
2GRVI Phalanx: A 1332-core RISC-V RV64I Processor Cluster Array with an HBM2 High Bandwidth

Memory System, and an OpenCL-like Programming Model, In a Xilinx VU37P FPGA [WIP Report]

Jan Gray | Gray Research LLC | Bellevue, WA, USA | jan@fpga.org | http://fpga.org

2GRVI (and its predecessor, GRVI) are FPGA-efficient 64b
(resp. 32b) RISC-V processing element cores. Phalanx is a parallel
processor and accelerator array overlay framework. Groups of PEs
and accelerator cores form shared memory compute clusters.
Clusters, DRAM, NICs and other I/O controllers communicate by
message passing on an FPGA-optimal Hoplite torus soft NoC. This
extended abstract summarizes work-in-progress to redesign the
2017 GRVI Phalanx to take advantage of new Xilinx FPGAs with
460 GB/s dual stack HBM2 DRAM-in-package, and to provide a
familiar parallel programming experience via an OpenCL-like
programming model and tools. The new system is the first kilocore
RV64I SoC and the first RISC-V multiprocessor with an HBM2
memory system.

I. INTRODUCTION: GRVI PHALANX

Complementing server CPUs, FPGA accelerators promise
higher throughput, lower latency, and lower energy [1]. But it is
challenging to move working software into an accelerator, and
to maintain it as the code evolves. RTL, High Level Synthesis,
and even OpenCL-to-FPGA tools have serious shortcomings,
such as high porting effort and multi-hour builds. Another
challenge is system design and timing closure of a complex SOC
comprising many cores and fast I/O and DRAM interfaces. Few
organizations succeed with FPGA accelerator development.

The present work is v2 of GRVI Phalanx [2,3], a parallel
processor overlay to simplify accelerator development. It
supports a software-first approach. A C++ or OpenCL workload
runs on the soft processors in the overlay. Then custom
instructions, accelerator cores, or memories may be introduced
to speed up bottlenecks. Most design iterations are quick
recompiles; development is more like performance engineering.

GRVI Phalanx, the first kilocore 32b RISC SoC, showed that
a frugal NoC and PEs, a replicated cluster tile architecture, and
the RISC-V ecosystem, together enable low complexity, high
throughput compute accelerators. This v1 hardware had some
shortcomings though: 1) modern big data OpenCL kernels
require PEs with 64b pointers; 2) GRVI’s 32b architecture
squanders half the bandwidth of the cluster’s 64b UltraRAMs;
and 3) in a very congested FPGA its Fmax is just 300 MHz.

Perhaps the least competitive aspect of GRVI Phalanx
performance (and of most FPGA “accelerators”) is poor DRAM
bandwidth. In accelerator cards and in AWS F1, GRVI Phalanx
is limited to four 64b DDR4 DRAM channels – far less
bandwidth than that of inexpensive GPUs, limiting the range of
interesting workloads.

II. VERSION TWO: INTRODUCING 2GRVI PHALANX

2GRVI Phalanx is tackling these and other issues. It is
redesigned for Xilinx UltraScale+ HBM2 devices [6] such as the
VU37P FPGA, with two stacks (8 GB) of HBM2 DRAM and
32 256b hardened AXI-HBM controllers, R/W up to 460 GB/s.

Fig. 1 presents an (empty) VU37P floorplan, rotated 90
degrees. It spans three SLR dies, SLR0-1-2, and includes about
1.3M 6-LUTs (not shown), 2000 36 Kb BRAMs (yellow), 960
288Kb UltraRAMs (green), 9000 DSPs (blue), 21,000 SLL
inter-SLR interconnect nets per SLR-pair (white), and most
notably 32 256b @ 450 MHz AXI-HBM bridges [7] (magenta)
across the base of SLR die 0. These bridges incorporate a switch
between the AXI ports and the HBM memory controllers,
optionally enabling any AXI master to access memory behind
any of the 16 memory channels (32 HBM2 pseudochannels).

Figure 1: Xilinx VU37P with HBM2 Device Floorplan

But it is challenging to move data at up to 3.7 Tb/s to/from
the AXI-HBM controllers at the base of the FPGA, from/to the
various cores across the length and breadth of the device.

A very fast, very wide soft NoC is the way forward, although
at FPGA SoC frequencies (300-500 MHz) this requires many
thousands of northbound and southbound nets. (The faster the
NoC clock, the fewer nets required.) Then other clock
constraints must be considered. The GRVI PEs are too slow; the
NoC and UltraRAMs can run at 600 MHz, but the AXI-HBM
controllers’ Fmax is 450 MHz. To avoid CDCs we are targeting
and tuning the implementation to run each component at 450
MHz. At 450 MHz, a 15x15x256b Hoplite NoC [5] will carry
~200 GB/s of read data and ~200 GB/s of write data between the
HBM controllers and any FPGA clusters or I/O controllers. If
not yet full peak HBM2 bandwidth, it is nevertheless a leap
ahead for RISC-V multiprocessors, and FPGA accelerators.

III. THE 2GRVI RISC-V RV64I CORE

At just 320 LUTs/PE, GRVI still has leading soft processor
throughput÷area, but its limitations include its 32-bit width, its
300-400 MHz Fmax, and its simple scalar RISC in-order loads:
in an 8 PE GRVI cluster setting a load takes five cycles there
and back through the interconnect. This is awful in a function
epilog, reloading n callee save registers, five cycles each.

2GRVI is a new core design with lower area/bit-width,
RV64I/RV32I support, 550 MHz Fmax, and much better latency
tolerance. Using a busy-register scoreboard, loads do not stall
until/unless subsequent use of a still busy register. In an epilog
register reload, or an unrolled block copy loop, 2GRVI issues
one load each cycle. The same mechanism enables concurrent
execution and out-of-order completion of long latency FUs,
using a to-be-proposed open Custom Function Unit interface.

As with GRVI, 2GRVI is carefully technology mapped and
floorplanned for Xilinx 6-LUT FPGAs. It embraces Jan’s Razor
[4]: “In a chip multiprocessor design, strive to leave out all but
the minimal kernel set of features from each processing element,
so as to maximize processing elements per die.” This leads to a
deconstructed PE architecture where functions such as shifts,
multiplies, even byte-aligning load/store memory ports, are
factored out of the PE core such that multiple PEs share those
occasional-use resources. This gets the 64-bit 2GRVI PE core
down to just 400 LUTs; the total area overhead of the PE and its

2

share of a six PE cluster, function units, cluster interconnect, and
300b Hoplite router, is about 700 LUTs.

For highest Fmax of 550 MHz, 2GRVI implements a 4-stage
pipeline which still issues up to one instruction per cycle, but
which has a minimum ALU operation latency of two cycles.
This configuration incurs result-use stalls if an instruction
consumes the result of the prior instruction.

To mitigate result-use stalls, and 4 cycle taken branches,
2GRVI may incorporate optional two-way HW multithreading.
This would cost ~100 LUTs, including 80 LUTs to double the
physical register file to 64x64b. It remains to be seen if this
actually improves PE throughput ÷ area.

Table 1 compares and contrasts the two PE cores.

 GRVI 2GRVI

Year 2015 Q4 2019 Q2

Target 20 nm UltraScale 16nm UltraScale+

RTL Verilog System Verilog

ISA RV32I +mul/lr/sc RV64I +mul/lr/src

Area 320 LUTs 400 LUTs (sans bshift)

Fmax/congested 400/300 MHz 550/TBD MHz

Pipeline stages 2/3 2/3/4 (super-pipe’d)

Out-of-order retire - typical but optional

2 hardware threads - optional

Cluster: load II 5 cycles 1 cycle

Cluster: load to use 5 cycles 4/5/6 cycles

Cluster, peak BW 4.8 GB/s @ 300 MHz 12.8 GB/s @ 400 MHz

Table 1: 32-bit GRVI vs. new 64-bit 2GRVI

In all, the extra bit-width, load latency tolerance, and higher
Fmax affords 2GRVI clusters over twice the peak bandwidth to
the cluster RAMs vs. GRVI PEs in GRVI Phalanx, using the
same resources (LUT RAMs, block RAMs, and UltraRAMs).

The 2GRVI cluster retains the same general design as the
prior GRVI cluster: 0-8 PEs, 4-8 KB kernel instruction RAMs,
128 KB of shared banked address-interleaved cluster shared
memory, pipelined crossbar interconnect, network interface, and
32B/cycle Hoplite router. See Fig. 2. Here all interconnect
datapaths must grow from 32- to 64-bits wide.

Figure 2: GRVI/2GRVI Cluster Architecture

The device pitch of the UltraRAMs sets the resource budget
for the cluster and hence the number of processors per cluster.
In the VU37P, there are 960 URAMS in five columns of 192
URAMs. The present design assigns four URAMs per cluster,
up to 240 clusters in all, and five approximately equally sized
clusters span the die horizontally. The cluster LUT budget is
about 1.3M / 240 = 5400 6-LUTs, enough to implement PE
clusters with eight 32-bit GRVI PEs or six 64-bit 2GRVI PEs.

IV. PHALANX REDESIGN FOR HBM2 MEMORY

The redesign for VU37P entails: 1) modifying the NoC’s X
rings x Y rings topology to include at least twice as many die-
spanning vertical Y rings; 2) designing a wide, deeply pipelined
NoC-AXI RDMA bridge that can sustain write requests and
burst read requests on back to back clock cycles, 256 bits per
bridge per cycle, every cycle; and 3) increasing the Fmax of
every element of the SoC from 300 MHz to 450 MHz. At
present, the first two have been achieved, and timing
optimization work continues in the new RTL codebase.

The updated SoC interconnect is a chip-spanning 16 row by
15 column Hoplite NoC. It interconnects a 15x15 (-3) array of
GRVI/2GRVI clusters, and a row of 15 NoC-AXI RDMA
bridges. See Fig. 3.

Figure 3: 2GRVI Phalanx SoC Architecture

The NoC carries 312-bit one-flit messages, each message
comprising: 12 bit Hoplite message header, 4 bit transaction ID,
40 bit address, and 256 bits of data. Messages may carry data
from an agent (i.e. PE or accelerator) in one cluster to an agent
in another cluster, or may carry 32B DRAM write requests,
32nB burst read requests, or a stream of 32B read responses,
from an agent to/from a NoC-AXI RDMA bridge located
alongside its AXI-HBM bridge(s) at the bottom of SLR0.

A horizontal bisection of the 15 column NoC spans 9,360
nets (about 45% of the possible 21,000 SLLs that cross each pair
of Super-Logic Region dies) and the NoC’s bisection bandwidth
is 15x2x256x300 MHz = 2.3 Tb/s and at 450 MHz will be about
3.5 Tb/s. The NoC uses ~79,000 LUTs, or 6% of the VU37P
LUTs.

The SoC also incorporates a PCI-Express gen3x1 XDMA
controller. This uses ~15,000 LUTs; three PE clusters from the
first row of PE clusters are depopulated to make room.

3

V. PE↔CLUSTER RAM↔NOC↔AXI↔HBM DESIGN

HBM2 DRAM transactions are a minimum of 32B in size,
and so for performance, this is reflected in the Phalanx C++ and
OpenCL-like programming models, which currently exclusively
expose the shared memory as a 32B-block device accessed by
through a block copy API. This function performs a block write
as a stream of 32B block write request messages; and a block
read as stream of 32B-to-512B burst read request messages. A
PE writes the write data to be written, or the burst read RDMA
command, as a 32B message in its cluster RAM, then sends that
message over a NoC Y ring down to that cluster’s column’s
NoC-AXI RDMA bridge.

The bridge accepts one write or burst-read request message
per cycle; these are queued in a 300b-wide FIFO. The request at
the head of the FIFO is issued to the hard AXI-HBM bridge at a
rate of up to one 32B (256b) AXI transaction per cycle (AXI
AW+W channels or AR channel). Pending read request
response metadata move to a read response FIFO. Later (80-100
cycles later) as the AXI interface responds with a read response
(AXI R channel), the 1-16 beats of 32B of data are sent, as 32B
read response messages, back on the NoC Y ring to the requester
(or to wherever the requester specified the RDMA read response
to be sent, including multicast over the whole Phalanx).

By sending write and burst-read requests over a Y ring
column of the NoC, message ordering is preserved, as is per-PE
and per-cluster views of read and write memory access ordering.
When necessary, simple backpressure flow control, from a NoC-
AXI bridge request FIFO ‘nearing capacity high water mark’
signal to the clusters on its Y-ring, suspends memory access
request message sends at the source(s).

VI. STATUS

A 1776 PE 32-bit GRVI Phalanx now runs in a VU37P-ES1
in a Xilinx Alveo U280-ES1 card. It has the topology of Fig. 3,
with 222 clusters of eight GRVI PEs. See Fig. 4.

Figure 4: 1776 PE 32-bit GRVI Phalanx with HBM

A 1332 PE 64-bit 2GRVI Phalanx also runs in a VU37P-
ES1. It too also has the topology of Fig. 3, with 222 clusters of
PEs, but here clusters are six 2GRVI PEs, not eight, due to the
larger PEs, and the substantially larger 64-bit local cluster
interconnect. See Fig. 5.

Figure 5: 1332 PE 64-bit 2GRVI Phalanx with HBM

Both SoCs currently run at 300 MHz, however the nascent
2GRVI system is designed for 400-450 MHz operation, and its
planned timing improvement work is expected by H2RC 2019.

At 300 MHz, a row of 15 clusters with 3 PEs/s, issuing a
series of back to back 32B writes and 512B burst reads, to 15
NoC-AXI RDMA bridges, each connected to two hard AXI-
HBM bridges, writes at 130 GB/s, while simultaneously burst
reading data at (precise figure TBD but over 100) GB/s.

At present it is extremely difficult to measure the power
consumption of these SoCs in situ on the Alveo U280-ES1
accelerator card. But for the 1776 PE design, at 300 MHz,
Vivado estimates power at 109 W, including: clocks: 8 W;
LUTs: 26 W; interconnect: 39 W; BRAM: 5 W; URAM: 6 W;
HBM: 16 W; static power: 9 W. However, comparable GRVI
Phalanx designs, measured on a VU9P, at 250 MHz, had a
power/PE (including PE’s share of interconnect, NoC, RAMs,
etc.) of 18-24 mW/PE, so this estimate is probably conservative.

Once the system RTL is integrated with the SDAccel-for-
RTL system and its shell (following section) it will be possible
to measure system power using the SDAccel software. This too
is expected by H2RC 2019.

VII. TOWARDS AN OPENCL-LIKE MODEL AND TOOLS

To date, GRVI Phalanx and 2GRVI Phalanx have been
programmed in explicitly placed, explicitly scheduled, bare
metal C++ with a simple message passing library. This is too
basic, too low level, and too unfamiliar to most programmers.

Now with availability of U280 and U50 accelerator cards,
2GRVI Phalanx for HBM-FPGAs can build upon the Xilinx
SDAccel (OpenCL) for RTL tools. Here the host-side code is
standard (Xilinx supported) OpenCL, copying buffer data
to/from the FPGA, and scheduling and invoking OpenCL
kernels in the FPGA. (SDAccel-for-RTL is also available on
AWS F1, simplifying the back-port of 2GRVI Phalanx to F1.)

Unlike SDAccel’s conventional single-work-item OpenCL-
to-FPGA-kernel flow, which incurs several hours of place and
route time per design iteration to build a new kernel bitstream,
here a 2GRVI Phalanx overlay will directly execute OpenCL
kernels in software in the many RISC-V PEs across the Phalanx
overlay. (It is an open design question how OpenCL kernel
developers might access any FPGA custom instructions and
standalone accelerator cores.) In this model, an OpenCL work
item runs on and corresponds to a 2GRVI PE, and an OpenCL
work group, which provides shared memory across a set of work

4

items, corresponds to a PE cluster. A parallel kernel invocation
will execute across the many clusters of PEs in the Phalanx.

As with most GPU OpenCL NDRange memory-based
kernels’ execution, the typical workgroup will block copy its
input data from DRAM (here an HBM2 channel) to group-
shared memory (here cluster RAM); compute on it locally
(across work items / RISC-V PEs); then block copy back the
result data to DRAM.

Since there does not yet exist an OpenCL kernel compiler
for RISC-V, instead an OpenCL-like runtime library and some
macros will implement the OpenCL memory hierarchy types
and kernel runtime functions including get_work_item, barrier,
and (new) burst write/burst read block copy routines. The
resulting OpenCL-like integer vector add kernel might read:

kernel void vector_add(
 global int* g_a,
 global int* g_b,
 global int* g_sum,
 const unsigned n)
{
 local align int a[N], b[N], sum[N];
 int iloc = get_local_id(0) * n;
 int iglb = (get_group_id(0) * get_local_size(0)
 + get_local_id(0)) * n;
 int size = n * sizeof(int);
 copy(a + iloc, g_a + iglb, size);
 copy(b + iloc, g_b + iglb, size);
 barrier(CLK_LOCAL_MEM_FENCE);

 for (int i = 0; i < n; ++i)
 sum[i] += a[i] + b[i];
 barrier(CLK_LOCAL_MEM_FENCE);

 copy(g_sum + iglb, sum + iloc, size);
}

Of course, even with an HBM2 memory system, external
DRAM is slow and energy-inefficient. When aiming data at
memory it is better to miss it entirely. Besides support for the
classic memory copying kernel pattern (above), we aspire to also
provide OpenCL pipes support, so that many concurrent
OpenCL kernels may be composed together in a dataflow
pipeline. Here again the kernel workgroup invocations will map
to clusters, and with clusters composed by (on-die) message
passing over the NoC, rather than by exchanging buffers in in
HBM DRAM.

VIII. XILINX HBM FPGAS: RESEARCH DIRECTIONS

To obtain the full bandwidth of the Xilinx VU3xP/VU4xP
HBM2 memory system requires the SoC master all 32 AXI-
HBM bridges, at full frequency. In addition, for best channel
efficiency, memory channels need long burst transactions – at
least two beats (64 B), and ideally longer.

Also, as noted, the array of hard AXI-HBM bridges
incorporates a switch so that any AXI master may access any
memory bank. However, the switch is not a full-bandwidth
crossbar, so there may be at most two eastbound transactions and
two westbound transactions through any vertical section of the
switch at any instant. That’s only about 50 GB/s of bisection
bandwidth across the switch. Perhaps it is better to use the 2D
torus Hoplite NoC itself as the horizontal interconnect to ensure
accesses to a given bank originate via an AXI bridge adjacent to
that bank’s memory controller.

It is also unclear how to best expose the HBM memory
system as an abstraction to software. For example, if you
provide byte granularity loads and stores to HBM (which
hardware supports), when software developers use that facility,
you have lured them into a low performance design pattern.

To date Phalanx has eschewed caches, but the 2GRVI
Phalanx HBM design might adopt small distributed last level
caches at the AXI-HBM bridges to reduce access latency of hot
blocks of data. However the utility of such caches as bandwidth
filters is reduced in a device with such abundant bandwidth!

Another promising area of research will explore enhancing
the NoC-AXI RDMA bridges to perform a variety of “remote
computing at the memory interface” functionality such as:
scatter/gather accesses, block zero, block copy, add to memory,
checksum, select, reduce, regexp, sort, and decompress. Such
“compute at the memory” controllers should reduce the need for
ultimate FPGA-spanning full HBM bandwidth R/W.

IX. XILINX HBM FPGAS: IMPRESSIONS, AND THE

DEMOCRATIZATION OF HBM MEMORY SYSTEMS

 We have had access to an Alveo U280-ES1 with a VU37P-
ES1 for approximately ten weeks. We have found that the hard
AXI-HBM bridges are easy to design to. The bridges’ switch
simplifies SoC interconnect implementation, and compared with
other UltraScale+ FPGAs such as VU9P, here the provision of
32 hard AXI-HBM bridges saves 100,000s of LUTs previously
spent on soft DDR4 DRAM controllers (15-20 KLUTs each)
and on many 10K LUT soft AXI interconnects. These hard
HBM interfaces also make easy work of DRAM timing closure.

Now with the availability of HBM FPGAs, scientists and
engineers have access to high bandwidth memory systems in
excess of 400 GB/s, leapfrogging x86 PC bandwidth, and
approximately matching GPU bandwidth. This heralds a golden
age for custom HPC and datacenter accelerators.

X. ACKNOWLEDGEMENTS

 We thank Paul Hartke of Xilinx Research Labs for access to
an Alveo U280-ES1 card with VU37P-ES1 used in the
development and testing of the two kilocore HBM Phalanxes.

REFERENCES

[1] A. Putnam, et al, A reconfigurable fabric for accelerating large-scale
datacenter services, in 41st ISCA, June 2014.

[2] J. Gray. GRVI-Phalanx: A Massively Parallel RISC-V FPGA
Accelerator Accelerator. In Proc. 24th IEEE FCCM, May 2016.

[3] J. Gray, GRVI Phalanx: …: A 1680-core, 26 MB Parallel Processor
Overlay for Xilinx UltraScale+ VU9P, poster, Hot Chips 2017
http://fpga.org/wp-content/uploads/2017/08/HotChips29-GRVI-Phalanx-extd-abs.pdf

[4] J. Gray, FPGA CPU News, Multiprocessors, resource sharing, and all
that, Blog post, March 5, 2002
http://www.fpgacpu.org/log/mar02.html#020305

[5] N. Kapre and J. Gray. 2017. Hoplite: A Deflection-Routed Directional
Torus NoC for FPGAs. ACM Trans. Reconfigurable Technol. Syst. 10,
2, Article 14 (March 2017), 24 pages. DOI:
https://doi.org/10.1145/3027486

[6] Xilinx, Virtex UltraScale+ HBM FPGA Product Brief
https://www.xilinx.com/publications/product-briefs/virtex-ultrascale-plus-hbm-product-brief.pdf

[7] Xilinx, AXI High Bandwidth Memory Controller v1.0
https://www.xilinx.com/support/documentation/ip_documentation/hbm/v1_0/pg276-axi-hbm.pdf

http://fpga.org/wp-content/uploads/2017/08/HotChips29-GRVI-Phalanx-extd-abs.pdf
http://www.fpgacpu.org/log/mar02.html#020305
https://www.xilinx.com/publications/product-briefs/virtex-ultrascale-plus-hbm-product-brief.pdf
https://www.xilinx.com/support/documentation/ip_documentation/hbm/v1_0/pg276-axi-hbm.pdf

