[
. N
a*si:EXCELLERAT

It's all about data movement:
Optimising FPGA data access to

boost performance

Nick Brown, EPCC at the University of Edinburg

epCC

h
n.brown@epcc.ed.ac.uk IALP H A DATA
Co-author: David Dolman, Alpha Data /

mailto:n.brown@epcc.ed.ac.uk

Met Office NERC Cloud (MONC) model

om
“u*;iEXCELLERAT
* MONC is a model we developed with the Met Office o / povin |
for simulating clouds and atmospheric flows - usion
* Advection is the most computationally intensive part of Dmfmics / wsctw
the code at around 40% runtime ot \ wtns
 Stencil based code 1 I
* Previously ported the advection to the ADM8K5 board i \ Buwfw
Kintex Ultrascale L
663k LUTs, 5520 SGB
PN DSPs, 9.4MB DDR4
Y. " BRAM
A4 1
T PCle
Gen3*8 Alpha Data’s ADM-PCIE-8K5 if)f? p

(7.11.2018 2

Previous code performance B 5

* 67 million grid points o
with a standard stratus
cloud test-case

* Approximately 7
times slower than 18
core Broadwell

e DMA transfer time
accounted for over
70% of runtime

* Using HLS and Vivado cores

block design I .

o Running at 310|\/| hZ Sandybridge Ilvybridge Broadwell FPGA
Technology

(7.11.2018 3

m Optimal performance Four cores

1000

BOO

600

400 12

Runtime (milliseconds)

12 kernels

18

200

Previous code port .
Ji:EXCELLERAT

|
for (unsigned int m=start y;m<end y;m+=BLOCKSIZE IN Y) {

for (unsigned int i=start x;i<end x;i++) {
for (unsigned int c=0; ¢ < slice size; c++) {
#pragma HLS PIPELINE II=1
// Move data in slice+l and slice down by one in X dimension

}

for (unsigned int c=0; ¢ < slice size; c++) {
#pragma HLS PIPELINE II=1
// Load data for all fields from DRAM

Z dimension

}

for (unsigned int j=0;j<number in y;Jj++) { Y dimension
for (unsigned int k=1;k<size in z;k++) { ° Operates on 3 f|e|dS
#pragma HLS PIPELINE II=1 o .
// Do calculations for U, V, W field grid points * 53 double precision floating
SELERES s el eRd SO R GRSIeL FARICE 22 point operations per grid cell
sv_vals[Jjk index]=sv_x+sv _y+sv_ z; .]
sw vals[jk index]=sw x+sw_y+sw z; for all three fields
} s * 32 double precision
for (unsigned int c=0; ¢ < slice size; c++) { ﬂoating pOint :
// Write data for all fields to DRAM .) ree A
) floating point additions
} or subtractions |

(7.11.2018

Finding out where the bottlenecks were -

profiler commands->write (BLOCK 1 START);
ap wait();

function to execute(.....),

ap wait();

{
ffpragma HLS protocol fixed
profiler commands->write (BLOCK 1 END);
ap wait();

}

memory access bottlenecks

* Found that 14% of runtime was doing compute by the kernel, 86% on memory access!

Eeb = Vaad™ HLS i dat rt 4
4 profiler_values ¥ f.lm‘axl‘ : a‘dpov w = ofile O
rofiler_commands, "
s_axi_aclk [ap_clk ‘ : - inte;rup;'- | R
s_axi_aresetn ap_rst_n
axI [RS j + in_commands_ [’*l-”""“] output V +t
ap ‘

pw_advection_1

5_axi_CTRL_BUS [m:|4- 5_axi CTRL_BUS

%= EXCELLERAT

axi_protocol_conve t_0
Pw_advection (Pre-Production) -k m_axi TIMER BUS {7
rst c 2 ac .“.
—@ aresetn
Profile { Pre-Production)
AXl Protocol Convert:
axi_timer_0
Profile HLS block accumulates timings for different parts -
of the code, and then reports them all back to the T o
. . . axi interrupt
advection kernel when it completes. o aresein
AN T

Wanted to understand the overhead in different parts of the code due to

* But whereabouts in the code should we target?

* The reading and writing of each slice of data was by far the highest overhead

(7.11.2018]

{ > m_axi_data_port

Acting on the profiling data! =

B
(]
Ji:EXCELLERAT

Description Total Runtime % in Load data Prepare stencil & Write data

(ms) compute (ms) compute results (ms) (ms)
Initial version 584.65 14% 320.82 80.56 173.22
Split out DRAM connected ports 490.98 17% 256.76 80.56 140.65
Run concurrent loading and storing 189.64 30% 53.43 57.28 75.65
via dataflow directive
Include X dimension of cube in the 522.34 10% 198.53 53.88 265.43
dataflow region
Include X dimension of cube in the 163.43 33% 45.65 53.88 59.86
dataflow region (optimised)
256 bit DRAM connected ports 65.41 82% 3.44 53.88 4.48
256 bit DRAM connected ports issue 4 63.49 85% 2.72 53.88 3.60

doubles per cycle

These timings are the compute time of a single HLS kernel, ignoring DMA transfer, for problem size of 16.7 million grid cells

(7.11.2018 b

Split out DRAM connected ports

for (unsigned int c=0; c < slice size; c++) {
#pragma HLS PIPELINE II=1
// Load data for U field from DRAM
u vals[c]=u[start read index+c];
}
for (unsigned int c=0; c < slice size; c++) {
#pragma HLS PIPELINE II=1
// Load data for V field from DRAM
v_vals[c]=v[start read index+c];

}
for (unsigned int c¢=0; c < slice size; c++) {
#pragma HLS PIPELINE II=1

// Load data for W field from DRAM

w vals[c]=w[start read index+c];

}
* By splitting into different ports meant that we can
perform external data access concurrently

* From 14% to 17% - reduced data access overhead from
86% to 82%

* Aslight improvement but clearly a rethink was required!

(7.11.2018

[
. N
a*si:EXCELLERAT

(unsigned int c¢c=0; c < slice size; c++) {
#pragma HLS PIPELINE II=1

// Load data for all fields from DRAM
int read index=start read index+c;

u vals[c]=u[read index];
v_vals[c]=v[read index];

w vals[c]=w[read index];

ax
 ——
e 301 AN
pr— 07 AN
e
. ANELETN
500 ALK "8
X
et o=l Eo8 B . =
—wmax gXg D
W AW
S5 ACLS
b+ S2)_APESETH
T s X
. - SEL ANESE
nt 1 4
TRL BUS [e+ % 30t CTH,_ R 50D + {imd s
of e Bl 85
tn T—e—eQ o 2 3 o f— | Y .""
- =
- S am = N— 2N
- =
e AL
. -
14— sx l;l
s 200 ™ B W & —Dv"
— n .~X_.
b
. -
vo-

BURE
o B B
4 2

Run concurrent loading and storing via I
dataflow directive n N7

| ;ﬁE:EFE}“{[::EEI.[.EEF!‘B(1-
for (unsigned int m=start y;m<end y;m+=BLOCKSIZE IN Y) {

for (unsigned int i=start x;i<end x;i++) {
for (unsigned int c=0; ¢ < slice size; c++) {
#pragma HLS PIPELINE II=1
// Move data in slice+l and slice down by one in X dimension

} c
for (unsigned int c¢=0; ¢ < slice size; c++) { o //////
#pragma HLS PIPELINE II-=1 ©
// Load data for all fields from DRAM %
} N
for (unsigned int J=0;j<number in y;j++) { Y dimension
for (unsigned int k=1;k<size in z;k++) {
#fpragma HLS PIPELINE II=1 . . .
/7 Do calculations for U, V, W field grid points e But each part runs sequentially for each slice:
su_vals[Jk_index]=su_xtsu_ytsu z; 1. Move data in slice+1 and slice down in X by 1
sv vals[Jjk index]=sv x+sv y+sv z; . .
e e] e e A e e 2. Load data for all fields into DRAM
} 3. Do calculations for U,V,W field grid points
} . .
for (unsigned int c=0; c¢ < slice size; c++) { 4 erte data fOI" fIEIdS to DRAM
#pragma HLS PIPELINE II=1
// Write data for all fields to DRAM
| * Instead, can we run these concurrently for

each slice?

(7.11.2018

Run concurrent loading and storing via |

o =
dataflow directive " ii:EXCELLERAT

For each slice in the X dimension
Three Three

Three

Compute Write
Read u, v, w | double . . stencil P . double
— Shift data in X » advection — results to
from DRAM | precision struct precision
values values results values DRAM

* Using the HLS Dataflow directive create a pipeline of these four

ac.t|V|t|es — e o
These stage use FIFO queues to connect them ..., T - -
Split out DRAM connected ports 450.98 17% 256.76 80.56 140.65

e Resulted in 2.60 times runtime reduction o TN
- Reduced computation untime byaround 25% = L L L L L

e Over three times reduction in data access time ZZL"SZZLZ":ZJZZZZZ':LS. e e

. Time Spent in Computation nOW 30% ;zﬁ:::sD:::ﬁvz?ennededports:ssued 63.49 85% 2.72 53.88 360

(7.11.2018 3

Run concurrent loading and storing via

dataflow directive

. N
a*si:EXCELLERAT

struct u_stencil {
double z, z ml,

¥

z pl, vy pl, x pl, x ml, x ml z pl;

void retrieve input data(double*u,hls::stream<double>& ids) {
for (unsigned int c=0;c<slice size;c++) {
#pragma HLS PIPELINE II=1
ids.write(u[read index]);

void advect slice(hls::stream<struct u stencil> &

u_stencil stream, hls::stream<double> & data stream u) {
for (unsigned int c=0;c<slice size;c++) {

#pragma HLS PIPELINE II=1

double su x, su y, su z;

struct u stencil u stencil data = u stencil stream.read();

// Perform advection computation kernel
data stream u.write(su_ x+su y+su z);

}

void shift data in x(hls::stream<double> & in data stream u,
hls::stream<struct u stencil> & u data) ({
for (unsigned int c=0;c<slice size;c++) {

#pragma HLS PIPELINE II=1

double x pl data u=in data stream u.read();

static struct u stencil u stencil data;

// Pack u_stencil data and shift in X

u data.write(u stencil data);

}

void write input data(double * u, hls::stream<double>& ids) {
for (unsigned int c=0;c<slice size;c++) {
#pragma HLS PIPELINE II=1
ul[write index]=ids.read();

void perform advection (double * u) {
for (unsigned int m=start y;m<end y;m+=BLOCKSIZE IN Y) {
for (unsigned int i=start x;i<end x;i++) {
static hls::stream<double> data stream u;
#pragma HLS STREAM variable=data stream u depth=16
static hls::stream<double> in data stream u;
#pragma HLS STREAM variable=in data stream u depth=16
static hls::stream<struct u stencil> u stencil stream;
#pragma HLS STREAM variable=u stencil stream depth=16

#pragma HLS DATAFLOW
retrieve input data(u, in data stream u, ...);
shift data in x(in data stream u, u stencil stream,
advect slice(u stencil stream, data stream u, ...);
write slice data(su, data stream u, ...);

(7.11.2018

Z dimension

Where we are....

For every slice in X and block in Y

JiEXCELLERAT

Read u, v, w
from DRAM

Three Three. Compute Three Write
double . . stencil . double

— Shift datain X » advection — results to
precision struct precision
values values results values DRAM

Description Total Runtime % in Load data Prepare stencil & Write data
(ms) compute (ms) compute results (ms) (ms)

Y dimension

(7.11.2018

Initial version 584.65
Split out DRAM connected ports 490.98
Run concurrent loading and storing 189.64
via dataflowdirective

Include X dimension of cube in the 522.34
dataflow region

Include X dimension of cube in the 163.43
dataflow region (optimised)

256 bit DRAM connected ports 65.41
256 bit DRAM connected ports issue 4 63.49

doubles per cycle

14%
17%
30%

10%

33%

82%
85%

320.82
256.76
53.43

198.53

45.65

3.44
2.72

80.56
80.56
57.28

53.88

53.88

53.88
53.88

173.22
140.65
75.65

265.43

59.86

4,48
3.60

Include X dimension of cube in the dataflow I
. . &
e "at3i-EXCELLERAT

void retrieve input data(double*u,hls::stream<double>& ids) { Readreq donefor every element 25 cycles
#pragma HLS PIPELINE II=1 u_vals_addr 1. i i s(readreq) i
int read index=start read index+x; u vals addr read{read) 1
= == 1

ids.write (u[read index]); node 165{write)

node 166{write)
node 167(write)

for (unsigned int i=start x;i<end x;i++) {
int start read index=...;)
for (unsigned int c=0;c<slice size;c++) { sum_i i i(+) 1 i i i i i | i

L=l

} A

Read 1 cycle

void perform advection (double * u) { \
for (unsigned int m=start y;m<end y;m+=BLOCKSIZE IN Y) { The inner /OOp iS 28 cycles tOtG/

#pragma HLS DATAFLOW
retrieve input data(u, in data stream u, ...);

Sped up the compute slightly, but / / /
data access was 3.6 times slower!

Z dimension
L/

Y dimension

(7.11.2018

Include X dimension of cube in the dataflow N

region

void retrieve input data (double*u,hls::stream<double>& ids) {

for (unsigned int i=start x;i<end x;i++) {
int start read index=...;
for (unsigned int c=0;c<slice size;c++) {
#pragma HLS PIPELINE II=1
int read index=start read index+x;
ids.write(ul[read index]);

Readreq moved outside loop and
now only done once per slice

o N
a*si:EXCELLERAT

void retrieve input data(double*u,hls::stream<double>& ids) {
for (unsigned int i=start x;i<end x;i++) {
int start read index=...;
do retrieve(i, u, ids);

}

void do_ retrieve (int i, double*u, hls::stream<double>& ids) {
for (unsigned int c=0;c<slice size;c++) {
#pragma HLS PIPELINE II=1
int read index=start read index+x;
ids.write(ulread index]);

}
The inner loop is 3 cycles total
Reduced data access by

i 8§ 8§ 8§ § 8§ § .\I

u_vals_addr rd req(readreq)

node 32(write)

(7.11.2018

! L | L I | L | L I | L | L I | L | L I | L | L I |
j(phi_mux)
tmp(icmp)
i1+
u vals_addr read(read)

4.5 times compared to
readreq in every iteration
e Slight improvement

overall, compute now
33% of runtime

256 bit DRAM connected ports _E -

&
w';snEXCELLERAT
— * At the block design level, the DRAM
= =" | gss=s, controllers are working at data
' ' : i * Which Alpha Data tell us is optimal
: i for this board
N * But our kernels are working with 64
o bit values (double precision)
—— ’ g ' * Using a data width converter in the
— g g AXI interconnects
= % : "« Are we throwing away bandwidth
= and/or creating overhead at the
controller block?

(7.11.2018

256 bit DRAM connected ports - _-
"arii-EXCELLERAT

struct dram data { void do retrieve (int i, double*u, hls::stream<double>& ids) {
double vals([4]; for (unsigned int c=0;c<y size;c++) {
b for (unsigned int j=0;j<z_size/4;j++) {

#pragma HLS PIPELINE II=1
void pw_advection(struct dram data * su, struct dram data * sv, ...
struct dram data * sw, struct dram data * u, struct dram data * struct dram data u dram data=ul[read index];

v, struct dram data * w, ..) { for (unsigned int m=0;m<4;m++) { Due to
#pragma HLS DATA PACK variable=su ids.write(u dram data.vals[m]); conflict on ids
#pragma HLS DATA PACK variable=sv } the best Il is 4
#pragma HLS DATA PACK variable=sw }

#pragma HLS DATA PACK variable=u }

#pragma HLS DATA PACK variable=v
#pragma HLS DATA PACK variable=w

—--_-
(ms) (ms} | compute results {ms) (ms)

Initial version 584.65 320.82 80.56 173.22
J Splitout DRAM connected ports 490.98 17% 256.76 80.56 140.65
Run concurrent loading and storing 189.64 30% 53.43 57.28 75.65

via dataflow directive

o Ve ry S|g N |f| cant I y e d uce d D M A d ata Include X dimension of cube in the 522.34 10% 19853 53.88 265.43

dataflow region

access t | me by 1 3 X Include X dimension of cube in the 163.43 33% 45.65 53.88 59.86

dataflow region (optimised)
256 bit DRAM connected ports 65.41 82% 3.44 53.88 4.48

¢ NOW CompUte iS 82% Of the Overa” ru ntime 256 bit DRAM connected ports issue 4 63.49 85% 2.72 53.88 3.60

doubles per cycle

(7.11.2018

256 bit DRAM connected ports issue 4 doubles

per cycle

void do_ retrieve (int i,
(unsigned int c=0;c<y size;c++)

for
for

for

double*u,

hls::stream<double>& ids) {

(unsigned int j=0;j<z_size/4;j++) {
#pragma HLS PIPELINE II=1

{

ids.write(u dram data.vals[m]);

struct dram data u dram data=ul[read index];
(unsigned int m=0;m<4;m++)

e Effectively, once the pipeline is filled,
every cycle we are loading 4 doubles
per field into our FIFO queues

Readu, v, w
from DRAM

Four double
precision

L 4

values per
field (12)

(7.11.2018

Prepare stencil
and shift data
in X

Three

stencil

struct
values

Compute
advection
results

void do retrieve (int i,

Three
double

4

precision

Write
results to
DRAM

values

[
. N
a*si:EXCELLERAT

double*u, hls::stream<double> ids[4]) {
(unsigned int c=0;c<y size;c++) {
(unsigned int j=0;j<z_size/4;j++) {

for
for

#pragma HLS PIPELINE II=1

struct dram data u dram data=ul[read index];

for (unsigned int m=0;m<4;m++) { No conflict on
ids[m] .write (u dram data.vals[m]); ids so the Il is
} now 1

void perform advection (double * u) {

(unsigned int m=start y;m<end y;m+=BLOCKSIZE IN Y) {
for (unsigned int i=start x;i<end x;i++) {
static hls::stream<double> data stream ul4];
#pragma HLS STREAM variable=data stream u depth=16
static hls::stream<double> in data stream uf[4];
#pragma HLS STREAM variable=in data stream u depth=16
static hls::stream<struct u stencil> u stencil stream;
#pragma HLS STREAM variable=u stencil stream depth=16

for

#pragma HLS DATAFLOW

4 double precision values per cycle? m = -
&}
- 'EXCELLERAT

| ..
* This means there are FIFO queues of width 64 double values (4 by 16

depth) between the first and second pipeline stages, and the third
and fOu rth 1000 —— Concurrent load and store only

= = 256 bits port width

 The second stage is stillonly | . 156 bit port widkh and i
consuming at a rate of one value per
cycle

* As such, does this provide a buffer
against contention on the DRAM, as if
loading stalls then there will be plenty
of values in the FIFO queues

 And when access resumes, then the 1 2 4 8
queues will quickly refill based on 4 Humberof advection HLS kemels
values per cycle being loaded

ssue 4 data elements per cycle

ww | e mm=m==—T"

ssEEmsEEESEEEsEEEEEEEEEERE
. apsuEmsminE®
uuu---..---.-.--
TTLLLLLE]

Total runtime (ms)

Aggregate HLS kernel only (no DMA transfer) time for problem
size of 16.7 million grid points (strong scaling)

(7.11.2018

Addressing DMA transfer N _
“ar;2:EXCELLERAT

* Previously we waited for all PCle data transfer to complete, and then
kernels were started based on a static decomposition. Only once all
computation was completed did results get transferred back

« DMA was responsible for over 70% of the runtime!

 Modified to be far more
dynamic

e Split data into chunks and
when complete start a kernel if

pes00n OOO®®
* As soon as kernel completes “As kernels complete,

result data is copied As data chunks arrive kernels are

begl n results transfer back to Qesufﬁng chunks of computed dafy back via DMA read w::nched to compute on that chuny
the host Host

/Chunks of field data to campufe\ Chunks of field data is / On board DRAM \

copied across in chunks
via DMA write

Device

(7.11.2018

Full performance comparison 7 y_

* 67 million grid points 1200
with a standard stratus
cloud test-case

* Including DMA transfer

* Now only 8 HLS kernels
as new version required
increased resources

400 12

* We outperform 18 cores | cores| 18] .
* 8 HLS kernels: 148ms L o I l

e 18 Broadwell: 180ms °
Sandybridge lvybridge Broadwell Previous FPGA New FPGA
Technology

B Optimal performance [Four cores

1000

200

600

Runtime (milliseconds)

12 kernels

(7.11.2018

Performance comparison i .-
“ar;2:EXCELLERAT

* Scaling size of the domain

1000 B Broadwell 18-cores runtime . We Outperform 18 cores of
E Total FPGA runtime) .

100 O FPGA Kernel only runtime Brc_)adwell until 268M grid
:g FPGA DMA overhead points .
S] e 1M: FPGA 2.59 times faster
2 * DMA accounts for 2% of RT
E . — e AM: FPGA 1.52 times faster
- 16M: Approaches are
= comparable

0-1 e 67M: FPGA 1.22 times faster
§ e 268: Broadwell 1.23 times
0.01 faster

1M 16M

Number of grid cells

e DMA accounts for > 40% of RT

e Qver 12GB of data transferred
to or from the PCle card

(7.11.2018

GFLOP/s .,
FXCELLERAT

e FPGA draws 28.9 Watts
idle and 35.7 Watts

T FPGA Kernel Total FPGA Broadwell
Grid size G pp OP/s GFLOP/s GFLOP/s under load
™ 75 5 347 03 * Vivado estimates power
AM 6.5 23 6 15.4 draw to be 23 Watts
16M 42.4 18.8 19.6
268M 38.1 24.4 30.2 measurement fitted to

the Broadwell, but TDP
Is 120 Watts

(7.11.2018

Conclusions and further work - ..
" = iEXCELLERAT

* Data movement is another example of having to think dataflow

* Tempting to focus on precision of operations, but if the computation is only
responsible for a small amount of the overall runtime then that’s going to have
limited impact.

* Critically important for us to have a rich profiling environment enabling detailed
performance analysis of kernels.

* High Bandwidth Memory (HBM) would be very interesting to explore to see if
we can increase our 85% of time in compute even further

* Further developing our DMA streaming approach to be driven more by the
FPGA rather than the host explicitly starting kernels

e Detailed power analysis and comparison on the CPU

(7.11.2018

