
Takaaki Miyajima, Tomohiro Ueno and Kentaro Sano

Processor Research Team,
RIKEN Center for Computational Science,

Kobe, Hyogo, 650-0047, Japan

Stream Computing of Lattice-
Boltzmann Method on Intel

Programmable Accelerator Card

2

 Motivation and Goal: Provides a common platform for
streaming computation with multiple FPGAs

 Our platform
 Overview
 Intel PAC (Programmable Accelerator Card)
Hardware: Arria10 FPGA + I/O + PCIe
 Software: Open Programmable Acceleration Engine

 AFU Shell: DMA transfer API
 Application: Lattice Boltzmann Method

 Summary

Agenda

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)

3

 Motivation
 Although FPGA gathers increasing attention in HPC area,

is still low. Especially for multiple FPGAs cluster.
We don’t want to reinvent the wheel (Device driver, DMAC,
 Bad for collaborative research :(

 Goal: Provides a common platform for streaming
computation with multiple FPGAs.
 Common software interface
 Common hardware modules
 Portable bitstream
 Good for collaborative research :)

Motivation and goal of our research

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)

Presenter
Presentation Notes
Concept, objective and goal are important.

44th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)

Our platform

5

 We are researching and developing C/C++ common APIs,
data-flow compiler and underlying hardware modules.

 Intel FPGA (Intel Acceleration Stack) is a base system currently.

Overview of our platform

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)

Application software (e.g. CFD)

FPGA

Linux Kernel

FIM (DDR4 EMIF, PCIe, HSSI,
FMU) AFU Shell

OPAE

DMA API Other libs
(networking)

FPGA class, FPGAs class
Data-flow
compiler
(SPGen)

System Stack of our platform

HW

SW
R&D by our

team

Provided by
Intel

User-level API

System-level API

6

 IAS is a robust collection of software, firmware, and tools to make
it easier to develop and deploy Intel FPGAs.

 SW: Open Program-
mable Acceleration
Engine(OPAE)

 HW: Intel Programma-
ble FPGA Card. (Accele
rator Function unit
including CCI-P, partial
reconfiguration region
and so on.)

Intel Acceleration Stack (IAS)

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)

7

Intel Programmable Accelerator Card

 PAC = PCIe-base FPGA board

 FPGA: Intel Arria 10 GX
 10AX115N2F40E2LG
 SERDES transceiver

(15 Gbps per port at maximum)
 1150K Logic elements

(Speed grade: -2L)
 53 Mb Embedded Memory

 Memory
 8 GB DDR4, 2 channels

 External Port
 PCIe Gen3 x8
 1X QSFP (4X 10GbE or 40GbE)

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)

Appearance of PAC

Substrate of PAC

Block diagram

8

Hardware part (on FPGA)

 Hardware part includes
 Accelerator Function Unit
 FPGA Interface Manager
 FPGA Management Engine
 FPGA Interface Unit

 Common I/O and sample
design are prepared :)
 10, 40GbE
 DDR4, DMA controller

 AFU is a computation logic
preconfigured on FPGA
designed in RTL.

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)

9

Accelerator Functional Unit (AFU)

 AFU is a computation logic
preconfigured on FPGA.
The logic is designed in
RTL and synthesized into a
bitstream.

 It contains AF and control
and status registers. It
represents a resource
discoverable and usable by
your applications. fpgaconf
is provided to reconfigure
an FPGA using a
bitstream. 4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)

10

 The OPAE library is a lightweight user-space library that
provides abstraction for FPGA resources in a compute
environment.

 C language

 C++ and Python bindings

4th Intl. WS on Heterogeneous High-
performance Reconfigurable Computing

Software part (on Host computer) =
Open Programmable Acceleration Engine

11

Controlling hardware with OPAE

1. Discover/Search AFU

2. Acquire ownership of AFU

3. Map AFU registers to the
user space

4. Allocate / Define shared
memory space

5. Start / Stop computation
on AFU and wait for the
result

6. Deallocate shared memory

7. Release ownership of AFU4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)

12

 Board Support Package (BSP) is provided by FPGA vendor to
use OpenCL on their boards.

 IAS is more flexible than BSP and gives the users more
responsibility.
 No limitations of BSP.
 No need to write OpenCL runtime.
 Need to write almost everything...

 Requires more comprehensive system-wide knowledge
 e.g. DMA controller and drivers.

Difference between BSP

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)

134th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)

AFU Shell and DMA Transfer API

14

 AFU Shell is a base hardware of our platform.
 includes two DMA controller and computing core.
 Semi-automated design flow for FIM & OPAE 1.1beta
 "make (for spgen); make embed generate makegbs (for

AFU Shell for Intel PAC w/ Arria10

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)

FPGA Board (PAC)PCIe (Host CPU's memory)

FIMDDR4A EMIF DDR4B EMIF

Fabric

PCIe Gen3
x8 EP

FME

PR

HSSI PHY
Mode Ctrl
Platform

Management

HSSI PHY

HSSI PLL

HSSI
Reset

HSSI
Reconf

HSSI
Controller

FIU

HSSI

Local
Memory

DDR4 mems

Q
SF

P+

Arria10 FPGA

PCIe host

M2S DMA

M
em

or
y

in
te

rc
on

ne
ct

DDR4 EMIF

S2M DMA

Switch 1

Switch 2

Stream
Computing

Core
generated by

SPGen

AFU Shell

AFU Slot
Available to AFU

ALMs 391,213 (92%)
M20K 510,04 (94%)
DSPs 1,518 (100%) H

SS
I I

nt
er

fa
ce

Local Memory Interface

CCI-P Interface, Clocks, Power, Error

15

 DMA Controller is based on mSGDMA
 TX DMAC and RX DMAC are separated for flexibility

 DMA Transfer API (Synchronous)
 fpga_result afuShellDMATransfer(

void* dst,
const void* src,
size_t count,
dma_transfer_type_t type)

 Four types of data transfer are supported
 HOST→FPGA, FPGA→HOST, FPGA→FPGA, HOST→HOST

DMA hardware and API for AFU Shell

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)

FPGA/module ALMs Registers BRAM Kbits DSPs
afuShell (2 DMACs) 2905 3055 135040 27

16

mQsys_Core8

src

snk

mAvlsT_widthConve
rter_16to8snk

src

mAvlsT_widthConve
rter_8to16

snk

src

M2S DMA
BBB

m

m
src

s

EMIF Clock Crossing
Bridge A sm

S2M DMA
BBB

m

m
snk

s

Host Read
Pipeline
Bridge

sm

EMIF Clock Crossing
Bridge B sm

Host Write
Response

Bridge
sm

CsR
Pipeline
Bridge

s

m

streaming
DMA AFU

DFH

m mAvlsT_switch_1to2to1

s

afuShellDMATransfer(0x0, 0x100, 100,
FPGA_TO_FPGA)

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)

17

mQsys_Core8

src

snk

mAvlsT_widthConve
rter_16to8snk

src

mAvlsT_widthConve
rter_8to16

snk

src

M2S DMA
BBB

m

m
src

s

EMIF Clock Crossing
Bridge A sm

S2M DMA
BBB

m

m
snk

s

Host Read
Pipeline
Bridge

sm

EMIF Clock Crossing
Bridge B sm

Host Write
Response

Bridge
sm

CsR
Pipeline
Bridge

s

m

streaming
DMA AFU

DFH

m mAvlsT_switch_1to2to1

s

afuShellDMATransfer(0x0, host_dst, 100,
FPGA_TO_HOST)

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)

18

mQsys_Core8

src

snk

mAvlsT_widthConve
rter_16to8snk

src

mAvlsT_widthConve
rter_8to16

snk

src

M2S DMA
BBB

m

m
src

s

EMIF Clock Crossing
Bridge A sm

S2M DMA
BBB

m

m
snk

s

Host Read
Pipeline
Bridge

sm

EMIF Clock Crossing
Bridge B sm

Host Write
Response

Bridge
sm

CsR
Pipeline
Bridge

s

m

streaming
DMA AFU

DFH

m mAvlsT_switch_1to2to1

s

afuShellDMATransfer(host_src, 0x100,
100, HOST_TO_FPGA)

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)

19

mQsys_Core8

src

snk

mAvlsT_widthConve
rter_16to8snk

src

mAvlsT_widthConve
rter_8to16

snk

src

M2S DMA
BBB

m

m
src

s

EMIF Clock Crossing
Bridge A sm

S2M DMA
BBB

m

m
snk

s

Host Read
Pipeline
Bridge

sm

EMIF Clock Crossing
Bridge B sm

Host Write
Response

Bridge
sm

CsR
Pipeline
Bridge

s

m

streaming
DMA AFU

DFH

m mAvlsT_switch_1to2to1

s

afuShellDMATransfer(host_src, host_dst,
100, HOST_TO_HOST)

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)

20

Bandwidth: FPGA and FPGA

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)

0

2000

4000

6000

8000

10000

12000

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08 1.E+10

[M
B/

s]

Transfer size [byte]

w/o computation core [MB/s]

Theoretical BW @200MHz[MB/s]

Measured by using software timer

21

Bandwidth: Host and FPGA

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)

0

1000

2000

3000

4000

5000

6000

7000

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08 1.E+10

[M
B/

s]

Transfer size [byte]

Host to FPGA [MB/s]

FPGA to Host [MB/s]

Host to Host [MB/s]

Measured by using software timer

22

 We put LBM computing core [1] into the AFU Shell
 131 Single precision floating-point / LBM core
Working frequency: 200MHz
 Input width: 40byte
 Required bandwidth: 200MHz * 40byte = 8000 MB/s
 Theoretical perf. : 200MHz * 131 FP = 26.2 GFlops / LBM

 Our LBM core can improve
performance by cascading
the core without
increasing input bandwidth.

Sample app: Lattice Boltzmann Method

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)

Example result of our LBM

[1] K. Sano and S. Yamamoto, “Fpga-based scalable and powerefficient fluid simulation sing floating-
point dsp blocks,” IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 10, pp. 2823–
2837, Oct 2017.

23

 Eight LBM can be cascaded, currently

 Sustained performance
 Initial data on a FPGA DRAM channel go through LBM core,

back to the other FPGA DRAM channel.
 Ratio of stall cycles to total cycles is measured by HW counter

it is 1.04 e-05 when the input data size is 1.92MB
 Thus, sustained performance for each implementation is the

as theoretical peak.

Performance of LBM

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)

of cascaded core 1 2 4 8
ALMs 2.85 1.94 1.06 5.53
Registers 5.62 3.85 2.3 11.06
BRAM Kbits 11.1 7.66 4.78 22.13
DSPs 22.1 15.28 9.74 44.26

Theoretical performance
[Gflops] 26.2 52.4 104.8 209.6

24

LBM core bandwidth (FPGA and FPGA)

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)

0

2000

4000

6000

8000

10000

12000

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08 1.E+10

[M
B/

s]

Transfer size [byte]

w/o computation core [MB/s]
Theoretical BW @200MHz[MB/s]
w/ computation core [MB/s]
Theoretical BW[MB/s]

25

 We are researching and developing a common platform for
streaming computation with multiple FPGAs based on Intel
PAC

 Intel PAC consist of Arria10 FPGA (HW) and OPAE (SW)

 AFU Shell is a base hardware of our platform including
DMA Controller and API.
 afuShellDMATransfer ()

 Sample application: Lattice Bolztmann Method
 Sustained performance is equal to theoretical performance.

 Need collaboration :)

Summary

4th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)

264th Intl. WS on Heterogeneous High-performance Reconfigurable Computing (H2RC'18)

	Stream Computing of Lattice-Boltzmann Method on Intel Programmable Accelerator Card
	Agenda
	Motivation and goal of our research
	Our platform
	Overview of our platform
	Intel Acceleration Stack (IAS)
	Intel Programmable Accelerator Card
	Hardware part (on FPGA)
	Accelerator Functional Unit (AFU)
	Software part (on Host computer) =� Open Programmable Acceleration Engine
	Controlling hardware with OPAE
	Difference between BSP
	AFU Shell and DMA Transfer API
	AFU Shell for Intel PAC w/ Arria10
	DMA hardware and API for AFU Shell
	afuShellDMATransfer(0x0, 0x100, 100, FPGA_TO_FPGA)
	afuShellDMATransfer(0x0, host_dst, 100, FPGA_TO_HOST)
	afuShellDMATransfer(host_src, 0x100, 100, HOST_TO_FPGA)
	afuShellDMATransfer(host_src, host_dst, 100, HOST_TO_HOST)
	Bandwidth: FPGA and FPGA
	Bandwidth: Host and FPGA
	Sample app: Lattice Boltzmann Method
	Performance of LBM
	LBM core bandwidth (FPGA and FPGA)
	Summary
	Slide Number 26

