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Introduction and Motivation

• More and more computations are done in the cloud with user data

• Secure Function Evaluation (SFE) is needed to protect privacy of user data
•
• Cloud services provide FPGA infrastructure

• We accelerate garbled circuits in the cloud using FPGAs
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Secure Function Evaluation

• Only users have access to their own unencrypted data

• Analyst processes the encrypted data

Applying SFE
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Yao’s Garbled Circuit

• Entities in Yao’s Garbled Circuit Protocol:
• ⁃ Users
• ⁃ Garbler
• ⁃ Evaluator

• Function to be evaluated is expressed as a Boolean 
circuit and can then be constructed as a garbled circuit 
represented with AND and XOR gates

• Garbler generates key pairs to represent bit values 0 and 
1 and garbles the circuit

• Evaluator evaluates the circuit and learns the result
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function to be evaluated 



Garbling an AND gate in Garbled Circuit 

Garbling an AND gate in Garbled Circuits

● AND gate in Garbled Circuit contains 
4 SHA-1 cores 

● AND gate encrypts the output entry of 
the truth table and generates the 
garbling table

● Garbling table needs to be sent to 
evaluator
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Yao’s Garbled Circuit

• Users, garbler and evaluator engage in 
proxy oblivious transfer (OT)

• Output keys from the previous gates 
are used as the inputs of following 
gates

• Evaluator needs the garbling table from 
garbler to decrypt the AND gate

• Everyone knows function to be 
evaluated
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Garbler and Evaluator in Yao’s Garbled Circuit
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Garbled Circuit Optimizations

● Row Reduction

one ciphertext is picked to be 0 

● Point and Permute

evaluator needs only decrypt the garbling table once 

● Free-XOR

output wire keys are calculated by taking XOR of two input keys

[Malkhi, Nisan, Pinkas, Sella; USENIX Security 2004]

[Kolesnikov, Schneider; ICALP 2008]

[Naor, Pinkas, Summer; EC 1999]



Yao’s Garbled Circuit

● Yao’s Garbled Circuit guarantees users’ 
data privacy

● Garbler facilitates SFE but learns nothing

● Evaluator learns nothing but the output

● The AND gate requires encryption 
● We use SHA cores

Garbled Circuit Protocol
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Challenges and Contributions

Challenges:

• Garbling significantly slows down function evaluation

• Accelerate any general garbled circuit

• Prove scalability for large datasets 
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Contributions:  Implemented:
• a hardware FPGA overlay for general garbled circuit problem 

• an End-to-End system for garbled circuit in the Cloud 
a complete design on AWS platform

• A study of how garbling scales for large problems



Amazon Web Service (AWS)  

Each Xilinx FPGA includes:

• Local 64 GB DDR4 ECC protected memory

• Dedicated PCIe x16 connections

• Approximately 2.5 million logic elements, 6,800 DSP engines

AWS Provides:

● development environment 

● hardware and software development kit

● high-end FPGA boards(UltraScale+ VU9P) on f1 instances
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Coarse-Grained Hardware Overlay

● Needs only be loaded once and used for 
any garbled circuit problem

● Overlay with different number of AND, XOR 
gates can be generated 

● Coordinates with host C code at runtime

Garbled Circuit Hardware Design 
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Garbled Circuit workflow

Garbled 
Circuit

Circuit 
Netlist

FlexSC

Layer Extraction, Wire 

Addresses Translation

Host code HW design 

CPU
AWS 

memory 
interconnect

Custom Logic

On-chip 

MemoryOff-chip 

Memory

Virtex Ultrascale+ FPGA

Garbled Circuit 
Workflow

Hardware generation

PCIE

FPGA resource 

Mapping

Number of Garbled 
AND,XOR gates

State Machine 

Customization

Preprocessing

Hardware Design 
Flow

AWS F1 Instance

● Preprocessing extracts layers and 
translates wire IDs to memory addresses 

● Preprocessing partitions the netlist and 
maps them to FPGA

● Hardware overlay scales according to 
number of Garbled AND and XOR cores

Garbled Circuit Workflow 
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Experiments

● The keys are directly generated for the evaluator

● The initial memory layout, FPGA mapping 
information and runtime addresses are generated 
for FPGA garbler

● The garbler and evaluator run on two different 
nodes and the transfer time is estimated by f1 
bandwidth

● We record the garbling time and evaluating time

● For garbling we compare software and FPGA 
implementations
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Garbled Circuit Experiments



Benchmarks

Problem Inputs Outputs Layers Gates

16-bit add 32 16 48 80

30-bit HD 60 30 27 330

50-bit HD 100 50 32 550

8-bit multiply 16 8 57 472

16-bit multiply 32 16 121 1968

32-bit multiply 64 32 249 8032

64-bit multiply 128 128 505 32448

10 4-bit sort 40 40 278 5486

5x5 8-bit MM 400 200 57 63000

10x10 4-bit MM 800 400 27 126000

10x10 8-bit MM 1600 800 57 508000

20x20 4-bit MM 3200 1600 37 1016000

• Size of benchmarks

HD:  Hamming Distance

MM: matrix multiply
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Garbler Timing Speed up
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• Garbler Timing Speed Up on AWS
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End to end runtime of FPGA garbler and software garbler

• End-to-end runtime system speed up on AWS (unit: ms)
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Use more garbled AND, garbled XOR cores
Two different memory designs:

All data in DDR memory

Hybrid memory:

Store intermediate values in BRAM until no more BRAM available

Optimizations



Garbler timing of different designs

• Garbler with hybrid memory design and different number of cores on AWS (unit: ms)
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Less is better !

Hybrid memory design 

uses both off-chip and 

on-chip memory 

total gates
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• FPGA DDR-only garbler vs hybrid memory design on AWS (unit: ms)

Problem Gates 4AND 4XOR DDR 8AND 8XOR Hybrid Speed up

4-bit 5x5 MM 15500 45.48 26.42 1.72

8-bit 5x5 MM 63000 184.23 96.61 1.91

4-bit 10x10 MM 126000 368.22 242.55 1.52

8-bit 10x10 MM 508000 1487.21 1067.35 1.39

12-bit 10x10 MM 1146000 3234.93 2356.41 1.37

16-bit 10x10 MM 2040000 5636.27 4185.36 1.35

4-bit 20x20 MM 1016000 3153.26 2346.86 1.34

8-bit 20x20 MM 4080000 12638.08 9378.26 1.35



• Software garbler vs BEST FPGA garbler on AWS (unit: ms)

Problem Gates Software 8AND 8XOR Hybrid Speed up

4-bit 5x5 MM 15500 659.08 26.42 24.95

8-bit 5x5 MM 63000 2684.03 96.61 27.78

4-bit 10x10 MM 126000 5391.43 242.55 22.23

8-bit 10x10 MM 508000 22031.15 1067.35 20.7

12-bit 10x10 MM 1146000 49906.86 2356.41 21.18

16-bit 10x10 MM 2040000 89392.44 4185.36 21.35

4-bit 20x20 MM 1016000 44466.74 2346.86 18.95

8-bit 20x20 MM 4080000 179168.64 9378.26 19.10



Conclusion

• We map Garbled Circuit to FPGA and the hardware design can scale to arbitrary number of 
AND and XOR cores

• Our garbler gains speed up against software up to 18x for million gate examples

• Future Work

• Replace the SHA-1 cores with AES cores

• Reduce host to FPGA communication 

• Map this problem to multiple nodes for big-data processing

Conclusion and Future Work
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Thank you!
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Thanks to NSF (SaTC1717213)

email : mel@coe.neu.edu

https://www.northeastern.edu/rcl/
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