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2GRVI (and its predecessor, GRVI) are FPGA-efficient 64b 
(resp. 32b) RISC-V processing element cores. Phalanx is a parallel 
processor and accelerator array overlay framework. Groups of PEs 
and accelerator cores form shared memory compute clusters. 
Clusters, DRAM, NICs and other I/O controllers communicate by 
message passing on an FPGA-optimal Hoplite torus soft NoC. This 
extended abstract summarizes work-in-progress to redesign the 
2017 GRVI Phalanx to take advantage of new Xilinx FPGAs with 
460 GB/s dual stack HBM2 DRAM-in-package, and to provide a 
familiar parallel programming experience via an OpenCL-like 
programming model and tools. The new system is the first kilocore 
RV64I SoC and the first RISC-V multiprocessor with an HBM2 
memory system. 

I. INTRODUCTION: GRVI PHALANX 

Complementing server CPUs, FPGA accelerators promise 
higher throughput, lower latency, and lower energy [1]. But it is 
challenging to move working software into an accelerator, and 
to maintain it as the code evolves. RTL, High Level Synthesis, 
and even OpenCL-to-FPGA tools have serious shortcomings, 
such as high porting effort and multi-hour builds. Another 
challenge is system design and timing closure of a complex SOC 
comprising many cores and fast I/O and DRAM interfaces. Few 
organizations succeed with FPGA accelerator development. 

The present work is v2 of GRVI Phalanx [2,3], a parallel 
processor overlay to simplify accelerator development. It 
supports a software-first approach. A C++ or OpenCL workload 
runs on the soft processors in the overlay. Then custom 
instructions, accelerator cores, or memories may be introduced 
to speed up bottlenecks. Most design iterations are quick 
recompiles; development is more like performance engineering. 

GRVI Phalanx, the first kilocore 32b RISC SoC, showed that 
a frugal NoC and PEs, a replicated cluster tile architecture, and 
the RISC-V ecosystem, together enable low complexity, high 
throughput compute accelerators. This v1 hardware had some 
shortcomings though: 1) modern big data OpenCL kernels 
require PEs with 64b pointers; 2) GRVI’s 32b architecture 
squanders half the bandwidth of the cluster’s 64b UltraRAMs; 
and 3) in a very congested FPGA its Fmax is just 300 MHz. 

Perhaps the least competitive aspect of GRVI Phalanx 
performance (and of most FPGA “accelerators”) is poor DRAM 
bandwidth. In accelerator cards and in AWS F1, GRVI Phalanx 
is limited to four 64b DDR4 DRAM channels – far less 
bandwidth than that of inexpensive GPUs, limiting the range of 
interesting workloads. 

II. VERSION TWO: INTRODUCING 2GRVI PHALANX 

2GRVI Phalanx is tackling these and other issues. It is 
redesigned for Xilinx UltraScale+ HBM2 devices [6] such as the 
VU37P FPGA, with two stacks (8 GB) of HBM2 DRAM and 
32 256b hardened AXI-HBM controllers, R/W up to 460 GB/s. 

Fig. 1 presents an (empty) VU37P floorplan, rotated 90 
degrees. It spans three SLR dies, SLR0-1-2, and includes about 
1.3M 6-LUTs (not shown), 2000 36 Kb BRAMs (yellow), 960 
288Kb UltraRAMs (green), 9000 DSPs (blue), 21,000 SLL 
inter-SLR interconnect nets per SLR-pair (white), and most 
notably 32 256b @ 450 MHz AXI-HBM bridges [7] (magenta) 
across the base of SLR die 0. These bridges incorporate a switch 
between the AXI ports and the HBM memory controllers, 
optionally enabling any AXI master to access memory behind 
any of the 16 memory channels (32 HBM2 pseudochannels). 

 
Figure 1: Xilinx VU37P with HBM2 Device Floorplan 

But it is challenging to move data at up to 3.7 Tb/s to/from 
the AXI-HBM controllers at the base of the FPGA, from/to the 
various cores across the length and breadth of the device. 

A very fast, very wide soft NoC is the way forward, although 
at FPGA SoC frequencies (300-500 MHz) this requires many 
thousands of northbound and southbound nets. (The faster the 
NoC clock, the fewer nets required.) Then other clock 
constraints must be considered. The GRVI PEs are too slow; the 
NoC and UltraRAMs can run at 600 MHz, but the AXI-HBM 
controllers’ Fmax is 450 MHz. To avoid CDCs we are targeting 
and tuning the implementation to run each component at 450 
MHz. At 450 MHz, a 15x15x256b Hoplite NoC [5] will carry 
~200 GB/s of read data and ~200 GB/s of write data between the 
HBM controllers and any FPGA clusters or I/O controllers. If 
not yet full peak HBM2 bandwidth, it is nevertheless a leap 
ahead for RISC-V multiprocessors, and FPGA accelerators. 

III. THE 2GRVI RISC-V RV64I CORE 

At just 320 LUTs/PE, GRVI still has leading soft processor 
throughput÷area, but its limitations include its 32-bit width, its 
300-400 MHz Fmax, and its simple scalar RISC in-order loads: 
in an 8 PE GRVI cluster setting a load takes five cycles there 
and back through the interconnect. This is awful in a function 
epilog, reloading n callee save registers, five cycles each. 

2GRVI is a new core design with lower area/bit-width, 
RV64I/RV32I support, 550 MHz Fmax, and much better latency 
tolerance. Using a busy-register scoreboard, loads do not stall 
until/unless subsequent use of a still busy register. In an epilog 
register reload, or an unrolled block copy loop, 2GRVI issues 
one load each cycle. The same mechanism enables concurrent 
execution and out-of-order completion of long latency FUs, 
using a to-be-proposed open Custom Function Unit interface. 

As with GRVI, 2GRVI is carefully technology mapped and 
floorplanned for Xilinx 6-LUT FPGAs. It embraces Jan’s Razor 
[4]: “In a chip multiprocessor design, strive to leave out all but 
the minimal kernel set of features from each processing element, 
so as to maximize processing elements per die.” This leads to a 
deconstructed PE architecture where functions such as shifts, 
multiplies, even byte-aligning load/store memory ports, are 
factored out of the PE core such that multiple PEs share those 
occasional-use resources. This gets the 64-bit 2GRVI PE core 
down to just 400 LUTs; the total area overhead of the PE and its 
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share of a six PE cluster, function units, cluster interconnect, and 
300b Hoplite router, is about 700 LUTs. 

For highest Fmax of 550 MHz, 2GRVI implements a 4-stage 
pipeline which still issues up to one instruction per cycle, but 
which has a minimum ALU operation latency of two cycles. 
This configuration incurs result-use stalls if an instruction 
consumes the result of the prior instruction. 

To mitigate result-use stalls, and 4 cycle taken branches, 
2GRVI may incorporate optional two-way HW multithreading. 
This would cost ~100 LUTs, including 80 LUTs to double the 
physical register file to 64x64b. It remains to be seen if this 
actually improves PE throughput ÷ area. 

Table 1 compares and contrasts the two PE cores. 

 GRVI 2GRVI 

Year 2015 Q4 2019 Q2 

Target 20 nm UltraScale 16nm UltraScale+ 

RTL Verilog System Verilog 

ISA RV32I +mul/lr/sc RV64I +mul/lr/src 

Area 320 LUTs 400 LUTs (sans bshift) 

Fmax/congested 400/300 MHz 550/TBD MHz 

Pipeline stages 2/3 2/3/4 (super-pipe’d) 

Out-of-order retire - typical but optional 

2 hardware threads - optional 

Cluster: load II 5 cycles 1 cycle 

Cluster: load to use 5 cycles 4/5/6 cycles 

Cluster, peak BW 4.8 GB/s @ 300 MHz 12.8 GB/s @ 400 MHz 

Table 1: 32-bit GRVI vs. new 64-bit 2GRVI 

In all, the extra bit-width, load latency tolerance, and higher 
Fmax affords 2GRVI clusters over twice the peak bandwidth to 
the cluster RAMs vs. GRVI PEs in GRVI Phalanx, using the 
same resources (LUT RAMs, block RAMs, and UltraRAMs). 

The 2GRVI cluster retains the same general design as the 
prior GRVI cluster: 0-8 PEs, 4-8 KB kernel instruction RAMs, 
128 KB of shared banked address-interleaved cluster shared 
memory, pipelined crossbar interconnect, network interface, and 
32B/cycle Hoplite router. See Fig. 2. Here all interconnect 
datapaths must grow from 32- to 64-bits wide. 

 
Figure 2: GRVI/2GRVI Cluster Architecture 

The device pitch of the UltraRAMs sets the resource budget 
for the cluster and hence the number of processors per cluster. 
In the VU37P, there are 960 URAMS in five columns of 192 
URAMs. The present design assigns four URAMs per cluster, 
up to 240 clusters in all, and five approximately equally sized 
clusters span the die horizontally. The cluster LUT budget is 
about 1.3M / 240 = 5400 6-LUTs, enough to implement PE 
clusters with eight 32-bit GRVI PEs or six 64-bit 2GRVI PEs. 

IV. PHALANX REDESIGN FOR HBM2 MEMORY 

The redesign for VU37P entails: 1) modifying the NoC’s X 
rings x Y rings topology to include at least twice as many die-
spanning vertical Y rings; 2) designing a wide, deeply pipelined 
NoC-AXI RDMA bridge that can sustain write requests and 
burst read requests on back to back clock cycles, 256 bits per 
bridge per cycle, every cycle; and 3) increasing the Fmax of 
every element of the SoC from 300 MHz to 450 MHz. At 
present, the first two have been achieved, and timing 
optimization work continues in the new RTL codebase. 

The updated SoC interconnect is a chip-spanning 16 row by 
15 column Hoplite NoC. It interconnects a 15x15 (-3) array of 
GRVI/2GRVI clusters, and a row of 15 NoC-AXI RDMA 
bridges. See Fig. 3.  

 
Figure 3: 2GRVI Phalanx SoC Architecture 

The NoC carries 312-bit one-flit messages, each message 
comprising: 12 bit Hoplite message header, 4 bit transaction ID, 
40 bit address, and 256 bits of data. Messages may carry data 
from an agent (i.e. PE or accelerator) in one cluster to an agent 
in another cluster, or may carry 32B DRAM write requests, 
32nB burst read requests, or a stream of 32B read responses, 
from an agent to/from a NoC-AXI RDMA bridge located 
alongside its AXI-HBM bridge(s) at the bottom of SLR0. 

A horizontal bisection of the 15 column NoC spans 9,360 
nets (about 45% of the possible 21,000 SLLs that cross each pair 
of Super-Logic Region dies) and the NoC’s bisection bandwidth 
is 15x2x256x300 MHz = 2.3 Tb/s and at 450 MHz will be about 
3.5 Tb/s. The NoC uses ~79,000 LUTs, or 6% of the VU37P 
LUTs. 

The SoC also incorporates a PCI-Express gen3x1 XDMA 
controller. This uses  ~15,000 LUTs; three PE clusters from the 
first row of PE clusters are depopulated to make room. 
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V. PE↔CLUSTER RAM↔NOC↔AXI↔HBM DESIGN 

HBM2 DRAM transactions are a minimum of 32B in size, 
and so for performance, this is reflected in the Phalanx C++ and 
OpenCL-like programming models, which currently exclusively 
expose the shared memory as a 32B-block device accessed by 
through a block copy API. This function performs a block write 
as a stream of 32B block write request messages; and a block 
read as stream of 32B-to-512B burst read request messages. A 
PE writes the write data to be written, or the burst read RDMA 
command, as a 32B message in its cluster RAM, then sends that 
message over a NoC Y ring down to that cluster’s column’s 
NoC-AXI RDMA bridge. 

The bridge accepts one write or burst-read request message 
per cycle; these are queued in a 300b-wide FIFO. The request at 
the head of the FIFO is issued to the hard AXI-HBM bridge at a 
rate of up to one 32B (256b) AXI transaction per cycle (AXI 
AW+W channels or AR channel). Pending read request 
response metadata move to a read response FIFO. Later (80-100 
cycles later) as the AXI interface responds with a read response 
(AXI R channel), the 1-16 beats of 32B of data are sent, as 32B 
read response messages, back on the NoC Y ring to the requester 
(or to wherever the requester specified the RDMA read response 
to be sent, including multicast over the whole Phalanx). 

By sending write and burst-read requests over a Y ring 
column of the NoC, message ordering is preserved, as is per-PE 
and per-cluster views of read and write memory access ordering. 
When necessary, simple backpressure flow control, from a NoC-
AXI bridge request FIFO ‘nearing capacity high water mark’ 
signal to the clusters on its Y-ring, suspends memory access 
request message sends at the source(s). 

VI. STATUS 

A 1776 PE 32-bit GRVI Phalanx now runs in a VU37P-ES1 
in a Xilinx Alveo U280-ES1 card. It has the topology of Fig. 3, 
with 222 clusters of eight GRVI PEs. See Fig. 4. 

 
Figure 4: 1776 PE 32-bit GRVI Phalanx with HBM 

A 1332 PE 64-bit 2GRVI Phalanx also runs in a VU37P-
ES1. It too also has the topology of Fig. 3, with 222 clusters of 
PEs, but here clusters are six 2GRVI PEs, not eight, due to the 
larger PEs, and the substantially larger 64-bit local cluster 
interconnect. See Fig. 5. 

 
Figure 5: 1332 PE 64-bit 2GRVI Phalanx with HBM 

Both SoCs currently run at 300 MHz, however the nascent 
2GRVI system is designed for 400-450 MHz operation, and its 
planned timing improvement work is expected by H2RC 2019. 

At 300 MHz, a row of 15 clusters with 3 PEs/s, issuing a 
series of back to back 32B writes and 512B burst reads, to 15 
NoC-AXI RDMA bridges, each connected to two hard AXI-
HBM bridges, writes at 130 GB/s, while simultaneously burst 
reading data at (precise figure TBD but over 100) GB/s. 

At present it is extremely difficult to measure the power 
consumption of these SoCs in situ on the Alveo U280-ES1 
accelerator card. But for the 1776 PE design, at 300 MHz, 
Vivado estimates power at 109 W, including: clocks: 8 W; 
LUTs: 26 W; interconnect: 39 W; BRAM: 5 W; URAM: 6 W; 
HBM: 16 W; static power: 9 W. However, comparable GRVI 
Phalanx designs, measured on a VU9P, at 250 MHz, had a 
power/PE (including PE’s share of interconnect, NoC, RAMs, 
etc.) of 18-24 mW/PE, so this estimate is probably conservative. 

Once the system RTL is integrated with the SDAccel-for-
RTL system and its shell (following section) it will be possible 
to measure system power using the SDAccel software. This too 
is expected by H2RC 2019. 

VII. TOWARDS AN OPENCL-LIKE MODEL AND TOOLS 

To date, GRVI Phalanx and 2GRVI Phalanx have been 
programmed in explicitly placed, explicitly scheduled, bare 
metal C++ with a simple message passing library. This is too 
basic, too low level, and too unfamiliar to most programmers. 

Now with availability of U280 and U50 accelerator cards, 
2GRVI Phalanx for HBM-FPGAs can build upon the Xilinx 
SDAccel (OpenCL) for RTL tools. Here the host-side code is 
standard (Xilinx supported) OpenCL, copying buffer data 
to/from the FPGA, and scheduling and invoking OpenCL 
kernels in the FPGA. (SDAccel-for-RTL is also available on 
AWS F1, simplifying the back-port of 2GRVI Phalanx to F1.) 

Unlike SDAccel’s conventional single-work-item OpenCL-
to-FPGA-kernel flow, which incurs several hours of place and 
route time per design iteration to build a new kernel bitstream, 
here a 2GRVI Phalanx overlay will directly execute OpenCL 
kernels in software in the many RISC-V PEs across the Phalanx 
overlay. (It is an open design question how OpenCL kernel 
developers might access any FPGA custom instructions and 
standalone accelerator cores.) In this model, an OpenCL work 
item runs on and corresponds to a 2GRVI PE, and an OpenCL 
work group, which provides shared memory across a set of work 
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items, corresponds to a PE cluster. A parallel kernel invocation 
will execute across the many clusters of PEs in the Phalanx. 

As with most GPU OpenCL NDRange memory-based 
kernels’ execution, the typical workgroup will block copy its 
input data from DRAM (here an HBM2 channel) to group-
shared memory (here cluster RAM); compute on it locally 
(across work items / RISC-V PEs); then block copy back the 
result data to DRAM. 

Since there does not yet exist an OpenCL kernel compiler 
for RISC-V, instead an OpenCL-like runtime library and some 
macros will implement the OpenCL memory hierarchy types 
and kernel runtime functions including get_work_item, barrier, 
and (new) burst write/burst read block copy routines. The 
resulting OpenCL-like integer vector add kernel might read: 

kernel void vector_add( 
  global int* g_a, 
  global int* g_b, 
  global int* g_sum, 
  const unsigned n) 
{ 
  local align int a[N], b[N], sum[N]; 
  int iloc = get_local_id(0) * n; 
  int iglb = (get_group_id(0) * get_local_size(0) 
              + get_local_id(0)) * n; 
  int size = n * sizeof(int); 
  copy(a + iloc, g_a + iglb, size); 
  copy(b + iloc, g_b + iglb, size); 
  barrier(CLK_LOCAL_MEM_FENCE); 
 
  for (int i = 0; i < n; ++i) 
    sum[i] += a[i] + b[i]; 
  barrier(CLK_LOCAL_MEM_FENCE); 
 
  copy(g_sum + iglb, sum + iloc, size); 
} 

Of course, even with an HBM2 memory system, external 
DRAM is slow and energy-inefficient. When aiming data at 
memory it is better to miss it entirely. Besides support for the 
classic memory copying kernel pattern (above), we aspire to also 
provide OpenCL pipes support, so that many concurrent 
OpenCL kernels may be composed together in a dataflow 
pipeline. Here again the kernel workgroup invocations will map 
to clusters, and with clusters composed by (on-die) message 
passing over the NoC, rather than by exchanging buffers in in 
HBM DRAM. 

VIII. XILINX HBM FPGAS: RESEARCH DIRECTIONS 

To obtain the full bandwidth of the Xilinx VU3xP/VU4xP 
HBM2 memory system requires the SoC master all 32 AXI-
HBM bridges, at full frequency. In addition, for best channel 
efficiency, memory channels need long burst transactions – at 
least two beats (64 B), and ideally longer. 

Also, as noted, the array of hard AXI-HBM bridges 
incorporates a switch so that any AXI master may access any 
memory bank. However, the switch is not a full-bandwidth 
crossbar, so there may be at most two eastbound transactions and 
two westbound transactions through any vertical section of the 
switch at any instant. That’s only about 50 GB/s of bisection 
bandwidth across the switch. Perhaps it is better to use the 2D 
torus Hoplite NoC itself as the horizontal interconnect to ensure 
accesses to a given bank originate via an AXI bridge adjacent to 
that bank’s memory controller. 

It is also unclear how to best expose the HBM memory 
system as an abstraction to software. For example, if you 
provide byte granularity loads and stores to HBM (which 
hardware supports), when software developers use that facility, 
you have lured them into a low performance design pattern. 

To date Phalanx has eschewed caches, but the 2GRVI 
Phalanx HBM design might adopt small distributed last level 
caches at the AXI-HBM bridges to reduce access latency of hot 
blocks of data. However the utility of such caches as bandwidth 
filters is reduced in a device with such abundant bandwidth! 

Another promising area of research will explore enhancing 
the NoC-AXI RDMA bridges to perform a variety of “remote 
computing at the memory interface” functionality such as: 
scatter/gather accesses, block zero, block copy, add to memory, 
checksum, select, reduce, regexp, sort, and decompress. Such 
“compute at the memory” controllers should reduce the need for 
ultimate FPGA-spanning full HBM bandwidth R/W. 

IX. XILINX HBM FPGAS: IMPRESSIONS, AND THE 

DEMOCRATIZATION OF HBM MEMORY SYSTEMS 

 We have had access to an Alveo U280-ES1 with a VU37P-
ES1 for approximately ten weeks. We have found that the hard 
AXI-HBM bridges are easy to design to. The bridges’ switch 
simplifies SoC interconnect implementation, and compared with 
other UltraScale+ FPGAs such as VU9P, here the provision of 
32 hard AXI-HBM bridges saves 100,000s of LUTs previously 
spent on soft DDR4 DRAM controllers (15-20 KLUTs each) 
and on many 10K LUT soft AXI interconnects. These hard 
HBM interfaces also make easy work of DRAM timing closure. 

Now with the availability of HBM FPGAs, scientists and 
engineers have access to high bandwidth memory systems in 
excess of 400 GB/s, leapfrogging x86 PC bandwidth, and 
approximately matching GPU bandwidth. This heralds a golden 
age for custom HPC and datacenter accelerators. 
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