
It's all about data movement:
Optimising FPGA data access to
boost performance

Nick Brown, EPCC at the University of Edinburgh

n.brown@epcc.ed.ac.uk

Co-author: David Dolman, Alpha Data

1

mailto:n.brown@epcc.ed.ac.uk

Met Office NERC Cloud (MONC) model

• MONC is a model we developed with the Met Office
for simulating clouds and atmospheric flows
• Advection is the most computationally intensive part of

the code at around 40% runtime

• Stencil based code

• Previously ported the advection to the ADM8K5 board

17.11.2019 2

Kintex Ultrascale
663k LUTs, 5520
DSPs, 9.4MB
BRAM

8GB
DDR4

PCIe
Gen3*8 8GB

DDR4Alpha Data’s ADM-PCIE-8K5

Previous code performance

• 67 million grid points
with a standard stratus
cloud test-case

• Approximately 7
times slower than 18
core Broadwell
• DMA transfer time

accounted for over
70% of runtime

• Using HLS and Vivado
block design
• Running at 310Mhz

17.11.2019 3

4
 c

o
re

s

12
cores

18
cores

1
2

 k
e

rn
e

ls

Previous code port

17.11.2019 4

for (unsigned int m=start_y;m<end_y;m+=BLOCKSIZE_IN_Y) {

...

for (unsigned int i=start_x;i<end_x;i++) {

for (unsigned int c=0; c < slice_size; c++) {

#pragma HLS PIPELINE II=1

// Move data in slice+1 and slice down by one in X dimension

}

for (unsigned int c=0; c < slice_size; c++) {

#pragma HLS PIPELINE II=1

// Load data for all fields from DRAM

}

for (unsigned int j=0;j<number_in_y;j++) {

for (unsigned int k=1;k<size_in_z;k++) {

#pragma HLS PIPELINE II=1

// Do calculations for U, V, W field grid points

su_vals[jk_index]=su_x+su_y+su_z;

sv_vals[jk_index]=sv_x+sv_y+sv_z;

sw_vals[jk_index]=sw_x+sw_y+sw_z;

}

}

for (unsigned int c=0; c < slice_size; c++) {

#pragma HLS PIPELINE II=1

// Write data for all fields to DRAM

}

}

}

• Operates on 3 fields
• 53 double precision floating

point operations per grid cell
for all three fields
• 32 double precision

floating point
multiplications, 21
floating point additions
or subtractions

Finding out where the bottlenecks were

• Wanted to understand the overhead in different parts of the code due to
memory access bottlenecks
• Found that 14% of runtime was doing compute by the kernel, 86% on memory access!

• But whereabouts in the code should we target?
• The reading and writing of each slice of data was by far the highest overhead

17.11.2019 5

profiler_commands->write(BLOCK_1_START);

ap_wait();

function_to_execute(.....);

ap_wait();

{

#pragma HLS protocol fixed

profiler_commands->write(BLOCK_1_END);

ap_wait();

}

Profile HLS block accumulates timings for different parts
of the code, and then reports them all back to the
advection kernel when it completes.

Acting on the profiling data!

17.11.2019 6

Description Total Runtime
(ms)

% in
compute

Load data
(ms)

Prepare stencil &
compute results (ms)

Write data
(ms)

Initial version 584.65 14% 320.82 80.56 173.22

Split out DRAM connected ports 490.98 17% 256.76 80.56 140.65

Run concurrent loading and storing
via dataflow directive

189.64 30% 53.43 57.28 75.65

Include X dimension of cube in the
dataflow region

522.34 10% 198.53 53.88 265.43

Include X dimension of cube in the
dataflow region (optimised)

163.43 33% 45.65 53.88 59.86

256 bit DRAM connected ports 65.41 82% 3.44 53.88 4.48

256 bit DRAM connected ports issue 4
doubles per cycle

63.49 85% 2.72 53.88 3.60

These timings are the compute time of a single HLS kernel, ignoring DMA transfer, for problem size of 16.7 million grid cells

Split out DRAM connected ports

• By splitting into different ports meant that we can
perform external data access concurrently
• From 14% to 17% - reduced data access overhead from

86% to 82%
• A slight improvement but clearly a rethink was required!

17.11.2019 7

for (unsigned int c=0; c < slice_size; c++) {

#pragma HLS PIPELINE II=1

// Load data for all fields from DRAM

int read_index=start_read_index+c;

u_vals[c]=u[read_index];

v_vals[c]=v[read_index];

w_vals[c]=w[read_index];

}

for (unsigned int c=0; c < slice_size; c++) {

#pragma HLS PIPELINE II=1

// Load data for U field from DRAM

u_vals[c]=u[start_read_index+c];

}

for (unsigned int c=0; c < slice_size; c++) {

#pragma HLS PIPELINE II=1

// Load data for V field from DRAM

v_vals[c]=v[start_read_index+c];

}

for (unsigned int c=0; c < slice_size; c++) {

#pragma HLS PIPELINE II=1

// Load data for W field from DRAM

w_vals[c]=w[start_read_index+c];

}

Run concurrent loading and storing via
dataflow directive

17.11.2019 8

for (unsigned int m=start_y;m<end_y;m+=BLOCKSIZE_IN_Y) {

...

for (unsigned int i=start_x;i<end_x;i++) {

for (unsigned int c=0; c < slice_size; c++) {

#pragma HLS PIPELINE II=1

// Move data in slice+1 and slice down by one in X dimension

}

for (unsigned int c=0; c < slice_size; c++) {

#pragma HLS PIPELINE II=1

// Load data for all fields from DRAM

}

for (unsigned int j=0;j<number_in_y;j++) {

for (unsigned int k=1;k<size_in_z;k++) {

#pragma HLS PIPELINE II=1

// Do calculations for U, V, W field grid points

su_vals[jk_index]=su_x+su_y+su_z;

sv_vals[jk_index]=sv_x+sv_y+sv_z;

sw_vals[jk_index]=sw_x+sw_y+sw_z;

}

}

for (unsigned int c=0; c < slice_size; c++) {

#pragma HLS PIPELINE II=1

// Write data for all fields to DRAM

}

}

}

• But each part runs sequentially for each slice:
1. Move data in slice+1 and slice down in X by 1
2. Load data for all fields into DRAM
3. Do calculations for U,V,W field grid points
4. Write data for fields to DRAM

• Instead, can we run these concurrently for
each slice?

Run concurrent loading and storing via
dataflow directive

17.11.2019 9

• Using the HLS Dataflow directive create a pipeline of these four
activities
• These stage use FIFO queues to connect them

• Resulted in 2.60 times runtime reduction
• Reduced computation runtime by around 25%

• Over three times reduction in data access time

• Time spent in computation now 30%

Read u, v, w
from DRAM

Shift data in X
Compute
advection

results

Write
results to

DRAM

Three
double
precision
values

Three
stencil
struct
values

Three
double
precision
values

For each slice in the X dimension

Run concurrent loading and storing via
dataflow directive

17.11.2019 10

struct u_stencil {

double z, z_m1, z_p1, y_p1, x_p1, x_m1, x_m1_z_p1;

};

void retrieve_input_data(double*u,hls::stream<double>& ids){

for (unsigned int c=0;c<slice_size;c++) {

#pragma HLS PIPELINE II=1

ids.write(u[read_index]);

}

}

void shift_data_in_x(hls::stream<double> & in_data_stream_u,

hls::stream<struct u_stencil> & u_data) {

for (unsigned int c=0;c<slice_size;c++) {

#pragma HLS PIPELINE II=1

double x_p1_data_u=in_data_stream_u.read();

static struct u_stencil u_stencil_data;

// Pack u_stencil_data and shift in X

u_data.write(u_stencil_data);

}

}

void write_input_data(double * u, hls::stream<double>& ids){

for (unsigned int c=0;c<slice_size;c++) {

#pragma HLS PIPELINE II=1

u[write_index]=ids.read();

}

}

void advect_slice(hls::stream<struct u_stencil> &

u_stencil_stream, hls::stream<double> & data_stream_u) {

for (unsigned int c=0;c<slice_size;c++) {

#pragma HLS PIPELINE II=1

double su_x, su_y, su_z;

struct u_stencil u_stencil_data = u_stencil_stream.read();

// Perform advection computation kernel

data_stream_u.write(su_x+su_y+su_z);

}

}

void perform_advection(double * u) {

for (unsigned int m=start_y;m<end_y;m+=BLOCKSIZE_IN_Y) {

for (unsigned int i=start_x;i<end_x;i++) {

static hls::stream<double> data_stream_u;

#pragma HLS STREAM variable=data_stream_u depth=16

static hls::stream<double> in_data_stream_u;

#pragma HLS STREAM variable=in_data_stream_u depth=16

static hls::stream<struct u_stencil> u_stencil_stream;

#pragma HLS STREAM variable=u_stencil_stream depth=16

#pragma HLS DATAFLOW

retrieve_input_data(u, in_data_stream_u, ...);

shift_data_in_x(in_data_stream_u, u_stencil_stream, ...);

advect_slice(u_stencil_stream, data_stream_u, ...);

write_slice_data(su, data_stream_u, ...);

} }

Where we are….

17.11.2019 11

Read u, v, w
from DRAM

Shift data in X
Compute
advection

results

Write
results to

DRAM

Three
double
precision
values

Three
stencil
struct
values

Three
double
precision
values

For every slice in X and block in Y

Include X dimension of cube in the dataflow
region

17.11.2019 12

void retrieve_input_data(double*u,hls::stream<double>& ids){

for (unsigned int i=start_x;i<end_x;i++) {

int start_read_index=……;

for (unsigned int c=0;c<slice_size;c++) {

#pragma HLS PIPELINE II=1

int read_index=start_read_index+x;

ids.write(u[read_index]);

}

}

}

void perform_advection(double * u) {

for (unsigned int m=start_y;m<end_y;m+=BLOCKSIZE_IN_Y) {

...

#pragma HLS DATAFLOW

retrieve_input_data(u, in_data_stream_u, ...);

...

}

}

Sped up the compute slightly, but
data access was 3.6 times slower!

The inner loop is 28 cycles total

Readreq done for every element 25 cycles

Read 1 cycle

Include X dimension of cube in the dataflow
region

17.11.2019 13

void retrieve_input_data(double*u,hls::stream<double>& ids){

for (unsigned int i=start_x;i<end_x;i++) {

int start_read_index=……;

do_retrieve(i, u, ids);

}

}

void do_retrieve(int i, double*u, hls::stream<double>& ids){

for (unsigned int c=0;c<slice_size;c++) {

#pragma HLS PIPELINE II=1

int read_index=start_read_index+x;

ids.write(u[read_index]);

}

}

The inner loop is 3 cycles total

Readreq moved outside loop and
now only done once per slice

void retrieve_input_data(double*u,hls::stream<double>& ids){

for (unsigned int i=start_x;i<end_x;i++) {

int start_read_index=……;

for (unsigned int c=0;c<slice_size;c++) {

#pragma HLS PIPELINE II=1

int read_index=start_read_index+x;

ids.write(u[read_index]);

}

}

}

Reduced data access by
4.5 times compared to
readreq in every iteration

• Slight improvement
overall, compute now
33% of runtime

256 bit DRAM connected ports

• At the block design level, the DRAM
controllers are working at data
width of 256 bits
• Which Alpha Data tell us is optimal

for this board

• But our kernels are working with 64
bit values (double precision)
• Using a data width converter in the

AXI interconnects

• Are we throwing away bandwidth
and/or creating overhead at the
controller block?

17.11.2019 14

256 bit DRAM connected ports

17.11.2019 15

struct dram_data {

double vals[4];

};

void pw_advection(struct dram_data * su, struct dram_data * sv,

struct dram_data * sw, struct dram_data * u, struct dram_data *

v, struct dram_data * w, …) {

#pragma HLS DATA_PACK variable=su

#pragma HLS DATA_PACK variable=sv

#pragma HLS DATA_PACK variable=sw

#pragma HLS DATA_PACK variable=u

#pragma HLS DATA_PACK variable=v

#pragma HLS DATA_PACK variable=w

...

}

void do_retrieve(int i, double*u, hls::stream<double>& ids){

for (unsigned int c=0;c<y_size;c++) {

for (unsigned int j=0;j<z_size/4;j++) {

#pragma HLS PIPELINE II=1

...

struct dram_data u_dram_data=u[read_index];

for (unsigned int m=0;m<4;m++) {

ids.write(u_dram_data.vals[m]);

}

}

}

}

• Very significantly reduced DMA data
access time by 13X
• Now compute is 82% of the overall runtime

Due to
conflict on ids
the best II is 4

256 bit DRAM connected ports issue 4 doubles
per cycle

17.11.2019 16

void perform_advection(double * u) {

for (unsigned int m=start_y;m<end_y;m+=BLOCKSIZE_IN_Y) {

for (unsigned int i=start_x;i<end_x;i++) {

static hls::stream<double> data_stream_u[4];

#pragma HLS STREAM variable=data_stream_u depth=16

static hls::stream<double> in_data_stream_u[4];

#pragma HLS STREAM variable=in_data_stream_u depth=16

static hls::stream<struct u_stencil> u_stencil_stream;

#pragma HLS STREAM variable=u_stencil_stream depth=16

#pragma HLS DATAFLOW

...

} } }

void do_retrieve(int i, double*u, hls::stream<double>& ids){

for (unsigned int c=0;c<y_size;c++) {

for (unsigned int j=0;j<z_size/4;j++) {

#pragma HLS PIPELINE II=1

...

struct dram_data u_dram_data=u[read_index];

for (unsigned int m=0;m<4;m++) {

ids.write(u_dram_data.vals[m]);

}

}

}

}

void do_retrieve(int i, double*u, hls::stream<double> ids[4]){

for (unsigned int c=0;c<y_size;c++) {

for (unsigned int j=0;j<z_size/4;j++) {

#pragma HLS PIPELINE II=1

...

struct dram_data u_dram_data=u[read_index];

for (unsigned int m=0;m<4;m++) {

ids[m].write(u_dram_data.vals[m]);

}

}

}

}

No conflict on
ids so the II is
now 1

• Effectively, once the pipeline is filled,
every cycle we are loading 4 doubles
per field into our FIFO queues

4 double precision values per cycle?

• This means there are FIFO queues of width 64 double values (4 by 16
depth) between the first and second pipeline stages, and the third
and fourth.

17.11.2019 17

• The second stage is still only
consuming at a rate of one value per
cycle

• As such, does this provide a buffer
against contention on the DRAM, as if
loading stalls then there will be plenty
of values in the FIFO queues

• And when access resumes, then the
queues will quickly refill based on 4
values per cycle being loaded Aggregate HLS kernel only (no DMA transfer) time for problem

size of 16.7 million grid points (strong scaling)

Addressing DMA transfer

• Previously we waited for all PCIe data transfer to complete, and then
kernels were started based on a static decomposition. Only once all
computation was completed did results get transferred back
• DMA was responsible for over 70% of the runtime!

17.11.2019 18

• Modified to be far more
dynamic
• Split data into chunks and

when complete start a kernel if
one is idle

• As soon as kernel completes
begin results transfer back to
the host

Full performance comparison

• 67 million grid points
with a standard stratus
cloud test-case
• Including DMA transfer

• Now only 8 HLS kernels
as new version required
increased resources

• We outperform 18 cores
of Broadwell now
• 8 HLS kernels: 148ms
• 18 Broadwell: 180ms

17.11.2019 19

4
 c

o
re

s

12
cores 18

cores 1
2

 k
e

rn
e

ls

8
kernels

Performance comparison

• Scaling size of the domain
• We outperform 18 cores of

Broadwell until 268M grid
points

• 1M: FPGA 2.59 times faster
• DMA accounts for 2% of RT

• 4M: FPGA 1.52 times faster
• 16M: Approaches are

comparable
• 67M: FPGA 1.22 times faster
• 268: Broadwell 1.23 times

faster
• DMA accounts for > 40% of RT
• Over 12GB of data transferred

to or from the PCIe card

17.11.2019 20

GFLOP/s

17.11.2019 21

• FPGA draws 28.9 Watts
idle and 35.7 Watts
under load
• Vivado estimates power

draw to be 23 Watts

• Don’t have power
measurement fitted to
the Broadwell, but TDP
is 120 Watts

Conclusions and further work

• Data movement is another example of having to think dataflow
• Tempting to focus on precision of operations, but if the computation is only

responsible for a small amount of the overall runtime then that’s going to have
limited impact.

• Critically important for us to have a rich profiling environment enabling detailed
performance analysis of kernels.

17.11.2019 22

• High Bandwidth Memory (HBM) would be very interesting to explore to see if
we can increase our 85% of time in compute even further

• Further developing our DMA streaming approach to be driven more by the
FPGA rather than the host explicitly starting kernels

• Detailed power analysis and comparison on the CPU

