

#### Miriam Leeser, Mehmet Gungor, Kai Huang, Stratis Ioannidis



Dept. of Electrical and Computer Engineering Northeastern University Boston, MA



### Introduction and Motivation

- More and more computations are done in the cloud with user data
- Secure Function Evaluation (SFE) is needed to protect privacy of user data
- •
- Cloud services provide FPGA infrastructure
- We accelerate garbled circuits in the cloud using FPGAs





#### **Secure Function Evaluation**



- Only users have access to their own unencrypted data
- Analyst processes the encrypted data



#### Yao's Garbled Circuit

- Entities in Yao's Garbled Circuit Protocol:
- Users
- Garbler
- Evaluator
- Function to be evaluated is expressed as a Boolean circuit and can then be constructed as a garbled circuit represented with AND and XOR gates
- Garbler generates key pairs to represent bit values 0 and 1 and garbles the circuit
- Evaluator evaluates the circuit and learns the result



function to be evaluated



## Garbling an AND gate in Garbled Circuit



| а | b | с |  |
|---|---|---|--|
| 0 | 0 | 0 |  |
| 0 | 1 | 0 |  |
| 1 | 0 | 0 |  |
| 1 | 1 | 1 |  |

|          | a                           | a                           | C                           |
|----------|-----------------------------|-----------------------------|-----------------------------|
| N        | X <sub>a</sub> <sup>0</sup> | X <sub>b</sub> 0            | X <sub>c</sub> <sup>0</sup> |
| garbling | X <sub>a</sub> <sup>0</sup> | X <sub>b</sub> 1            | X <sub>c</sub> <sup>0</sup> |
|          | X <sub>a</sub> 1            | X <sub>b</sub> <sup>0</sup> | X <sub>c</sub> <sup>0</sup> |
|          | X <sub>a</sub> 1            | X <sub>b</sub> <sup>1</sup> | Xc1                         |

garbling table

Enc  $x_{a^0} x_{b^0} (X_c^0)$ 

Enc  $x_{a^0} x_{b^1} (X_c^0)$ 

Enc  $x_{a^1} x_{b^0}$  (X<sub>c</sub><sup>0</sup>)

Enc  $x_{a^{1}} x_{b^{1}} (X_{c^{1}})$ 

Garbling an AND gate in Garbled Circuits

- AND gate in Garbled Circuit contains 4 SHA-1 cores
- AND gate encrypts the output entry of the truth table and generates the garbling table
- Garbling table needs to be sent to evaluator



#### Yao's Garbled Circuit



Garbler and Evaluator in Yao's Garbled Circuit

- Users, garbler and evaluator engage in proxy oblivious transfer (OT)
- Output keys from the previous gates are used as the inputs of following gates
- Evaluator needs the garbling table from garbler to decrypt the AND gate
- Everyone knows function to be evaluated



## **Garbled Circuit Optimizations**

Row Reduction

Point and Permute

[Naor, Pinkas, Summer; EC 1999]

one ciphertext is picked to be 0

- [Malkhi, Nisan, Pinkas, Sella; USENIX Security 2004]
- evaluator needs only decrypt the garbling table once
- Free-XOR

[Kolesnikov, Schneider; ICALP 2008]

output wire keys are calculated by taking XOR of two input keys



#### Yao's Garbled Circuit

- Yao's Garbled Circuit guarantees users' data privacy
- Garbler facilitates SFE but learns nothing
- Evaluator learns nothing but the output
- The AND gate requires encryption
- We use SHA cores



**Garbled Circuit Protocol** 



## **Challenges and Contributions**

#### **Challenges:**

- Garbling significantly slows down function evaluation
- Accelerate any general garbled circuit
- Prove scalability for large datasets

#### **Contributions: Implemented:**

- a hardware FPGA overlay for general garbled circuit problem
- an End-to-End system for garbled circuit in the Cloud a complete design on AWS platform
- A study of how garbling scales for large problems



## Amazon Web Service (AWS)

AWS Provides:

- development environment
- hardware and software development kit



high-end FPGA boards(UltraScale+ VU9P) on f1 instances



Each Xilinx FPGA includes:

- Local 64 GB DDR4 ECC protected memory
- Dedicated PCIe x16 connections
- Approximately 2.5 million logic elements, 6,800 DSP engines



### **Coarse-Grained Hardware Overlay**



Garbled Circuit Hardware Design

- Needs only be loaded once and used for any garbled circuit problem
- Overlay with different number of AND, XOR gates can be generated
- Coordinates with host C code at runtime



## Garbled Circuit workflow



- Preprocessing extracts layers and translates wire IDs to memory addresses
- Preprocessing partitions the netlist and maps them to FPGA

 Hardware overlay scales according to number of Garbled AND and XOR cores



#### **Experiments**



**Garbled Circuit Experiments** 

- The keys are directly generated for the evaluator
- The initial memory layout, FPGA mapping information and runtime addresses are generated for FPGA garbler
- The garbler and evaluator run on two different nodes and the transfer time is estimated by f1 bandwidth
- We record the garbling time and evaluating time
- For garbling we compare software and FPGA implementations



#### Benchmarks

• Size of benchmarks

| Problem         | Inputs | Outputs | Layers | Gates   |
|-----------------|--------|---------|--------|---------|
| 16-bit add      | 32     | 16      | 48     | 80      |
| 30-bit HD       | 60     | 30      | 27     | 330     |
| 50-bit HD       | 100    | 50      | 32     | 550     |
| 8-bit multiply  | 16     | 8       | 57     | 472     |
| 16-bit multiply | 32     | 16      | 121    | 1968    |
| 32-bit multiply | 64     | 32      | 249    | 8032    |
| 64-bit multiply | 128    | 128     | 505    | 32448   |
| 10 4-bit sort   | 40     | 40      | 278    | 5486    |
| 5x5 8-bit MM    | 400    | 200     | 57     | 63000   |
| 10x10 4-bit MM  | 800    | 400     | 27     | 126000  |
| 10x10 8-bit MM  | 1600   | 800     | 57     | 508000  |
| 20x20 4-bit MM  | 3200   | 1600    | 37     | 1016000 |

HD: Hamming Distance MM: matrix multiply



## Garbler Timing Speed up

Garbler Timing Speed Up on AWS



Northeastern

#### End to end runtime of FPGA garbler and software garbler

• End-to-end runtime system speed up on AWS (unit: ms)

| Timing for total system with software garbler and FPGA garbler in ms |                   |                     |          |  |  |
|----------------------------------------------------------------------|-------------------|---------------------|----------|--|--|
| applications                                                         | Total(garbler sw) | Total(garbler FPGA) | Speed Up |  |  |
| 16Bit Adder                                                          | 4.933             | 2.406               | 2.41     |  |  |
| 30Bit Ham                                                            | 18.032            | 7.290               | 2.47     |  |  |
| 50Bit Ham                                                            | 27.811            | 9.991               | 2.78     |  |  |
| 8Bit a*b                                                             | 30.361            | 11.33               | 2.68     |  |  |
| 16Bit a*b                                                            | 126.366           | 46.817              | 2.70     |  |  |
| 32Bit a*b                                                            | 515.867           | 189.910             | 2.72     |  |  |
| 64Bit a*b                                                            | 2066.394          | 768.183             | 2.69     |  |  |
| 4Bit Sort10 Number                                                   | 287.957           | 120.599             | 2.39     |  |  |
| 4Bit 5x5 Mat Mult                                                    | 978.663           | 365.063             | 2.68     |  |  |
| 8Bit 5x5 Mat Mult                                                    | 4003.290          | 1503.485            | 2.66     |  |  |
| 4Bit 10x10 Mat Mult                                                  | 7984.151          | 2960.941            | 2.70     |  |  |
| 8Bit 10x10 Mat Mult                                                  | 32587.864         | 12043.928           | 2.71     |  |  |
| 4Bit 20x20 Mat Mult                                                  | 65173.249         | 24271.066           | 2.69     |  |  |



# I wo different memory designs:

Store intermediate values in BRAM until no more BRAM available



#### Garbler timing of different designs

• Garbler with hybrid memory design and different number of cores on AWS (unit: ms)





• FPGA DDR-only garbler vs hybrid memory design on AWS (unit: ms)

| Problem         | Gates   | 4AND 4XOR DDR | 8AND 8XOR Hybrid | Speed up |
|-----------------|---------|---------------|------------------|----------|
| 4-bit 5x5 MM    | 15500   | 45.48         | 26.42            | 1.72     |
| 8-bit 5x5 MM    | 63000   | 184.23        | 96.61            | 1.91     |
| 4-bit 10x10 MM  | 126000  | 368.22        | 242.55           | 1.52     |
| 8-bit 10x10 MM  | 508000  | 1487.21       | 1067.35          | 1.39     |
| 12-bit 10x10 MM | 1146000 | 3234.93       | 2356.41          | 1.37     |
| 16-bit 10x10 MM | 2040000 | 5636.27       | 4185.36          | 1.35     |
| 4-bit 20x20 MM  | 1016000 | 3153.26       | 2346.86          | 1.34     |
| 8-bit 20x20 MM  | 4080000 | 12638.08      | 9378.26          | 1.35     |



• Software garbler vs BEST FPGA garbler on AWS (unit: ms)

| Problem         | Gates   | Software  | 8AND 8XOR Hybrid | Speed up |
|-----------------|---------|-----------|------------------|----------|
| 4-bit 5x5 MM    | 15500   | 659.08    | 26.42            | 24.95    |
| 8-bit 5x5 MM    | 63000   | 2684.03   | 96.61            | 27.78    |
| 4-bit 10x10 MM  | 126000  | 5391.43   | 242.55           | 22.23    |
| 8-bit 10x10 MM  | 508000  | 22031.15  | 1067.35          | 20.7     |
| 12-bit 10x10 MM | 1146000 | 49906.86  | 2356.41          | 21.18    |
| 16-bit 10x10 MM | 2040000 | 89392.44  | 4185.36          | 21.35    |
| 4-bit 20x20 MM  | 1016000 | 44466.74  | 2346.86          | 18.95    |
| 8-bit 20x20 MM  | 4080000 | 179168.64 | 9378.26          | 19.10    |



#### Conclusion

- We map Garbled Circuit to FPGA and the hardware design can scale to arbitrary number of AND and XOR cores
- Our garbler gains speed up against software up to **18x** for million gate examples

#### • Future Work

- Replace the SHA-1 cores with AES cores
- Reduce host to FPGA communication
- Map this problem to multiple nodes for big-data processing



## Thank you!

email : mel@coe.neu.edu https://www.northeastern.edu/rcl/



Thanks to the support of AWS Thanks to NSF (SaTC1717213)



