
Miriam Leeser, Mehmet Gungor, Kai Huang, Stratis Ioannidis

Accelerating Large Garbled Circuits on an
FPGA-Enabled Cloud

Dept. of Electrical and Computer Engineering

Northeastern University

Boston, MA

Introduction and Motivation

• More and more computations are done in the cloud with user data

• Secure Function Evaluation (SFE) is needed to protect privacy of user data
•
• Cloud services provide FPGA infrastructure

• We accelerate garbled circuits in the cloud using FPGAs

2

Secure Function Evaluation

• Only users have access to their own unencrypted data

• Analyst processes the encrypted data

Applying SFE

3

Yao’s Garbled Circuit

• Entities in Yao’s Garbled Circuit Protocol:
• ⁃ Users
• ⁃ Garbler
• ⁃ Evaluator

• Function to be evaluated is expressed as a Boolean
circuit and can then be constructed as a garbled circuit
represented with AND and XOR gates

• Garbler generates key pairs to represent bit values 0 and
1 and garbles the circuit

• Evaluator evaluates the circuit and learns the result

4

function to be evaluated

Garbling an AND gate in Garbled Circuit

Garbling an AND gate in Garbled Circuits

● AND gate in Garbled Circuit contains
4 SHA-1 cores

● AND gate encrypts the output entry of
the truth table and generates the
garbling table

● Garbling table needs to be sent to
evaluator

5

Yao’s Garbled Circuit

• Users, garbler and evaluator engage in
proxy oblivious transfer (OT)

• Output keys from the previous gates
are used as the inputs of following
gates

• Evaluator needs the garbling table from
garbler to decrypt the AND gate

• Everyone knows function to be
evaluated

6

Garbler and Evaluator in Yao’s Garbled Circuit

7

Garbled Circuit Optimizations

● Row Reduction

one ciphertext is picked to be 0

● Point and Permute

evaluator needs only decrypt the garbling table once

● Free-XOR

output wire keys are calculated by taking XOR of two input keys

[Malkhi, Nisan, Pinkas, Sella; USENIX Security 2004]

[Kolesnikov, Schneider; ICALP 2008]

[Naor, Pinkas, Summer; EC 1999]

Yao’s Garbled Circuit

● Yao’s Garbled Circuit guarantees users’
data privacy

● Garbler facilitates SFE but learns nothing

● Evaluator learns nothing but the output

● The AND gate requires encryption
● We use SHA cores

Garbled Circuit Protocol

8

Challenges and Contributions

Challenges:

• Garbling significantly slows down function evaluation

• Accelerate any general garbled circuit

• Prove scalability for large datasets

9

Contributions: Implemented:
• a hardware FPGA overlay for general garbled circuit problem

• an End-to-End system for garbled circuit in the Cloud
a complete design on AWS platform

• A study of how garbling scales for large problems

Amazon Web Service (AWS)

Each Xilinx FPGA includes:

• Local 64 GB DDR4 ECC protected memory

• Dedicated PCIe x16 connections

• Approximately 2.5 million logic elements, 6,800 DSP engines

AWS Provides:

● development environment

● hardware and software development kit

● high-end FPGA boards(UltraScale+ VU9P) on f1 instances

10

Coarse-Grained Hardware Overlay

● Needs only be loaded once and used for
any garbled circuit problem

● Overlay with different number of AND, XOR
gates can be generated

● Coordinates with host C code at runtime

Garbled Circuit Hardware Design

11

Garbled Circuit workflow

Garbled
Circuit

Circuit
Netlist

FlexSC

Layer Extraction, Wire

Addresses Translation

Host code HW design

CPU
AWS

memory
interconnect

Custom Logic

On-chip

MemoryOff-chip

Memory

Virtex Ultrascale+ FPGA

Garbled Circuit
Workflow

Hardware generation

PCIE

FPGA resource

Mapping

Number of Garbled
AND,XOR gates

State Machine

Customization

Preprocessing

Hardware Design
Flow

AWS F1 Instance

● Preprocessing extracts layers and
translates wire IDs to memory addresses

● Preprocessing partitions the netlist and
maps them to FPGA

● Hardware overlay scales according to
number of Garbled AND and XOR cores

Garbled Circuit Workflow

12

Experiments

● The keys are directly generated for the evaluator

● The initial memory layout, FPGA mapping
information and runtime addresses are generated
for FPGA garbler

● The garbler and evaluator run on two different
nodes and the transfer time is estimated by f1
bandwidth

● We record the garbling time and evaluating time

● For garbling we compare software and FPGA
implementations

13

Garbled Circuit Experiments

Benchmarks

Problem Inputs Outputs Layers Gates

16-bit add 32 16 48 80

30-bit HD 60 30 27 330

50-bit HD 100 50 32 550

8-bit multiply 16 8 57 472

16-bit multiply 32 16 121 1968

32-bit multiply 64 32 249 8032

64-bit multiply 128 128 505 32448

10 4-bit sort 40 40 278 5486

5x5 8-bit MM 400 200 57 63000

10x10 4-bit MM 800 400 27 126000

10x10 8-bit MM 1600 800 57 508000

20x20 4-bit MM 3200 1600 37 1016000

• Size of benchmarks

HD: Hamming Distance

MM: matrix multiply

14

Garbler Timing Speed up

15

• Garbler Timing Speed Up on AWS

16Bit_Add 30Bit_HD

50Bit_HD

8Bit A*B

16Bit A*B
32Bit A*B

64Bit A*B

4Bit_Sort_10 Nums

5x5_4Bit_MM 5x5 8Bit_MM

10x10_4Bit_MM

10x10_8Bit
_MM

20x20_4Bit_MM

10

11

12

13

14

15

16

20 400 8000 160000 3200000

Sp
ee

d
up

Number of Gates

Speed Up vs Number of Gates

End to end runtime of FPGA garbler and software garbler

• End-to-end runtime system speed up on AWS (unit: ms)

16

Use more garbled AND, garbled XOR cores
Two different memory designs:

All data in DDR memory

Hybrid memory:

Store intermediate values in BRAM until no more BRAM available

Optimizations

Garbler timing of different designs

• Garbler with hybrid memory design and different number of cores on AWS (unit: ms)

18

Less is better !

Hybrid memory design

uses both off-chip and

on-chip memory

total gates

ti
m

e
 (

m
s
)

0

5000

10000

15000

1
5
5
0
0

6
3
0
0
0

1
2
6
0
0
0

5
0
8
0
0
0

1
0
1
6
0
0
0

1
1
4
6
0
0
0

2
0
4
0
0
0
0

4
0
8
0
0
0
0

only ddr 4and4xor hybrid 4and4xor hybrid 8and8xor

garbler time vs total gates

• FPGA DDR-only garbler vs hybrid memory design on AWS (unit: ms)

Problem Gates 4AND 4XOR DDR 8AND 8XOR Hybrid Speed up

4-bit 5x5 MM 15500 45.48 26.42 1.72

8-bit 5x5 MM 63000 184.23 96.61 1.91

4-bit 10x10 MM 126000 368.22 242.55 1.52

8-bit 10x10 MM 508000 1487.21 1067.35 1.39

12-bit 10x10 MM 1146000 3234.93 2356.41 1.37

16-bit 10x10 MM 2040000 5636.27 4185.36 1.35

4-bit 20x20 MM 1016000 3153.26 2346.86 1.34

8-bit 20x20 MM 4080000 12638.08 9378.26 1.35

• Software garbler vs BEST FPGA garbler on AWS (unit: ms)

Problem Gates Software 8AND 8XOR Hybrid Speed up

4-bit 5x5 MM 15500 659.08 26.42 24.95

8-bit 5x5 MM 63000 2684.03 96.61 27.78

4-bit 10x10 MM 126000 5391.43 242.55 22.23

8-bit 10x10 MM 508000 22031.15 1067.35 20.7

12-bit 10x10 MM 1146000 49906.86 2356.41 21.18

16-bit 10x10 MM 2040000 89392.44 4185.36 21.35

4-bit 20x20 MM 1016000 44466.74 2346.86 18.95

8-bit 20x20 MM 4080000 179168.64 9378.26 19.10

Conclusion

• We map Garbled Circuit to FPGA and the hardware design can scale to arbitrary number of
AND and XOR cores

• Our garbler gains speed up against software up to 18x for million gate examples

• Future Work

• Replace the SHA-1 cores with AES cores

• Reduce host to FPGA communication

• Map this problem to multiple nodes for big-data processing

Conclusion and Future Work

21

Thank you!

Thanks to the support of AWS
Thanks to NSF (SaTC1717213)

email : mel@coe.neu.edu

https://www.northeastern.edu/rcl/

22

https://www.northeastern.edu/rcl/

