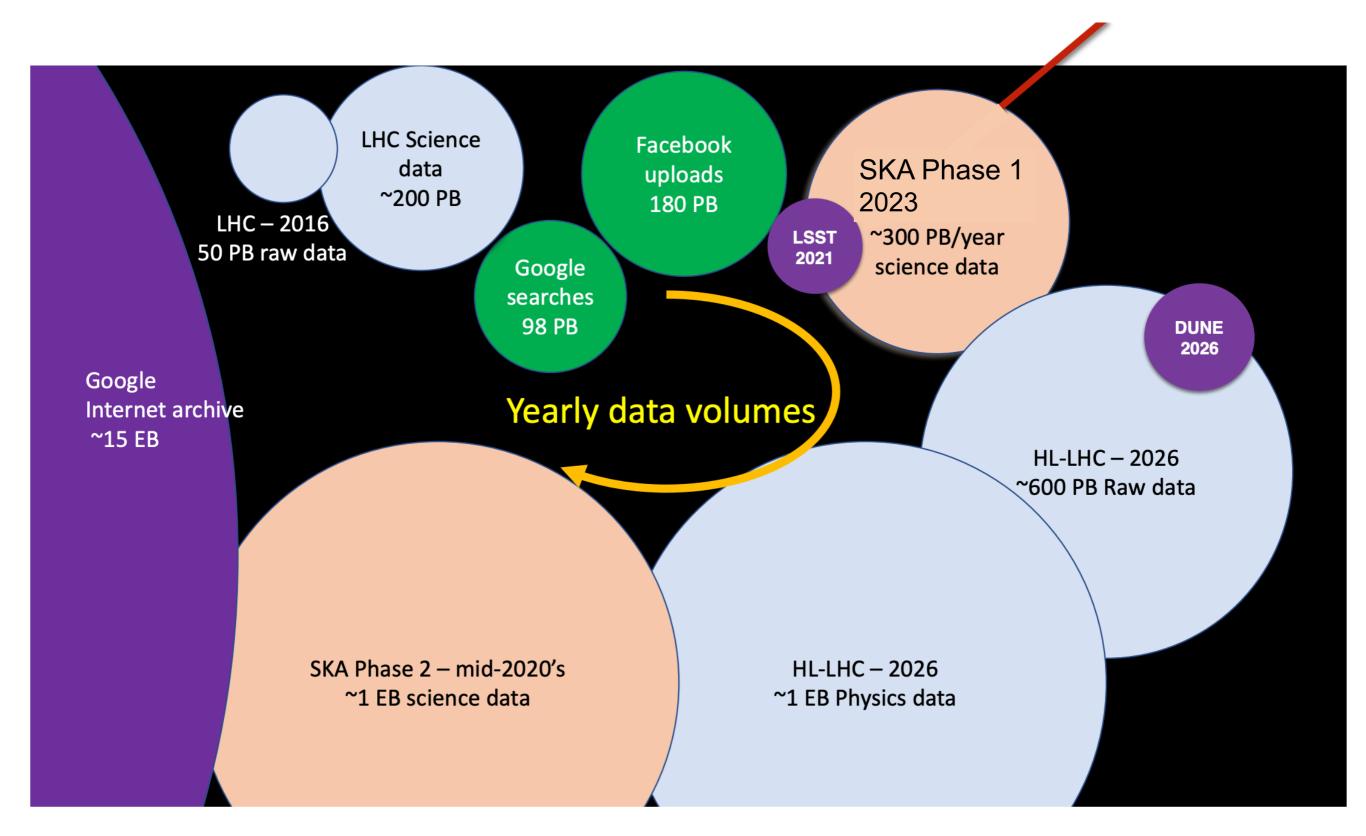
With LSST in 2022
Astrophysics datasets reach petabyte data scales with large and complicated feature analysis

Identification of transients require real time processing of all data

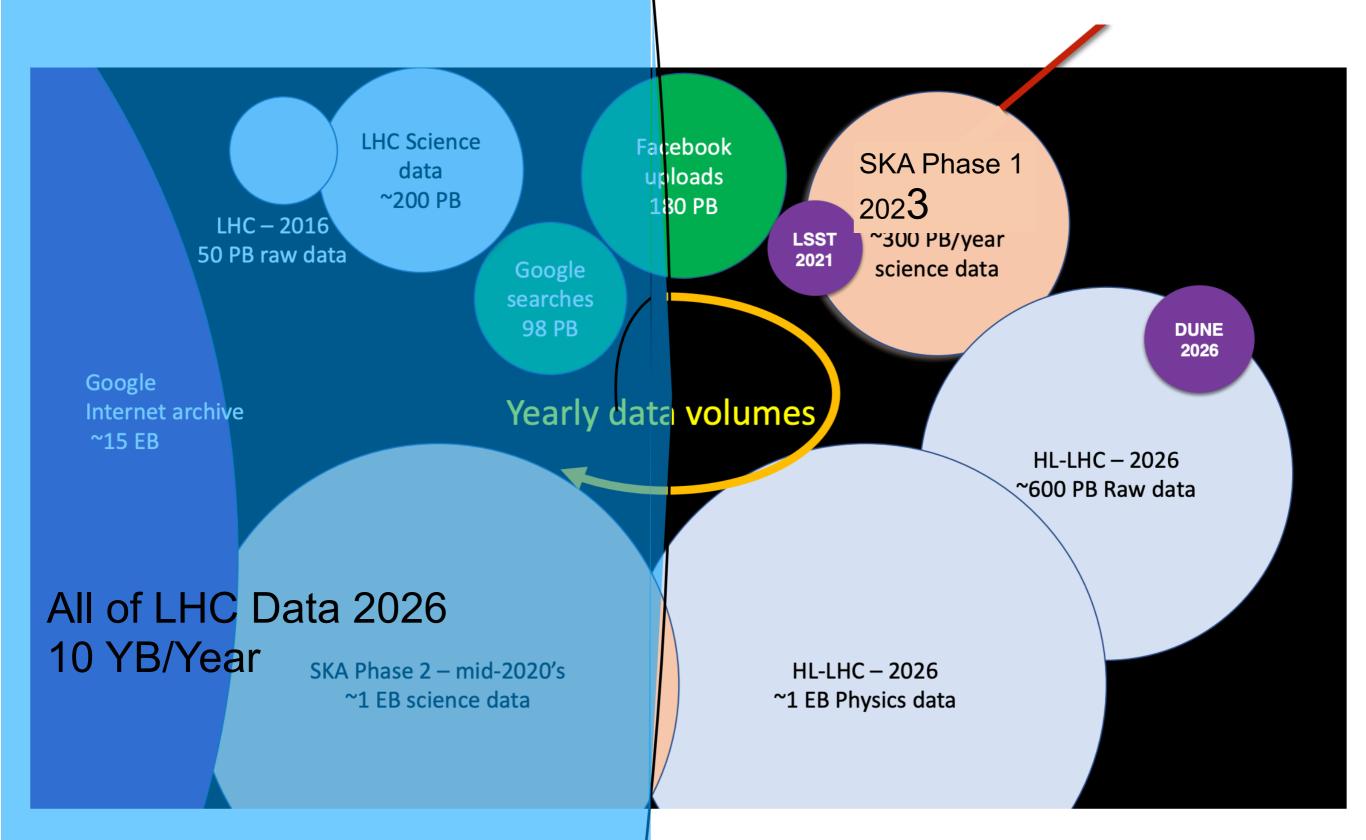


Many More

Everything Getting larger



Everything Getting larger



Conclusions

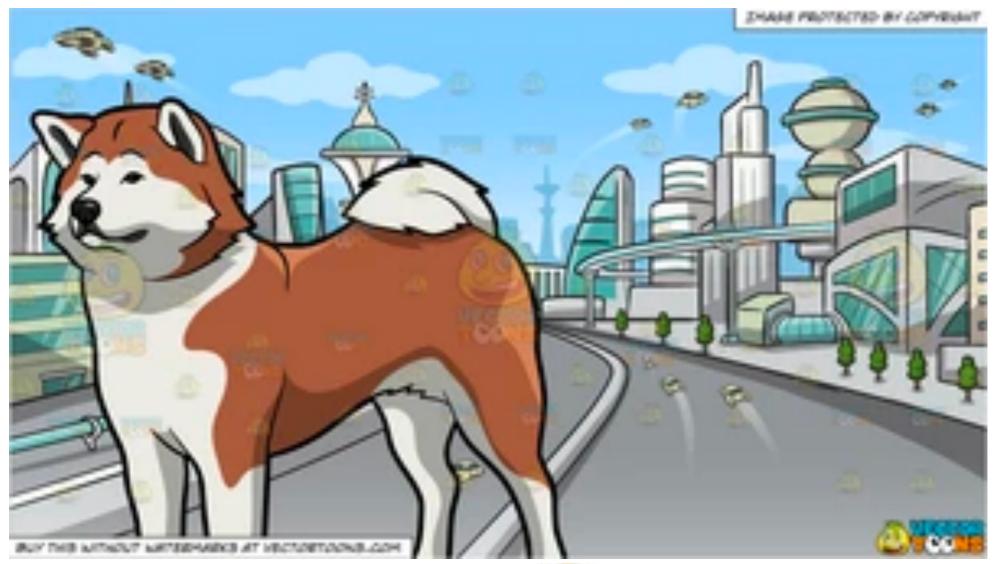
- Large scale campaign underway to adopt deep learning everywhere
- Scale of data processing in physics is getting larger
 - With large datasets come huge scientific potential
 - Processing of large data is a real challenge
- Have demonstrated ML+ Heterogeneous computing works
 - Parallelization of NNs and eff of FPGAs give large speedups
 - Exploring cloud and edge based service solutions

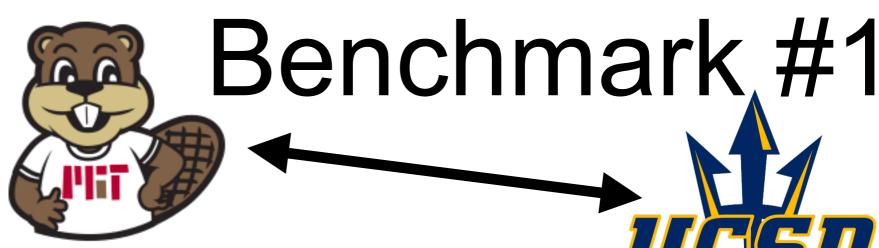
Conclusions

Getting closer to analyzing all of our data

In science has the potential to open new doors

Thanks!



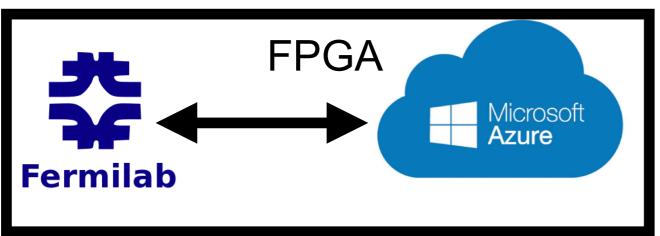


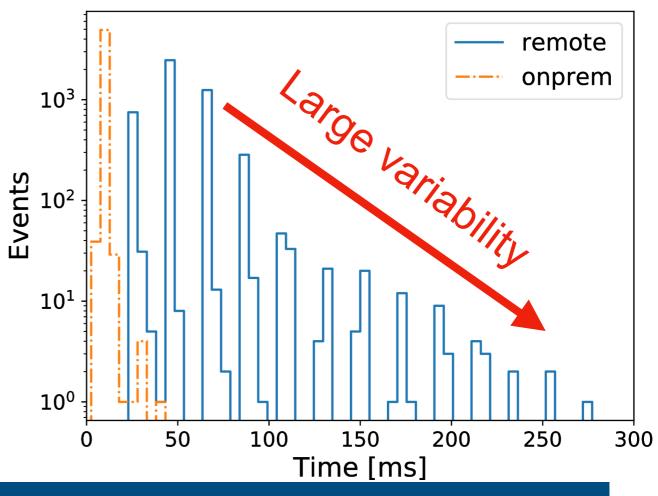
- Send our 16k inference from MIT to GPU at UCSD
 - Ping time is 75ms (speed of light google map distance is 32ms)
 - To UCSD and back takes ping time + 16ms
- Still working on test with FPGA (soon)

Algo	Per Event	+On-site aaS	+Cloud aaS	Ping
Old	50ms	N/A	N/A	N/A
NN CPU	15ms	N/A	N/A	N/A
NN GPU(1080 Ti)	3ms (prelim)	16ms	90ms	75ms
NN FPGA	2ms	TBD(<16ms)	TBD	TBD

Benchmark #2

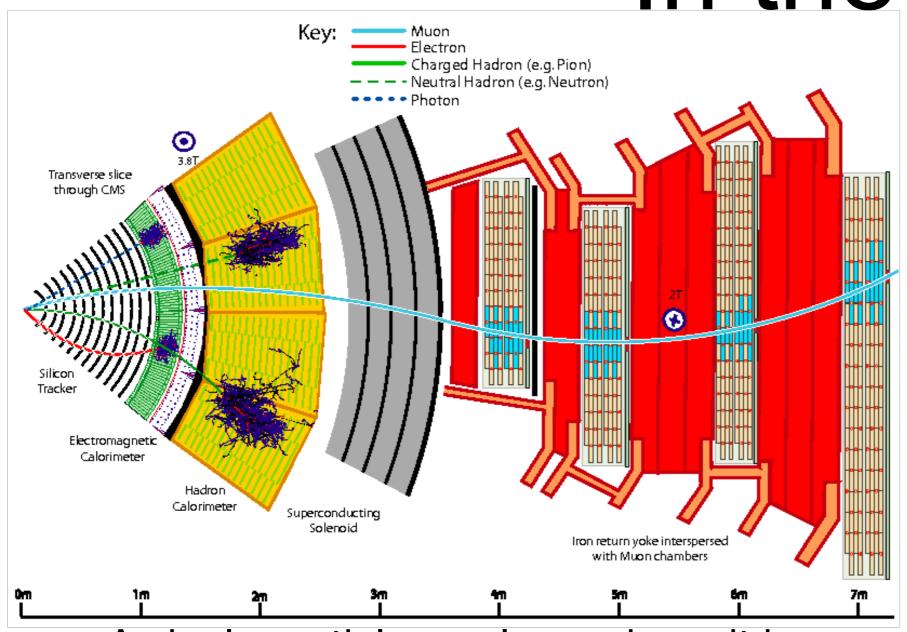
UCSD to MIT for GPU FNAL to Azure for FPGA





Algo	Per Event	+On-site aaS	+Cloud aaS	Ping
CPU	1.75s	N/A	N/A	N/A
GPU Batch 1	7ms	23ms	97ms	75ms
GPU Batch 32	2ms	240ms	975ms	75ms
FPGA	1.7ms	15ms	60ms	25ms

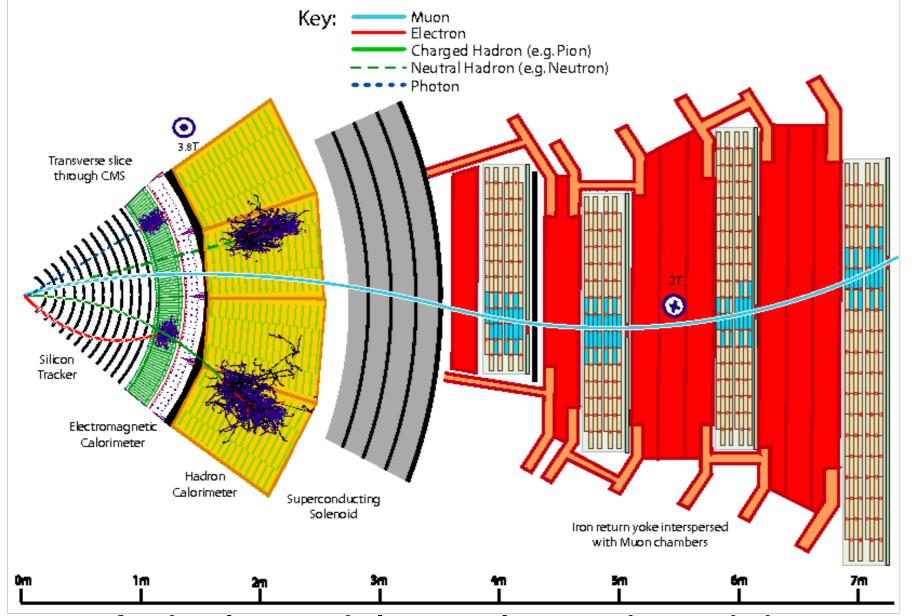
In the detector



All reconstruction is separated on an event by event level

- A single particle can leave deposit in many detectors
 - Each detector deposit a complex and different topology
 - Reconstruction of particles/detectors can be parallelized

Reconstruction of Objects



Batch 1 Per Event

All reconstruction is separated on an event by event level

- A single particle can leave deposit in many detectors
 - Each detector deposit a complex and different topology

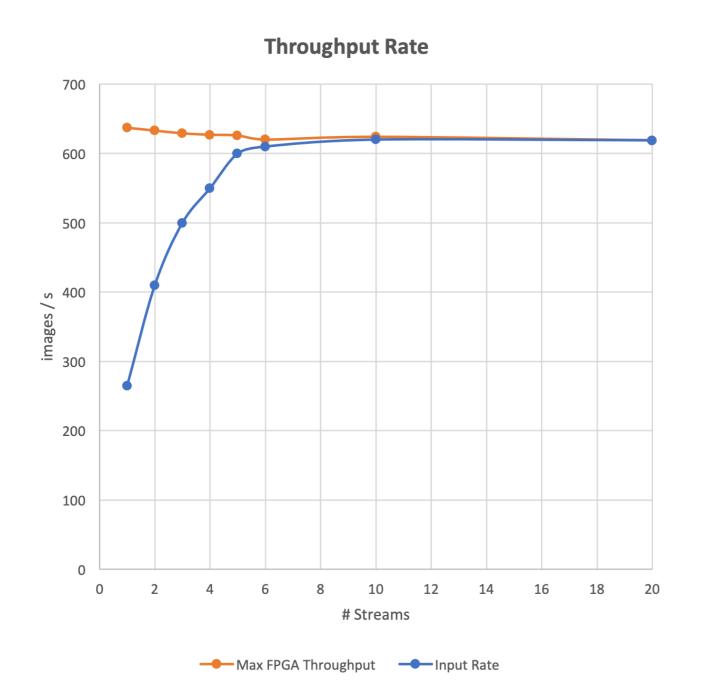
Batch N Per Particle

Reconstruction of particles/detectors can be parallelized

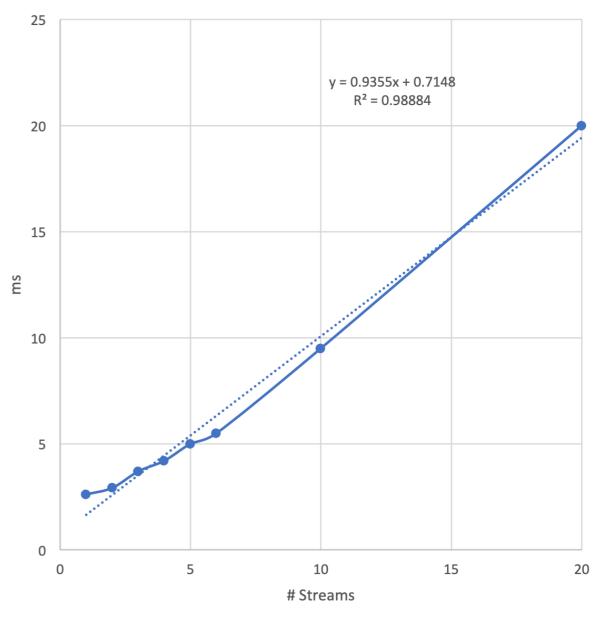
Xilinx ML Suite

Consider Googlenet example

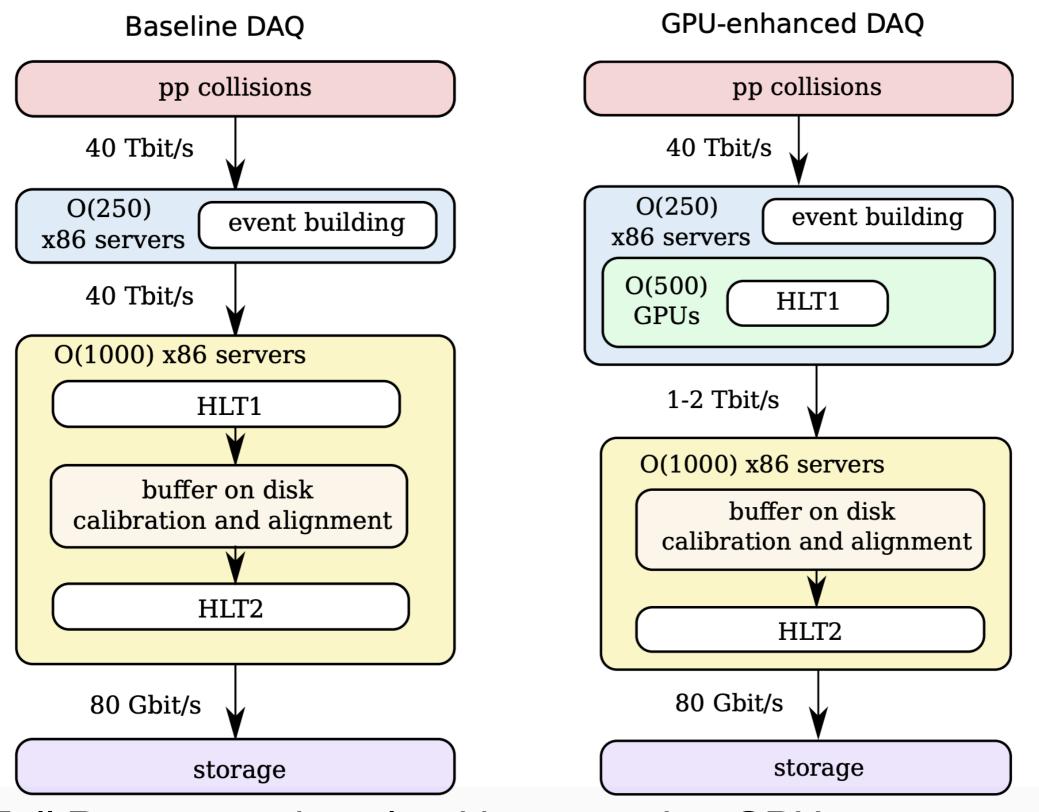
requests avg latency: 16.855598 ms time avg latency: 2.07637 ms



end to end latency

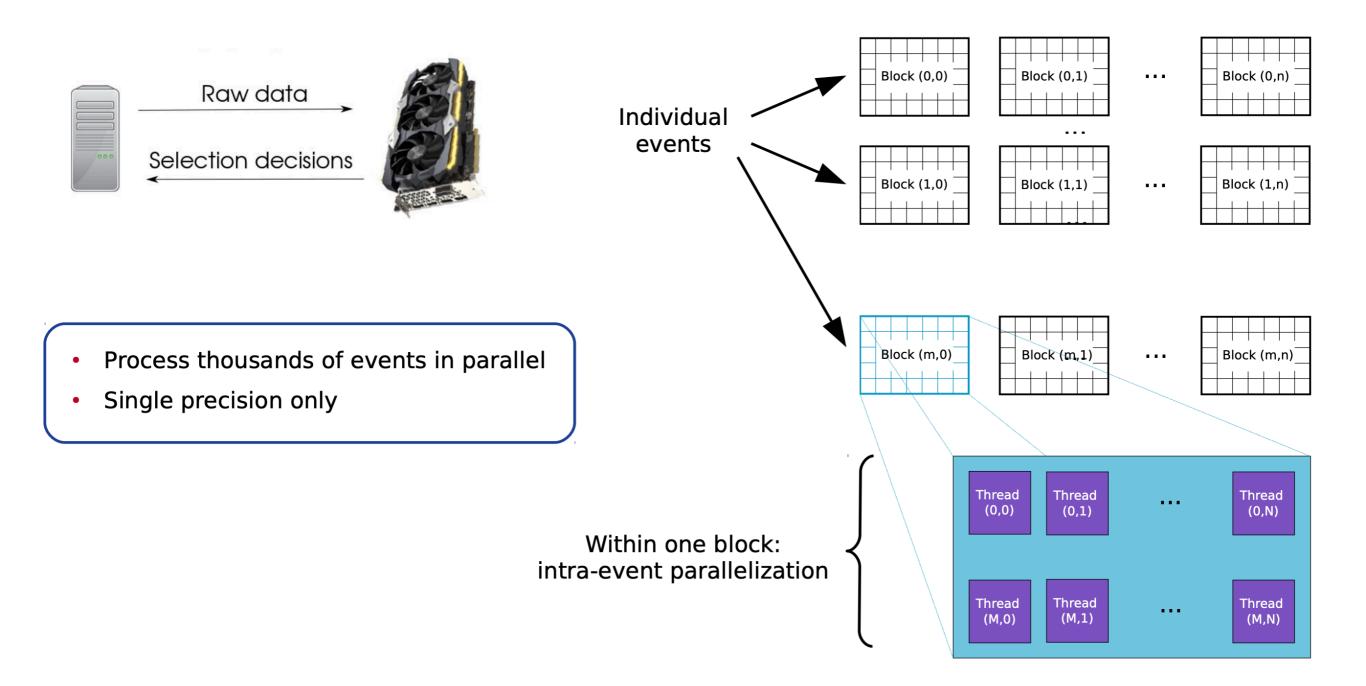


Alternative GPU Model

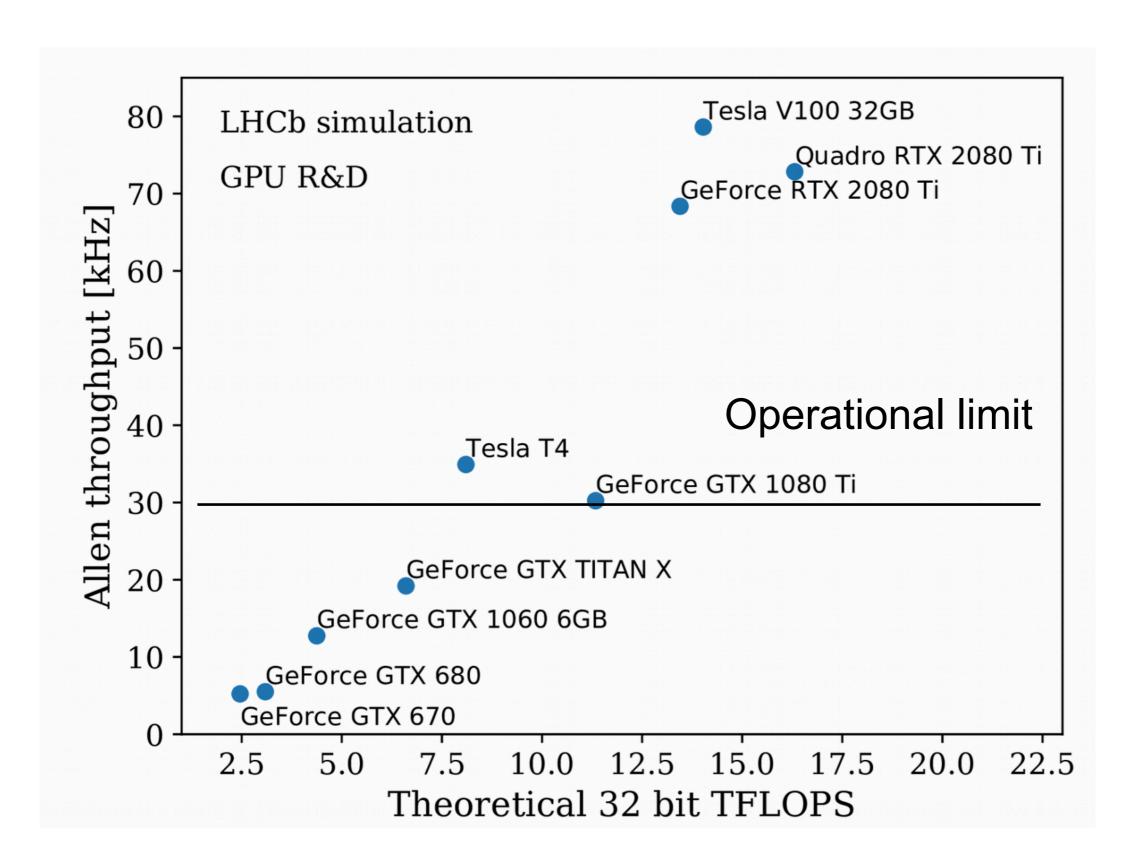


Full Reconstruction algorithm ported to GPU

Alternative GPU Model

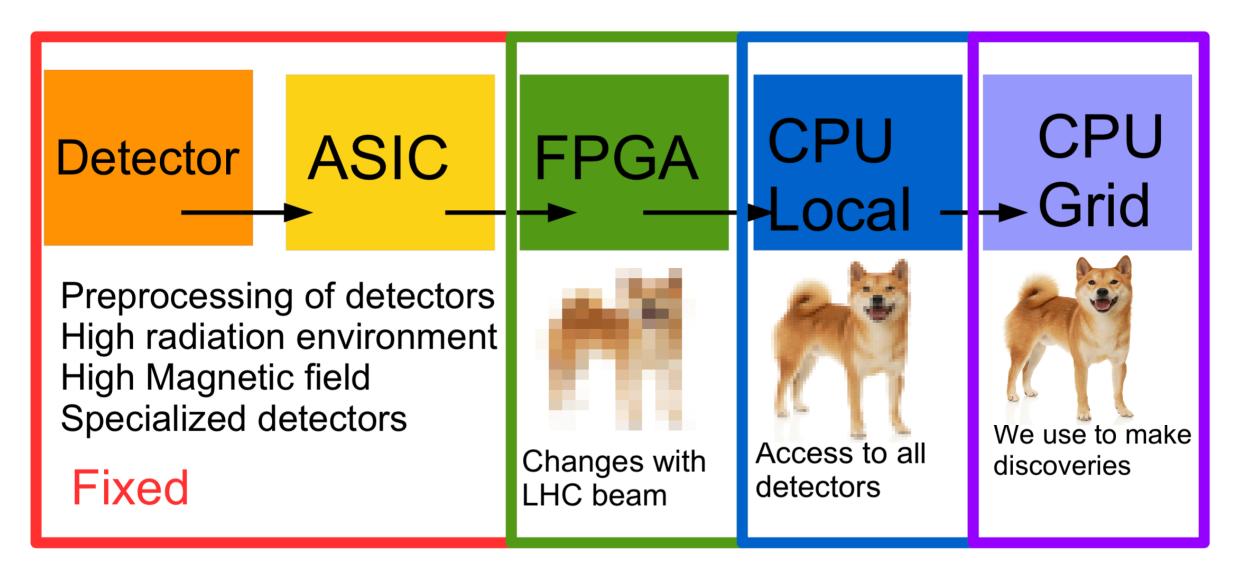


Alternative GPU Model



Another View of Same

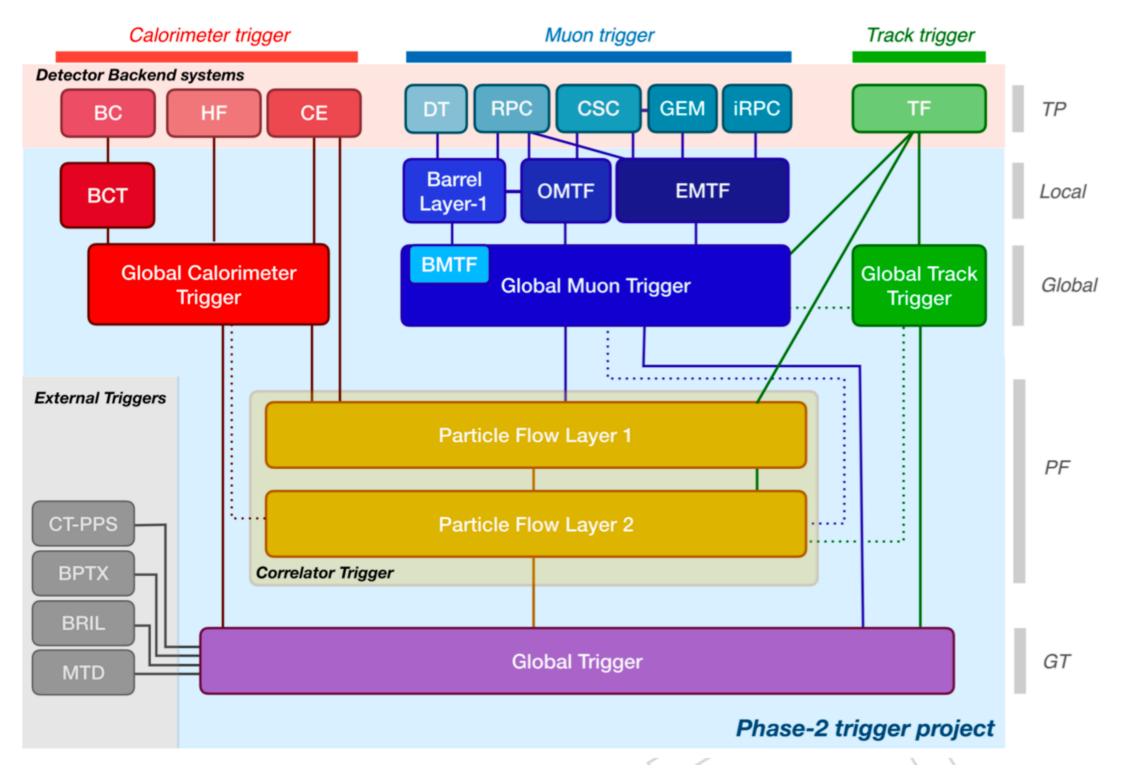
Collision rate is 40 MHz A new collision every 25ns



Latency: 10µs 100ms 10s

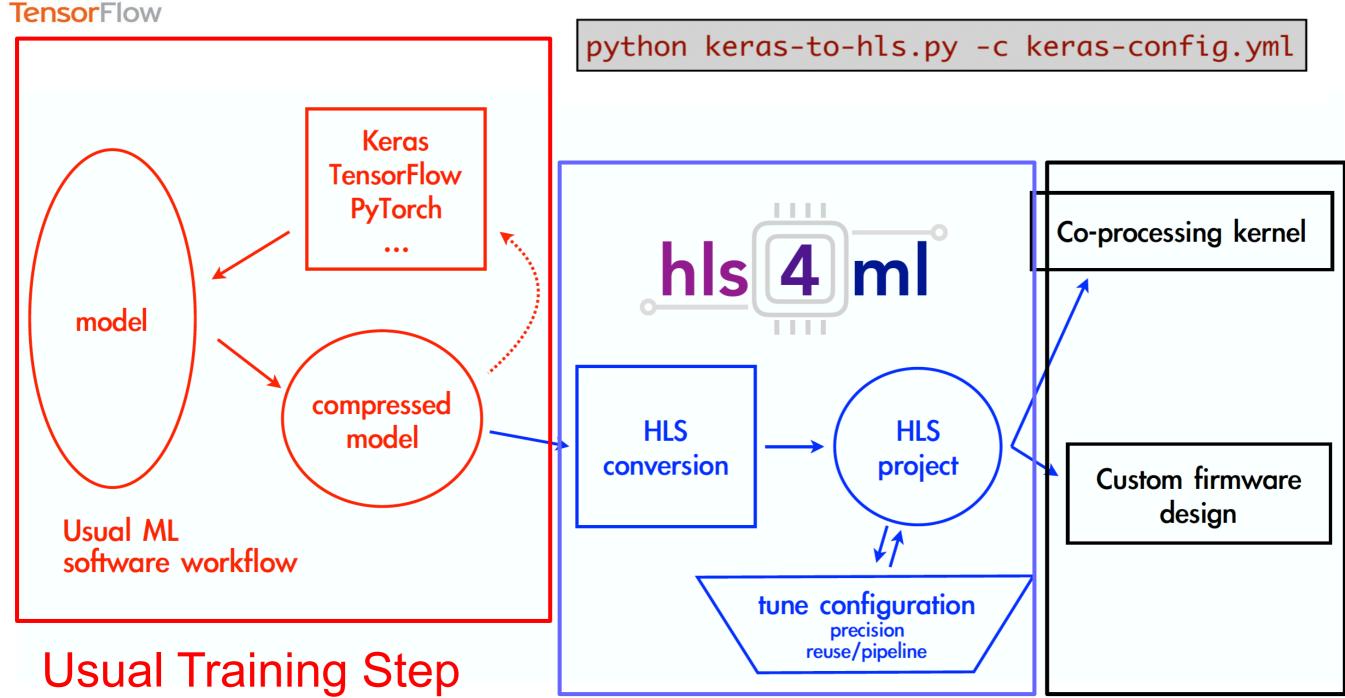
40 MHz (10µs)

Systems



Each Block represents O(30) FPGAs w/50 Tb/s bandwidth 1µs latency

Summing Up the Data flow



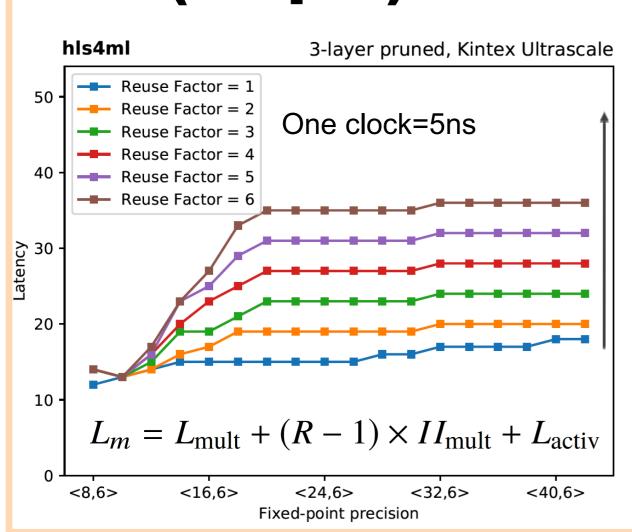
Targeting Ultra low latency applications

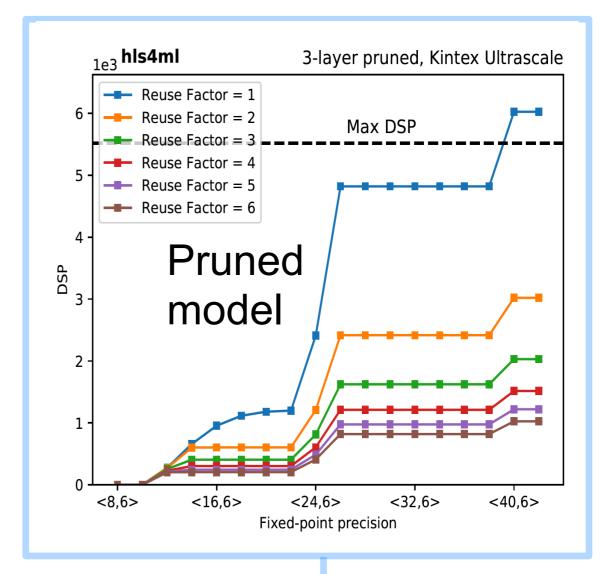
HLS tuning

Final Product

40 MHz (10µs)

Example Performance





3-Layer NN 75ns latency with an II of 1

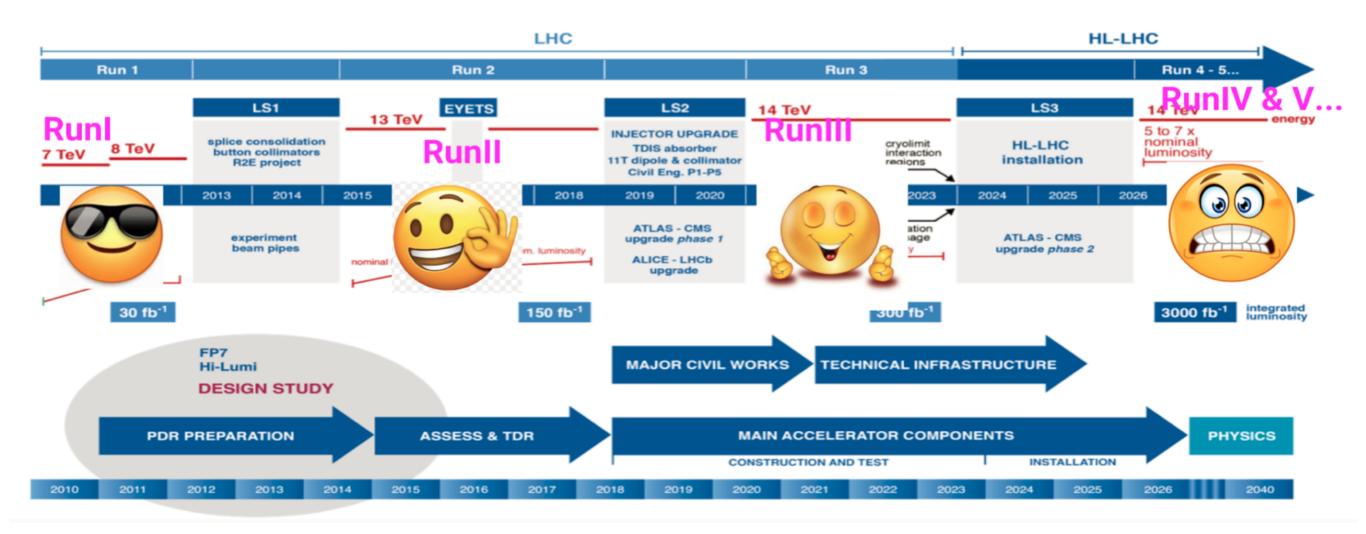
Latency (in clocks) gets worse
With reuse factor
Consistent with sharing resources

Tuneable reuse of DSPs and BRAM to get latency and II in ns timeslaes

What is a collision?

- LHC collides 60 protons at the same time
 - Eventually will become 200 protons at the same time
 - Collisions occur at 40 MHz
 - Expect roughly 1000(2000) particles per collision now(future)
 - Particles can leave deposits in many detectors
 - Aim to reconstruct aggregate properties of these collisions
- LHC Detector is roughly 100 Million channels
 - After zero suppression we have 8MB per collision

A More detailed View



. Data Box Edge: MS Databox Edge

A Microsoft *hardware-as-a-service solution* with an FPGA inside, installed at FNAL

```
iot_service = \
   IotWebservice.deploy_from_image(
     ws,
     iot_service_name,
     Image(ws, image_name),
     deploy_config,
     iothub_compute
   )
```

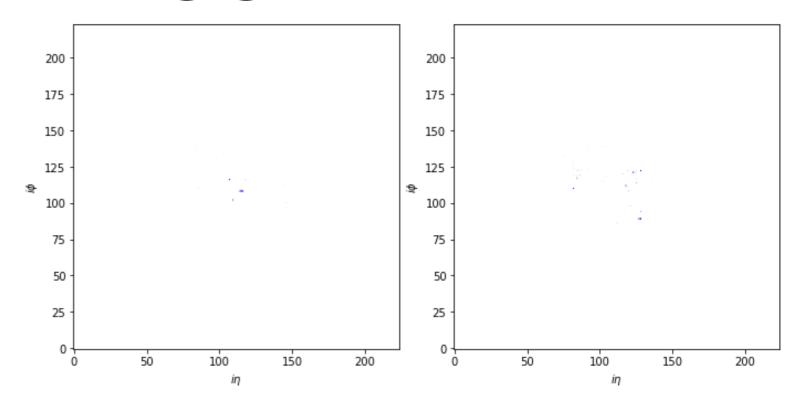

 Deploy pre-trained NNs using a CLI or a python SDK

 Inference from a client by sending data over gRPC

```
client = PredictionClient(
    address = address.fnal.gov, port = 50051,
    use_ssl = False,
    service_name = module_name
    )
result = client.score_numpy_arrays(
    input_map = {'Placeholder:0': np_array}
    )
```

Jet Tagger Example

- Distinguish between top quarks and QCD using 224x224 single-color images
 - Images: collected energy in the η/φ plane (detector coordinates)

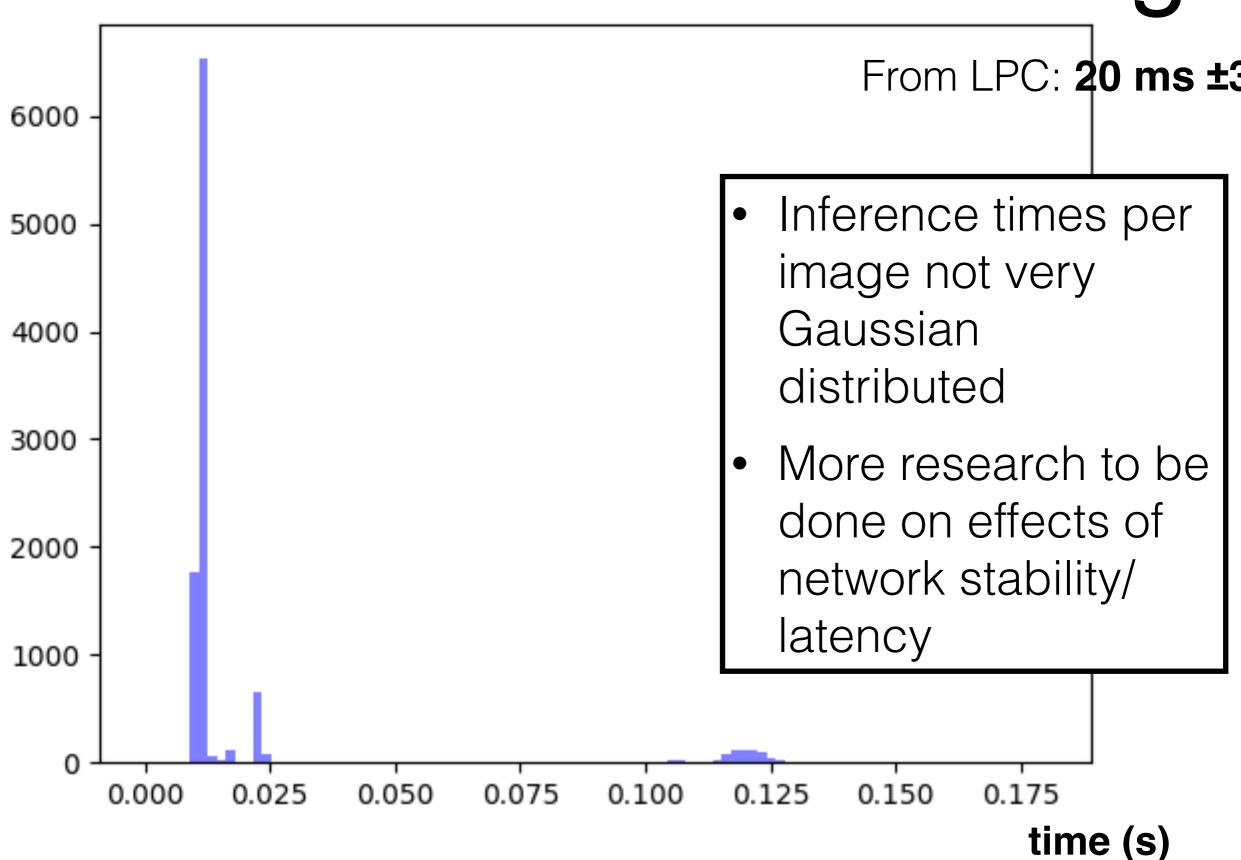


Previous inference results

- On a single CPU: ~500 ms
- On Azure Kubernetes Cloud Service: ~60-80 ms (depending on distance)
- Deployed at Azure Data ~10 ms
- Center in Viriginia (2018):

Using Data Box Edge

- Docker container directly on DBE: 14 ms ±25
- From LPC: **20 ms** ±*30*
- From laptop at FNAL: **68 ms** ±*27*
- From LXPLUS @ CERN: **168 ms** ±*62*



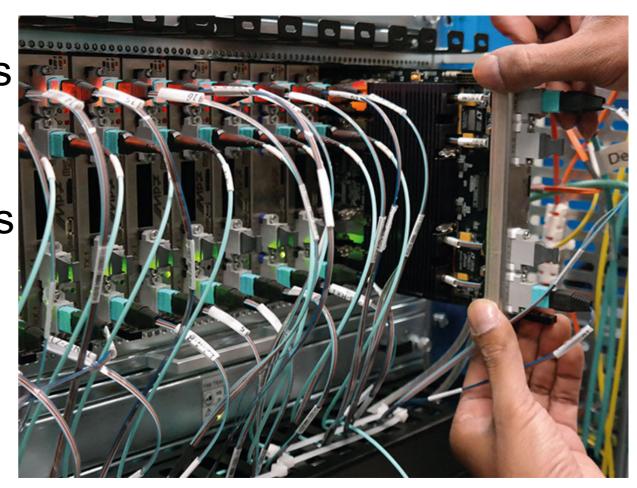
40 MHz (10µs)

L1 Trigger

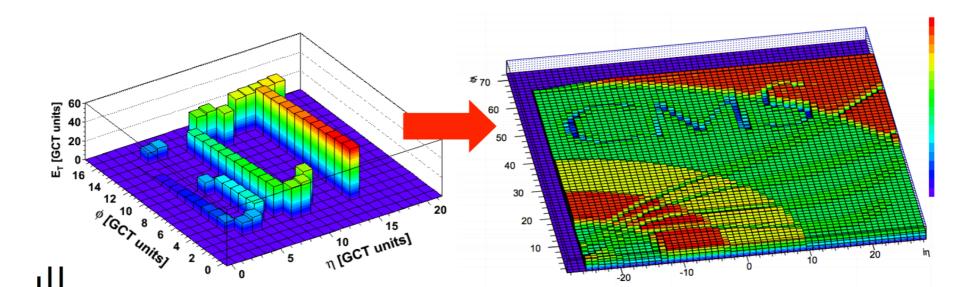
Have to take a new event every 25ns

Interconnected FPGAs
direct optical links between the chips
48-112 Links per chip
Links run at 10-25 Gbps

Full system is O(1000) FPGAs



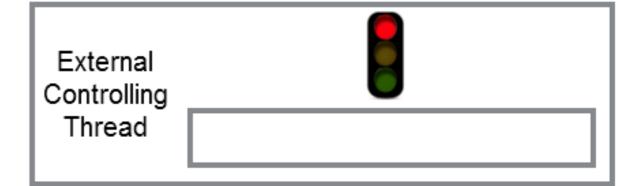
As FPGAs get larger so has the resolution of our detector

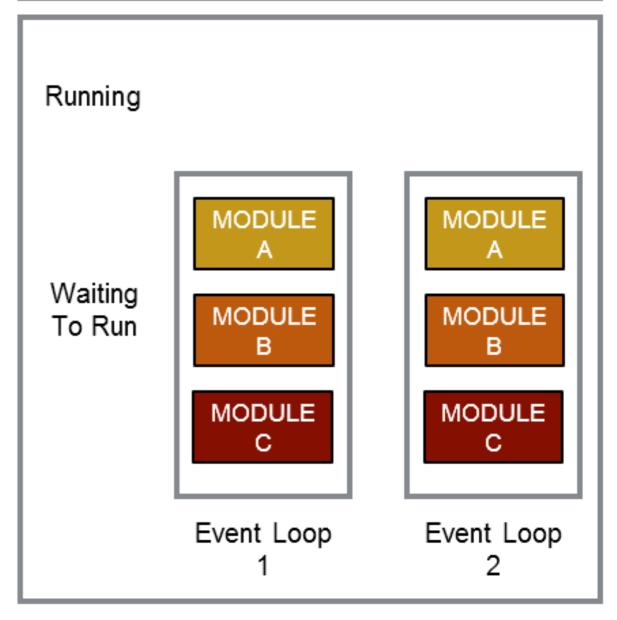


External Work in CMSSW (1)

Setup:

- TBB controls running modules
- Concurrent processing of multiple events
- Separate helper thread to control external
- Can wait until enough work is buffered before running external process

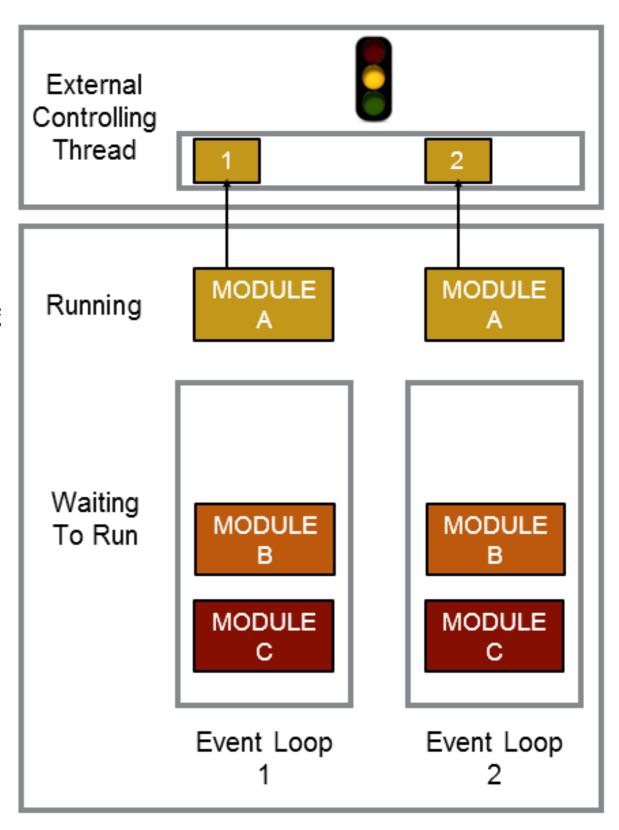




External Work in CMSSW (2)

Acquire:

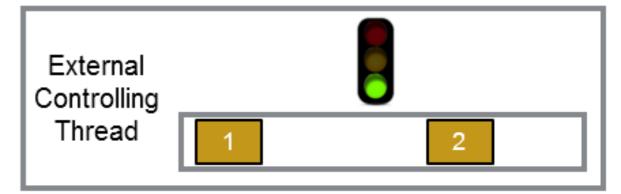
- Module *acquire*() method called
- Pulls data from event
- Copies data to buffer
- Buffer includes callback to start next phase of module running

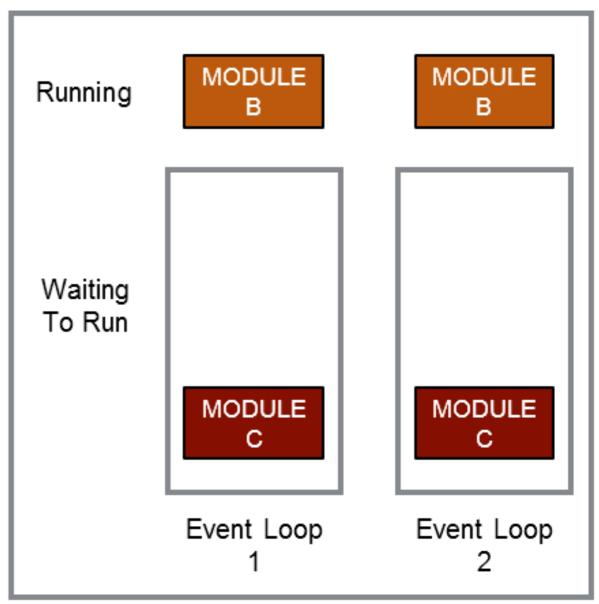


External Work in CMSSW (3)

Work starts:

- External process runs
- Data pulled from buffer
- Next waiting modules can run (concurrently)

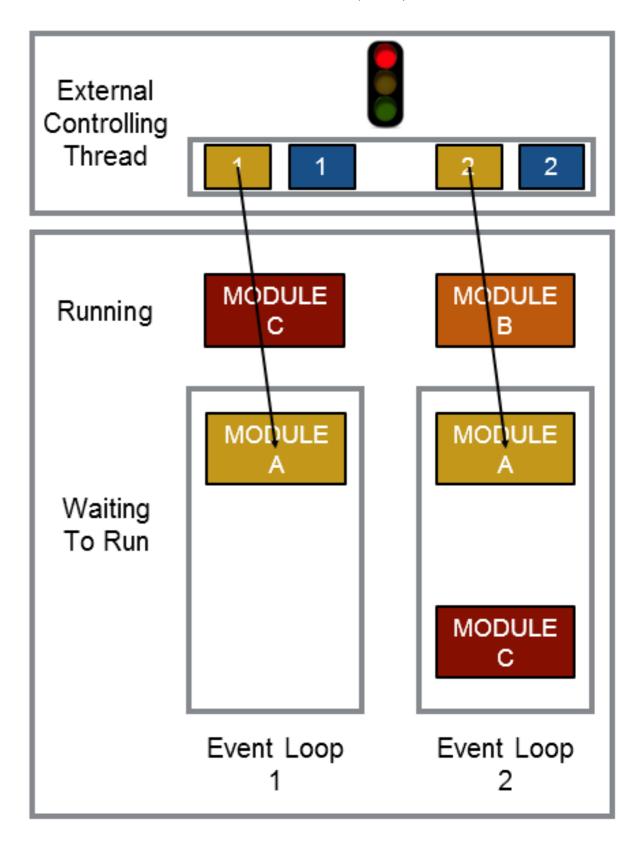




External Work in CMSSW (4)

Work finishes:

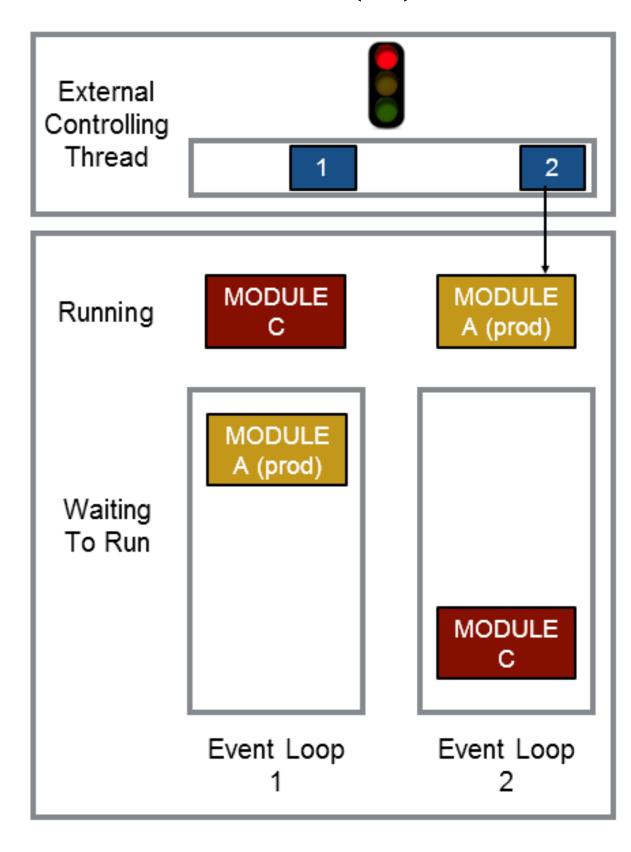
- Results copied to buffer
- Callback puts module back into queue



External Work in CMSSW (5)

Produce:

- Module *produce*() method is called
- Pulls results from buffer
- Data used to create objects to put into event



Sonic and Friends

