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Abstract—Efficient prototyping of a large complex system can
be significantly facilitated by the use of a flexible and versa-
tile physical platform where both new hardware and software
components can readily be implemented and tightly integrated
in a timely manner. Towards this end, we have developed
the 120×130 mm Quad-FPGA Daughter Board (QFDB) and
associated firmware, including the system software environment.
We developed a large system based on this advanced dense and
modular building block. The QFDB features 4 interconnected
Xilinx Zynq Ultrascale+ devices, each one consisting of an ARM-
based subsystem tightly coupled with reconfigurable logic. Each
Zynq Ultrascale+ is connected to 16 GB of DDR4 memory.
In addition, one Zynq provides storage through an M.2 Solid
State Disk (SSD). In this paper, we present the design and the
implementation of this board, as well as the software environment
for board operation. Moreover, we describe a 10 Gb Ether-
net communication infrastructure for interconnecting multiple
boards together. Finally, we highlight the impact of this board
on a number of ongoing research activities that leverage the
QFDB versatility, both as a large-scale prototyping system for
HPC solutions, and as a host for the development of FPGA
integration techniques.

Index Terms—Prototyping, Accelerator architectures, Large
scale systems, Emulation, ARM multiprocessor, System on Mod-
ule, Field Programmable Gate Arrays, High Performance Com-
puting, Transceivers, High speed connectivity

I. INTRODUCTION

The design and prototyping of next-generation high per-
formance computing systems demands the capability to de-
velop and experiment with research features at a significant
scale. Unfortunately, the implementation of many techniques
is often impractical or impossible in vendor systems due to
performance, cost, or complexity issues. Within the ExaNeSt
H2020 project [1], we take advantage of the reconfigurable
resources and the high-speed connectivity of modern FPGA-
based System-on-Chips (SoCs) to design a high-density devel-
opment board that serves as a building block for prototyping
such large-scale systems.

The Quad-FPGA Daughter Board (QFDB) provides a more
compact and advanced solution than prior similar development
platforms in multiprocessor emulators and networking such as
the RPM [2], the BEE2 [3], the RAMP [4], and the NetFPGA
[5]. The main design goal of these FPGA-based systems has
been to support the development of new hardware/software
solutions, offering full observability of the status at any point
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in the system. The capability to probe the status of a large-
scale system, trigger events, and execute complex actions on
such triggers, is also available in software simulators, but with
the inevitable software delays [6].

We present the QFDB, a high performance, energy-efficient
System-On-Module, supporting four state-of-the-art Xilinx
ZU9EG FPGAs. Each FPGA contains a quad-core ARM A53
processor, 600K reconfigurable logic cells, 2520 DSP slices,
and 32 Mb of internal memory. In addition, the module offers
16 GB of DDR4 memory connected to each FPGA and an M.2
SSD. In this paper, the architecture and the implementation
of the QFDB are presented, including technical issues and
important experience gained. Moreover, we describe a com-
munication infrastructure for interconnecting multiple QFDB
boards that accommodates various experimental requirements.

Finally, we briefly describe a number of achievements that
build upon the QFDB features. An ad-hoc high-speed low-
latency interconnect and its software stack were developed [7].
In addition, a high-density rack was assembled to showcase
the potential of the ExaNeSt technology. QFDBs were also
utilized to develop a framework for the utilization of hardware
accelerators [8], [9].

Overall, the QFDB has been extensively used by four Eu-
ropean HPC projects, which strongly collaborated to develop
technical solutions for future HPC systems [1], [10]–[12].
Currently, we have developed a HPC prototype that supports
48 interconnected boards, amounting to 192 Zynq Ultrascale+,
3 TB of DDR4 memory and 12 TB of non-volatile storage.

II. RELATED WORK

In the last decade, there has been an increasing interest on
multi-FPGA systems. The Convey-HC1 [13] and the RAMP
accelerator [4] were popular such platforms. These systems are
usually used as hardware accelerators or as hardware emulators
for fast prototyping.

Most of todays FPGA-based boards that can be employed
in larger systems, such as Bittware [14], Hitech Global [15]
and Digilent [16] rely on Intel processors connected to FPGA
boards over PCIe, which can impact the communication la-
tency. A larger PCIe-based hardware accelerator is the Novo-
G# system [17] that integrates 192 Stratix IV, and focuses on
communication-intensive applications.

There are several other multi-FPGA systems. For instance,
the Amazon EC2 F1 instances contain up to 8 FPGAs [18], the
Maxeler MPC nodes accelerate applications on reconfigurable
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Fig. 1: Block Diagram of the QFDB board

Data Flow Engines (DFEs) [19], [20], and Rivyera from
SciEngines that support up to 128 Xilinx Spartan FPGAs
per machine [21]. Moreover, there are large hardware FPGA-
based emulators such as Mentor’s Veloce [22] and Cadence
Palladium Z1 [23]. These approaches are based on large
monolithic development systems, while the QFDB provides
a compact self-contained subsystem that can be used in a
modular architecture to build large systems supporting a wider
variety of designs.

IBM proposes a dense multi-FPGA platform [24] that tar-
gets the Data Center, where FPGAs are completely decoupled
from CPUs. QFDBs attain the same density but retain ARM
cores tightly attached to the Programmable Logic.

Finally, there are similar approaches to the QFDB, which
provide tightly coupled reconfigurable resources, such as
BEE7 from BEEcube [25] and SG280 from ProFPGA [26].
However, the QFDB module provides more capabilities
(DDR4 memory, storage, monitoring) on a much denser board
(about ×5 to ×10 smaller). It is thus built focusing on
flexibility and scalability, without missing any feature.

III. BOARD ARCHITECTURE

As shown in Figure 1, the QFDB 4 Xilinx Zynq Ultrascale+
devices (ZU9EG). Each device features a Processing System
(PS) that consists of 4 ARM-A53 and 2 ARM-R5 cores along
with a rich set of hard IPs, and reconfigurable logic resources
also referred as Programmable Logic (PL). A 16 GB DDR4
SO-DIMM and a 32 MB QSPI memory are connected to each
Zynq device. In addition, a 250 GB M.2 SSD is connected to
the ”Storage” FPGA, while 2 TB devices are available today
[27]. The power dissipated during normal operation is usually
close to 50 Watts, but it can reach up to 120 Watts when using
the Stress IP presented in Section IV-A.

In order to meet the constraints of the system described
in Section VI-B, the Printed Circuit Board (PCB) dimensions
were narrowed to 120×130 mm and the height of all com-
ponents on top and bottom sides was kept under 10 mm, as

(a) Top view (b) Bottom view

Fig. 2: Pictures of the QFDB

shown in Figure 2. The PCB stack-up consists of 16 layers
using Megtron-6 dielectric. Table I details the amount of
the high-speed PCB traces that had to be routed. The high
concentration of components and high-speed traces (almost a
thousand) required significant effort for the placement of the
components and the routing of the traces. As a side effect, it
was impossible to include either any BMC or CPLD to control
the power sequence or configuration signals, thus impeding the
bring-up process. The power tree is using 48 V input, which is
immediately transformed into 12 V, and from there to adequate
supply voltages, totaling 30 regulators.

There is also a variety of communication paths on this
board, as shown in Figure 1. One Zynq is connected to the
outside world through 10 High Speed Serial Links (HSSL)
by means of GTH transceivers. Each external link has a
maximum rate of 10.3125 Gb/s. The MAC-to-PHY RGMII
interface also allows connection to 1 Gb Ethernet (GbE)
for management purposes. Within the board, each Zynq is
connected to each other through both 2 HSSL capable of
operating at the maximum lane rate of 16.375 Gb/s, and 24
LVDS pairs (12 in each direction). Finally, the board supports
as much as 15 I2C power sensors, which allows the monitoring
of the main sub-systems of the board.

Running DGEMM [28], we measured that the ARM
quad-core processor of a single device can execute up to
7.9 GFLOP/s. When running the STREAM program [29],
the DDR subsystem of the device sustained a maximum
throughput of respectively 6488 MB/s for Copy, 5886 MB/s
for Scale, 4269 MB/s for Add, and 4032 MB/s for Triad.
Finally, using the Fio [30] benchmark, we measured that the
sequential device read throughput of the SSD is 1.3 GB/s.

IV. BOARD IMPLEMENTATION DETAILS

In this section, important aspects of the QFDB imple-
mentation and of the software environment are discussed,
offering insight for the development of such complex and
dense compute nodes.

TABLE I: High speed signals in the QFDB

Type Count Maximum Speed
DDR4 532 1200 MHz / 2400 Mb/s
LVDS 288 800 MHz / 1600 Mb/s
HSSL 88 16.375 Gb/s
PCIe 16 5 Gb/s
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Fig. 3: Diagram of the stress IP

A. Stress Test and Monitoring

Once a functional QFDB was built, the limits of the board
were probed. The first action was to develop a monitoring
infrastructure to ensure that boards are kept in safe conditions
at all times. The second task has been to develop a stress test
IP that is able to push the Programmable Logic of any FPGA
to its limits in a controllable fashion, and quickly give a view
of its maximum computing and electric power. The Processing
System of the Zynq was stressed as well by running diverse
high-performance applications.

Our monitoring tool continuously monitors any sensor
present on the QFDB, independently of the software running
on the Zynq, continuously display a condensed view that high-
lights the criticality of each value with respect to predefined
allowed operation conditions. The complete data set is also
saved to help with postmortem investigations.

Then, the capabilities of the Programmable Logic (PL) part
of the Zynq were reviewed extensively. In effect, depending on
the firmware in use, the PL of each Zynq may consume from
2 to more than 16 Watts. Hence, the board might work with
light firmware but be deficient with heavier firmware. Figure 3
provides an overview of the stress IP, which essentially con-
sists of permutations (Φ) to exercise Lookup Tables (LUTs),
arithmetic operations to exercise the hard DSP blocks, and
FIFOs to exercise the Block RAMs (BRAM). These circuits
are fed by a Linear Feedback Shift Register (LFSR) to reach
both adequate coverage and high activity rate. The IP structure
follows the physical distribution of the PL. For each column
of elements, errors are monitored to detect noise and voltage
issues (ε). The whole IP is fed by a PLL hard block that
allows us to increase progressively the operating frequency.
This offers the possibility to gradually increase load intensity
and hence fully control temperature and timely detect side
effects.

B. Bring-up and deployment aspects

The actual implementation of a board as complex and
compact as the QFDB often comes with many setbacks.
Hence, we discuss here a few aspects of the bring-up that
can apply to many other boards. In addition, coping with the
large prototype size demanded that we prepare early for the
deployment of tens of boards. An exhaustive factory test was
developed, and an identification scheme was devised in order
to keep track of the boards and ease the design of a robust
MAC addressing scheme.

The high complexity and density of the QFDB impeded its
bring-up, and required a variety of advanced techniques. In
effect, due to our stringent density constraints, there was little
headroom on the PCB to aid with hardware debug. At first,
a board without any FPGA was used to patch and validate
the power tree. Then, partially populated boards have been
used to validate active components. Once the JTAG chain was
validated, we carried on with the bring-up of a first set of
functionalities. A set of debug bitstreams was also generated
to validate the functionalities pertaining to the Programmable
Logic of the Zynqs. Finally, a Linux OS instance was booted
on each MPSoC, to validate the Ethernet interface and the
SSD storage.

Then, the routines and firmware developed during the bring-
up phase were packed together to systematically prepare new
boards before their deployment in the prototype. Initially, each
sub-system is tested. Then, the QSPI memories are flashed
with an initial production image, and the Linux environment
presented in Section V-A is booted on each Zynq of the board.
Finally, each Zynq is provisioned. The Zynq Ultrascale+
eFUSEs are used to permanently keep these data. Our eFUSEs
structure contains a unique 64-bit Board ID, the node ID
within the board, the board serial number and revision, along
with information about specific board capabilities.

C. Memory Borrowing and RAM-less Linux boot

During the bring-up of the QFDB, a memory-borrowing
environment was developed to speed up the validation of the
board. In this setup, presented in Figure 4, the Linux OS was
booted by borrowing the memory of a third-party ”donor”
board. This technique may be applied to any other FPGA-
based board lacking significant external memory. In our case,
a Trenz TEBF0808 [31] was used, which features an identical
Zynq Ultrascale+ FPGA along with 2 GB of DDR4-RAM.

Booting a Linux in this setup presented many pitfalls. On
the software side, a very minimal software environment was

Fig. 4: RAM-less OS boot through memory borrowing
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squeezed into the 32 MB of the QSPI flash memory. To that
end, the U-Boot loader was trimmed aggressively, a custom
Linux kernel (v4.9) configuration was used, and a minimal
BusyBox setup was instantiated in the form of an initramfs
image. The overall storage space used per node reached a mere
20 MB, including a 16 MB compressed bitstream. The First
Stage Boot Loader (FSBL) was also modified not to require
external RAM, and the code re-location of the U-Boot loader
was bypassed.

On the firmware side, complementary designs were built
on the QFDB and the Trenz board. Following Figure 4, any
memory access from the QFDB MPSoC is steered to the
Programmable Logic (PL), instead of reaching the local DDR-
RAM. The memory access then exits the FPGA through a
GTH transceiver. When reaching the other end, the access
is transformed using a specific IP, and reaches the function-
ing remote DDR through the Processing System (PS). The
response then travels back in a similar manner. The whole
mechanism is transparent to the software execution environ-
ment. The transceivers operate at their maximum lane rate
(10.3125 Gb/s), which offers a reasonable memory throughput
for moderate workloads.

Since only the Network FPGA of the QFDB is directly
connected to the outside world, as seen in Figure 1, additional
effort was required for the boot of the other FPGAs. Hence,
the bitstream of the Network FPGA is enhanced to also acts as
a proxy, which forwards transactions for the other three nodes,
and steers them to discrete memory ranges on the other end,
as shown in Figure 4. With this approach, the F2 ”Storage”
FPGA was successfully booted, with the Linux accessing its
physical memory through the F1 intermediate hop.

V. MULTI-BOARD PROTOTYPE INTEGRATION

A prototype is being built based on the QFDB. In Table II,
indicative numbers of the dimension of this prototype are
given, highlighting the scale of this effort. Under current
estimates, the final prototype will be composed of a thousand
cores, 4 TB of DDR4-RAM, and 16 TB of SSD storage.

A. Software environment

The utilization of a prototype consisting of tens of complex
HPC multi-node boards is usually tedious, in particular when
different firmware and system software versions are in use. In
this section, we provide insights into the software solutions
that we developed to significantly ease up the life of users.
The boot process has been customized to support versatile
research activities and fast deployment of boot images. Tools
have also been developed to easily generate boot images and
boot packages. Finally, a Linux distribution was developed for
the needs of the platform.

TABLE II: Prototype dimensions

Prototype Boards Zynqs Cores RAM [GB] NVM [TB]
1 QFDB 1 4 16 64 0.25
Current 48 192 768 3072 12

Final (est.) 64 256 1024 4096 16

(a) Typical (b) Our system

Fig. 5: Zynq Ultrascale+ Boot sequence comparison

In Figure 5, a comparison between a typical boot sequence
and the one used by the Zynqs of the QFDB is presented.
In both cases, the First Stage Boot Loader (FSBL), the PMU
firmware (PMUFW), the ARM Trusted Firmware (ATF) and
BL33 (U-Boot) are all retrieved from the local QSPI flash
memory. In the typical boot sequence, the PL bitstream (Bit)
is also loaded at this point. The kernel (KERN), Device Tree
(DTB) and file system (FS), which are necessary for Linux
operation, are read from an SD-Card. In our system, the BL33
is stripped to a strict minimum, and a trimmed Linux kernel
nicknamed loby is used to boot the full Linux system, thus
providing better system flexibility. The loby kernel mounts a
root NFS storage common to all boards of the prototype. This
rootfs contains a configuration file that maps each QFDB to
a board class, based on the unique Board ID presented in
Section IV-B. Once the board class and the node ID within the
QFDB have been retrieved, the corresponding boot package is
loaded. Each boot package usually contains a bitstream and a
device tree, and it might also include a different kernel and
initramfs. The selected configuration is then loaded by using
the kexec command [32]. At a later time, the user has the
possibility to apply its own boot package to the node, without
rebooting the board. The rootfs is usually mounted as read-
only by the kernel, and a tmpfs-based read/write overlay of the
filesystem is mounted, allowing multiple users to transparently
share the same remote filesystem without risking mishaps in
the prototype environment.

We also developed a tool called yat (yet another tool) to
readily generate boot images using different patch profiles.
After the patches have been applied, custom cross-compiling
toolchains (generated with crosstool-ng) are used for building
the binaries. yat is used to create both the image file to be
flashed to the SPI-NOR flash attached to each FPGA, and the
boot package file described earlier.

For our prototype, a Linux distribution called Carvoonix
was created, based on Gentoo Linux. In effect, HPC nodes
alike the QFDB are unique environments in many ways. The
software requirements are very different from desktops, servers
and embedded devices. In addition, our prototype is not only a

37



production environment but also a development environment,
both for us and our partners. Binary Linux distributions are not
built with this requirement in mind, and make the maintenance
of such a system very complex.

Our distribution combines the flexibility of Gentoo by hav-
ing a builder version used for carefully create selected binary
packages from source into a binary repository, and a normal
version that fetches packages from the binary repository.

B. Multi-board Communication Infrastructure

In order to support versatile research activities on our
prototype, a flexible infrastructure presented in Figure 6 was
developed. On one hand, a Manager PC is used to manage
the boards and provide various services. On the other hand,
additional software and firmware were designed to bring
Ethernet access to each of the Zynqs of the QFDB. Finally,
boards can be connected amongst themselves by means of an
ad-hoc interconnect.

In order to ease deployment of software and firmware on
the boards, a Manager PC carries out diverse functionalities.
Foremost, the PC provides DNS and DHCP services to the
boards, through the dnsmasq program. Second, it provides the
NFS shared folders needed to boot the QFDBs, as discussed in
Section V-A. Third, the Manager PC acts as a SSH gateway,
which lets users connect to the boards easily.

On the QFDB side, a substantial effort was made to cope
with various use cases, as illustrated in Figure 6. In QFDB 1,
the bitstream of F1 includes a custom 10 Gigabit Ethernet
(10GbE) MAC IP. A minimal Ethernet switch routes Ethernet
packets to destination FPGA(s). Each FPGA uses DMA en-
gines to transfer Ethernet packets to and from the Processing
System (PS). Alternatively, as in the case of QFDB 3, a
software bridge in F1 may provide Ethernet access to the other
FPGAs, through the PS Gigabit Ethernet Module (GEM). A
custom tool was written to configure the F1 network because
standard tools such as brctl or ip would cause disruption of the
access to the NFS-based rootfs. Finally, as seen in QFDB 2,
F1 may be connected to the LAN through the 1GbE interface

Fig. 6: Network infrastructure of our prototype

while F2−F4 utilize the 10GbE switch described earlier. In
each case, the MAC address of every interface is seeded with
the eFUSEs scheme discussed in Section IV-B. However, since
access to the eFUSEs is only possible from the secure world,
an OEM service was added to the ATF Secure Monitor, and a
kernel driver issues Secure Monitor Calls (SMCs) to retrieve
the information and expose it through procfs to the user space.
As a consequence, the Ethernet network environment is set
very early in the kernel boot, which is necessary to mount the
NFS-based rootfs.

VI. IMPACT OF THE QFDB

In this section, we highlight the impact of the QFDB on
a number of ongoing research activities. In effect, the QFDB
has been used extensively for the last two years, and a variety
of achievements were obtained by leveraging its capabilities.
In the ExaNeSt project [1], it was leveraged to develop novel
HPC interconnects, and validate a high-density liquid-cooled
HPC rack . In EcoScale, the QFDBs were utilized to imple-
ment an innovative scheme that allows hardware acceleration
across distributed fabric of interconnected FPGAs. Finally,
various hardware acceleration efforts took place on QFDBs.

A. Advanced Interconnect

The QFDB is a first-class substrate to develop cutting edge
interconnects. In effect, the board presents 10 links to the
outside world, that is enough for most common topologies.
The Programmable Logic of the Zynqs can be used to im-
plement both Network Adapter functionalities (e.g., RDMAs,
mailboxes) as well as ad-hoc switches and links. The tightly
coupled Processing System can either be used as a network
node or to implement Control Plane functionalities, with much
better agility and performance than when a PCIe bus is
involved. In addition, the density of the board and the software
environment presented in Section V-A allow for the quick
deployment of significant interconnect topologies.

In the ExaNeSt project [1], the ExaNet interconnect [7]
was developed based on the QFDBs features. The low-latency
3D-torus high-speed fabric was brought up and optimized
by leveraging the environment described in Section V. The
drivers and an MPI library were also developed in this context,

(a) Ping-pong completion (b) Non-blocking send execution

Fig. 7: ExaNet MPI stack performance
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and large scientific applications exploited this stack. Figure 7
shows the performance of the current version of the ExaNet
stack between the Network FPGA of two adjacent QFDBs.
With the current version of the firmware and software stack,
the one-way latency observed by the application for small
messages is one microsecond. Figure 7a shows the completion
time for an MPI ping-pong with different message sizes.
For small packets, the round trip lasts on average 3 µs,
by leveraging custom packetizer and mailbox IPs. For larger
messages, the custom DMA engine sustains high-throughput
while keeping a modest initialization overhead. In Figure 7b,
the execution time of a non-blocking send (MPI ISend) is
shown for different message sizes in the ExaNet implemen-
tation. It remains stable around 1 µs for transfers up to
1 GB, while in many vendor implementations, it tends to
increase substantially even for much smaller messages. With
respect to the capabilities of the Zynq Ultrascale+, this level of
performance is very encouraging, and provides a very positive
insight regarding the ExaNet potential.

At present, QFDBs are utilized to pursue complementary
research activities in the field of HPC interconnects such as
congestion control, multi-path routing, alternative topologies
evaluation, and network functions acceleration.

B. Dense HPC system

One of the important challenges for future HPC systems is
to reach sufficient computational and power density to keep
the dimensions of machines reasonable. Within the ExaNeSt
project, a high-density liquid-cooled rack was assembled. As a
consequence, the QFDB specifications were driven by strong
density constraints. The rack, including its cooling technology,
power delivery and high-speed signal conditioning, were de-
signed by Iceotope [34]. The proprietary cooling technology
allows for clean removal and insertion of liquid-cooled blades.
The compute nodes are sealed within the blade enclosure.
Figure 8 shows a picture of the ExaNeSt testbed. Each blade

Fig. 8: The ExaNeSt HPC testbed

hosts 4 QFDBs. The Ethernet infrastructure described in
Section V-B is implemented by means of commercial switches
(along with firmware and software elements in the QFDBs).
The cabling implements the ExaNet interconnect discussed in
Section VI-A.

C. Reconfigurable acceleration on shared multi-FPGA re-
sources

The QFDBs were also deployed for the prototyping of
the UNILOGIC architecture, introduced in the ECOSCALE
H2020 project. This approach supports efficient sharing of
distributed reconfigurable logic across the system [8], [9],
[33]. In order to implement efficient sharing, the architecture
supports partitioned global address space so that a) the hard-
ware accelerators on the FPGAs of the QFDB boards can be
accessed directly by any processor in the system, and b) the
hardware accelerators can access any memory in the system. In
this way, the architecture offers a unified environment where
all the system resources can be seamlessly accessed by the
Operating System of any processor. The architecture is tailored
to the characteristics of an HPC environment, partitioning the
design into several nodes that communicate through a fat-tree
infrastructure, as depicted in Figure 9. Each node is an entire
sub-system including a processing unit, memory, storage and
reconfigurable resources that can be accessed by any node in
the system.

The reconfigurable resources are split into a static parti-
tion, which provides the communication infrastructure, and
four fixed-size slots that can be reconfigured and accessed
independently or combined together (slot merging), in order
to support fine or coarse grain partitioning and utilization of
the reconfigurable resources. Partial runtime reconfiguration
has been employed to dynamically reconfigure the accelerator
slots. These slots can be remotely reconfigured and accessed
directly by any processor in the system using the Xilinx
Internal Configuration Access Port (ICAP) that resides in
the UNILOGIC global address space. The tight coupling of
the resources on the QFDB allows an accelerator on any
reconfigurable slot to access any DDR memory in the system
with minimal communication overhead. A runtime system
monitors the system status and manages the reconfigurable
resources across the whole platform.

The QFDB has provided an ideal development platform
offering reconfigurable resources that are tightly coupled

Fig. 9: QFDBs in a fat-tree infrastructure
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Fig. 10: Example UNILOGIC infrastructure

through low-latency, high-speed connectivity. Each QFDB
FPGA represents a node of the UNILOGIC architecture while
the communication infrastructure has been implemented by
interconnecting 16 QFDB boards together. In order to connect
multiple QFDB boards together, the ECOSCALE project de-
signed and implemented a carrier board that can support up to
eight interconnected QFDB boards, and thus up to 32 FPGAs,
within an 1U chassis. The architecture can easily be extended
by further interconnecting multiple chassis.

Figure 10 presents a small UNILOGIC system with four
interconnected QFDBs. In each Zynq Ultrascale+, the UNI-
LOGIC firmware also implements four dynamically recon-
figurable accelerator slots, that are accessible to applications
through a virtualization and scheduling layer. In this example,
resources are shared among four applications. The software
part of the Red application runs on a node of QFDB 1 (red
circle in the rightmost FPGA), and spreads its data in the
memory of five other nodes (red memory DIMMs on top).
Accelerators for this application (red slots inside FPGAs) are
spawned close to the data, however all accelerators can also
access remote memory with a moderate latency. Another ap-
plication, the Blue one, requires two coarse grain accelerators
that require respectively the merging of 2 and 4 slots. Two
more applications, the Green and Yellow, share QFDB 3. Since
the UNILOGIC virtualization and scheduling layer allows for
seamless sharing of accelerators across applications, they also
reuse a common accelerator function (double-colored slots).
Finally, all applications use resources of QFDB 4, illustrating
the flexibility offered by the UNILOGIC architecture.

D. Stand-alone accelerators

The reconfigurable resources in a QFDB’s FPGAs and
their AXI memory interfaces with the Processing System
(PS) enable the deployment of tightly coupled accelerators.
To showcase the capabilities of our prototype, High-Level
Synthesis (HLS) was used to develop a Matrix Multiplication
accelerator, as it is a very common kernel in HPC and AI

applications – for instance GEMM in BLAS Level-3 routines
and also in Convolutional Neural Networks.

Xilinx’s Vivado HLS was used to develop a highly opti-
mized matrix multiplication kernel tile using the directive-
oriented style of HLS. This kernel tile is parameterizable with
different sizes, in order to experiment with implementations
that have different area vs. performance trade-offs. The kernel
tile operates on single-precision floating point elements (FP32)
and is tuned considering the finite reconfigurable resources
(LUTs, Flip-Flops, DSPs) and the internal memory (BRAM)
size limitations. Moreover, its design used efficiently the
provided AXI memory bandwidth.

The basic matrix multiplication algorithm is shown below:

f o r i =0 t o n do
f o r j =0 t o n do

f o r k=0 t o n do
C[ i ] [ j ] += A[ i ] [ k ] x B[ k ] [ j ]

Given the finite resources of the FPGA and the need to
accelerate matrix multiplication of very large arrays that do not
fit in internal memory (BRAM), a tiled approach was followed
and the optimized kernel was applied over the corresponding
tiles of the original arrays. Based on the study of the associated
area-speed trade-offs, a tile size of 128 × 128 operating at
300 MHz was selected. The kernel tile implementation unrolls
the k loop completely, performing 128 FP32 multiplications
and 128 FP32 additions per cycle (fully-pipelined), which is
similar to a vector unit operating on 4096 bits. Moreover, the
j loop is partially unrolled by a factor of 4, which is similar
to having 4 vector units of 4096 bits. In total, the kernel tile
performs 512 FP32 multiplications and 512 FP32 additions per
cycle (fully-pipelined). Once the appropriate elements of the
arrays are stored in on-chip accelerator memory (BRAMs),
the tile execution lasts ∼4200 clock cycles. Three AXI HP
ports (one per array) are utilized to load data into the local
BRAMs, in order to continuously feed the kernel with data
and match the required bandwidth. By performing a series
of performance optimizations on the memory interfaces and
load/unload techniques, each FPGA managed to achieve 275
FP32 GFLOP/s and offload a matrix multiplication application
from Linux. With all four FPGAs, a single QFDB can perform
and sustain more than 1 FP32 TFLOP/s.

The matrix multiplication FP32 kernel tile of 128 × 128
operates at 300 MHz, and requires 153K LUTs, 300K Flip-
Flops, 2057 DSPs and 416 BRAMs. The resource utilization
of each FPGA device implementing our kernel tile is 56%
of LUTs, 55% of Flip-Flops, 46% of BRAMs and 82% of
DSPs. Moreover, power consumption of the accelerator was
measured using the plethora of power sensors residing on the
QFDB. Based on the readings of these sensors, encouraging
power efficiency results were gathered. These measurements
show that the dynamic power consumption of the accelerator
is 16.2 Watts, which yields 17 FP32 GFLOP/s per Watt.
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VII. CONCLUSIONS

In this paper, we presented the Quad-FPGA Daughter Board
(QFDB) architecture and the system software and firmware set
up to support our research activities running on multiple inter-
connected boards in a large-scale system. The design and the
bring-up of the QFDB was very challenging and we discussed
aspects essential for the development of complex System-
On-Modules. Finally, we described several achievements that
exploited the QFDB, and highlight its potential.

In effect, the QFDB takes advantage of the reconfigurable
logic and connectivity resources included in modern MPSoCs
to design a unique high-density module, that can serve as a
building block for prototyping large-scale systems. In addition,
the QFDB is powerful enough to accelerate compute-intensive
workloads. For example, large scientific application runs were
achieved [7], based on a custom interconnect and MPI stack.
The density of the module was also leveraged to build a
high-density liquid-cooled rack presented in Section VI-B.
Moreover, the Programmable Logic of the Zynq devices was
used to run the accelerator presented in Section VI-D, that
could execute up to 1.1 FP32 TFLOP/s on a single QFDB.
Finally, multiple QFDBs were utilized to develop the UNI-
LOGIC architecture, that allows for the seamless sharing of
Programmable Logic and memory resources across multiple
compute nodes [8].

The flexibility and density of the QFDB paves the way
to large-scale system prototyping and hardware acceleration,
suitable for a large spectrum of research activities, from
hardware acceleration to high-performance interconnects, and
from runtime software to accelerated HPC applications.
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