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 Motivation and Goal: Provides a common platform for 
streaming computation with multiple FPGAs

 Our platform
 Overview
 Intel PAC (Programmable Accelerator Card)
Hardware: Arria10 FPGA + I/O + PCIe
 Software: Open Programmable Acceleration Engine

 AFU Shell: DMA transfer API
 Application: Lattice Boltzmann Method

 Summary

Agenda

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)



3

 Motivation
 Although FPGA gathers increasing attention in HPC area, 

is still low. Especially for multiple FPGAs cluster.
We don’t want to reinvent the wheel (Device driver, DMAC, 
 Bad for collaborative research :(

 Goal: Provides a common platform for streaming 
computation with multiple FPGAs.
 Common software interface
 Common hardware modules
 Portable bitstream
 Good for collaborative research :)

Motivation and goal of our research

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)

Presenter
Presentation Notes
Concept, objective and goal are important.
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Our platform
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 We are researching and developing C/C++ common APIs, 
data-flow compiler and underlying hardware modules.

 Intel FPGA (Intel Acceleration Stack) is a base system currently.

Overview of our platform

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)
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 IAS is a robust collection of software, firmware, and tools to make 
it easier to develop and deploy Intel FPGAs.

 SW: Open Program-
mable Acceleration
Engine(OPAE)

 HW: Intel Programma-
ble FPGA Card. (Accele
rator Function unit
including CCI-P, partial
reconfiguration region
and so on.)

Intel Acceleration Stack (IAS)

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)
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Intel Programmable Accelerator Card

 PAC = PCIe-base FPGA board

 FPGA: Intel Arria 10 GX
 10AX115N2F40E2LG
 SERDES transceiver

(15 Gbps per port at maximum)
 1150K Logic elements

(Speed grade: -2L)
 53 Mb Embedded Memory

 Memory
 8 GB DDR4, 2 channels

 External Port
 PCIe Gen3 x8
 1X QSFP (4X 10GbE or 40GbE)

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)

Appearance of PAC

Substrate of PAC

Block diagram
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Hardware part (on FPGA)

 Hardware part includes 
 Accelerator Function Unit
 FPGA Interface Manager
 FPGA Management Engine
 FPGA Interface Unit

 Common I/O and sample 
design are prepared :)
 10, 40GbE
 DDR4, DMA controller

 AFU is a computation logic 
preconfigured on FPGA 
designed in RTL. 

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)
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Accelerator Functional Unit (AFU)

 AFU is a computation logic 
preconfigured on FPGA. 
The logic is designed in 
RTL and synthesized into a 
bitstream. 

 It contains AF and control 
and status registers. It 
represents a resource 
discoverable and usable by 
your applications. fpgaconf
is provided to reconfigure 
an FPGA using a 
bitstream. 4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)
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 The OPAE library is a lightweight user-space library that 
provides abstraction for FPGA resources in a compute 
environment.

 C language

 C++ and Python bindings

4th Intl. WS on Heterogeneous High-
performance Reconfigurable Computing 

Software part (on Host computer) =
Open Programmable Acceleration Engine
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Controlling hardware with OPAE

1. Discover/Search AFU

2. Acquire ownership of AFU

3. Map AFU registers to the 
user space

4. Allocate / Define shared 
memory space

5. Start / Stop computation 
on AFU and wait for the 
result

6. Deallocate shared memory

7. Release ownership of AFU4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)



12

 Board Support Package (BSP) is provided by FPGA vendor to 
use OpenCL on their boards.

 IAS is more flexible than BSP and gives the users more 
responsibility.
 No limitations of BSP.
 No need to write OpenCL runtime.
 Need to write almost everything...

 Requires more comprehensive system-wide knowledge
 e.g. DMA controller and drivers.

Difference between BSP

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)
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AFU Shell and DMA Transfer API



14

 AFU Shell is a base hardware of our platform. 
 includes two DMA controller and computing core.
 Semi-automated design flow for FIM & OPAE 1.1beta
 "make (for spgen); make embed generate makegbs (for 

AFU Shell for Intel PAC w/ Arria10

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)
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 DMA Controller is based on mSGDMA
 TX DMAC and RX DMAC are separated for flexibility

 DMA Transfer API (Synchronous)
 fpga_result afuShellDMATransfer(

void* dst, 
const void* src, 
size_t count, 
dma_transfer_type_t type )

 Four types of data transfer are supported
 HOST→FPGA, FPGA→HOST, FPGA→FPGA, HOST→HOST

DMA hardware and API for AFU Shell

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)

FPGA/module ALMs Registers BRAM Kbits DSPs
afuShell (2 DMACs) 2905 3055 135040 27
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Bandwidth: FPGA and FPGA

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)
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Bandwidth: Host and FPGA

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)
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 We put LBM computing core [1] into the AFU Shell
 131 Single precision floating-point / LBM core
Working frequency: 200MHz
 Input width: 40byte
 Required bandwidth: 200MHz * 40byte =  8000 MB/s
 Theoretical perf. : 200MHz * 131 FP = 26.2 GFlops / LBM 

 Our LBM core can improve
performance by cascading
the core without
increasing input bandwidth.

Sample app: Lattice Boltzmann Method

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)

Example result of our LBM

[1] K. Sano and S. Yamamoto, “Fpga-based scalable and powerefficient fluid simulation sing floating-
point dsp blocks,” IEEE Transactions on Parallel and Distributed  Systems, vol. 28, no. 10, pp. 2823–
2837, Oct 2017.



23

 Eight LBM can be cascaded, currently

 Sustained performance
 Initial data on a FPGA DRAM channel go through LBM core, 

back to the other FPGA DRAM channel.
 Ratio of stall cycles to total cycles is measured by HW counter 

it is 1.04 e-05 when the input data size is  1.92MB
 Thus, sustained performance for each implementation is the 

as theoretical peak.

Performance of LBM

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)

# of cascaded core 1 2 4 8
ALMs 2.85 1.94 1.06 5.53
Registers 5.62 3.85 2.3 11.06
BRAM Kbits 11.1 7.66 4.78 22.13
DSPs 22.1 15.28 9.74 44.26

Theoretical performance 
[Gflops] 26.2 52.4 104.8 209.6
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LBM core bandwidth (FPGA and FPGA)

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)
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 We are researching and developing a common platform for 
streaming computation with multiple FPGAs based on Intel 
PAC

 Intel PAC consist of Arria10 FPGA (HW) and OPAE (SW)

 AFU Shell is a base hardware of our platform including 
DMA Controller and API.
 afuShellDMATransfer ()

 Sample application: Lattice Bolztmann Method
 Sustained performance is equal to theoretical performance.

 Need collaboration :)

Summary

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)



264th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)


	Stream Computing of Lattice-Boltzmann Method on Intel Programmable Accelerator Card
	Agenda
	Motivation and goal of our research
	Our platform
	Overview of our platform
	Intel Acceleration Stack (IAS)
	Intel Programmable Accelerator Card
	Hardware part (on FPGA)
	Accelerator Functional Unit (AFU)
	Software part (on Host computer) =� Open Programmable Acceleration Engine
	Controlling hardware with OPAE
	Difference between BSP
	AFU Shell and DMA Transfer API
	AFU Shell for Intel PAC w/ Arria10
	DMA hardware and API for AFU Shell
	afuShellDMATransfer( 0x0, 0x100, 100, FPGA_TO_FPGA)
	afuShellDMATransfer( 0x0, host_dst, 100, FPGA_TO_HOST)
	afuShellDMATransfer( host_src, 0x100, 100, HOST_TO_FPGA)
	afuShellDMATransfer( host_src, host_dst, 100, HOST_TO_HOST)
	Bandwidth: FPGA and FPGA
	Bandwidth: Host and FPGA
	Sample app: Lattice Boltzmann Method
	Performance of LBM
	LBM core bandwidth (FPGA and FPGA)
	Summary
	Slide Number 26

