
The MANGO Process for Designing and Programming
Multi-Accelerator Multi-FPGA Systems

Rafael Tornero, José Flich, José María Martínez,
Tomás Picornell

Universitat Politècnica de València
Valencia, Spain

rtornero@disca.upv.es,jflich@disca.upv.es
jomarm10@gap.upv.es,tompic@gap.upv.es

Vincenzo Scotti
Università degli Studi di Napoli Federico II

Naples, Italy
vincen.scotti@studenti.unina.it

ABSTRACT
This paper describes the approach followed in the European FETHPC
MANGO project to design and program systems made of multiple
FPGAs interconnected. The MANGO approach relies on the in-
stantiation and management of multiple generic and custom-made
accelerators which can be programmed to communicate each other
via non-coherent shared memory and through synchronization
registers. The paper introduces the low level architecture including
the multi-FPGA interconnect deployed, the communication proto-
col and the architectural template-based approach to simplify the
design process.

ACM Reference Format:
Rafael Tornero, José Flich, José María Martínez, Tomás Picornell and Vin-
cenzo Scotti. 2018. The MANGO Process for Designing and Programming
Multi-Accelerator Multi-FPGA Systems. In Proceedings of Fourth Interna-
tional Workshop on Heterogeneous High-performance Reconfigurable Comput-
ing (H2RC’18). ACM, New York, NY, USA, 4 pages. https://doi.org/10.475/
123_4

1 INTRODUCTION
High-Performance Computing (HPC) is slowly but steadily intro-
ducing FPGA-based devices as energy efficient components helping
in improving the performance-per-watt relationship [1, 4]. FPGAs
are power efficient for specific applications which suit best on recon-
figurable devices with massive number of computing units which
can be used in parallel. As HPC is also being adopted to sustain and
improve BigData applications, specially those related to Artificial
Intelligence and Deep Learning, FPGA devices get more interest as
fine-grained parallelism is exploited more efficiently.

However, the use of FPGAs for HPC purposes brings its own limi-
tations and complexities. One major issue is scaling beyond a single
node or FPGA which is still not a mainstream capability, except for
few examples such as the Catapult system [4]. Another well-known
complexity is programmability. As we approach commodity in the
use of FPGAs there is need to develop new methods and tools that

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
H2RC’18, Nov 2018, Dallas, Texas USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06.
https://doi.org/10.475/123_4

help reducing complexity in handling and programming those de-
vices. Enabling multi-FPGA systems for implementing large designs
is also a challenge that needs to be overcome.

The MANGO project [2] is a European project which has as one
of its main objectives the development of complex multi-FPGA sys-
tems for HPC architecture exploration purposes. In the context of
MANGO, FPGAs from different models and vendors can be plugged
together and interconnected in a pin-to-pin fashion. Memory and
IO modules are also plugged on top of FPGAs in order to create a
complete system. The final system configuration is decided by the
system engineer and depends on physical constraints but mainly
on application requirements. Given the large flexibility offered by
the underlying hardware produced in MANGO, there is a need to
provide a flexible and simplified methodology for proper design and
implementation of the complete system, enabling the instantiation
of multiple accelerator devices within the FPGAs adapted to the
specific algorithms that need to be run on the FPGAs.

In this paperwe describe themethodology followed in theMANGO
project for the simplification process of design, test and manage-
ment of any generic cluster configuration made of multiple FPGA
devices.

2 MANGO ARCHITECTURE
Figure 1 shows the general view of the MANGO approach. The
final MANGO prototype will be made of 16 clusters, each with two
different components: an standard HPC server, and the Heteroge-
neous Node (HN) cluster implemented on a set of interconnected
FPGAs, memory and IO modules. For the sake of simplification we
focus on the description of a single HN cluster.

The HN cluster can be configured by the system engineer by
putting together a set of FPGAs, potentially from different vendors
and models, using the deployed composable infrastructure provided
in MANGO by ProDesign Company [3]. Motherboards are provided
to plug FPGA modules from different vendors and models. Those
FPGAs can be connected pin-to-pin using specific cables. Large
systems up to 20 FPGAs can be deployed guaranteeing a synchro-
nous phased-aligned clock is achieved. Memory modules (DDR3,
DDR4, ...) and IO modules (PCIe, Ethernet, ...) can be plugged on
top of FPGAs, building a complete system. Physical construction of
the cluster does not require any specific expertise and resembles a
lego-like exercise.

The physical construction of the cluster is followed by the defi-
nition of a set of accelerators (complex IP blocks) to be instantiated

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4
https://doi.org/10.475/123_4


H2RC’18, Nov 2018, Dallas, Texas USA R. Tornero et al.

Figure 1: Global view of the multi-FPGA architecture design.

and deployed all over the FPGA cluster. Accelerators will be of dif-
ferent types and functionality, custom-made or generic ones, being
able to adapt to the specificities of the target applications on the
HPC infrastructure. Within MANGO different generic accelerators
(generic many-core system and generic GPU-like accelerator) and
custom-made (coarse grained reconfigurable accelerator) have been
deployed. All of them follow the same defined interface.

The MANGO project aims at simplifying the development of a
tool for rapid architecture exploration, enabling the system engineer
to practice and experiment with different suitable configurations.
This, in terms of functionality, requires the following properties
that must be guaranteed by the designed architecture: flexibility in
the configuration of the system, effective communication with the
deployed system, and monitoring of the deployed system.

Flexibility in the configuration means that the engineer should
be able to rapidly and conveniently change the system configura-
tion with the following options as example: Number and type of
accelerators to be instantiated, Number of DDR memory modules
to be instantiated, or mapping of accelerators and memory mod-
ules on FPGAs. The system engineer describes also the physical
configuration of the cluster (which FPGAs are attached to which
ones, where memory modules and IO modules are attached to, ...).

Flexibility must be achieved at design time and with a proper
method that by performing the smallest changes possible to the
source code being able to achieve radical changes in the configura-
tion. In this sense, we refer to an architecture ID to each possible
configuration that the engineer can conceive. Therefore, the system
must provide a simplified way to allow the engineer to change and
define an architecture ID.

Effective communication means that the accelerators within the
multi-FPGA system must properly communicate between them
and to/from memory modules and to/from the server. In addition,
the system must be provisioned with mechanisms to guarantee
QoS requirements from applications running their kernels in the
accelerators. All this reduces to two basic components of the many-
core architecture. On one hand, the design of a network connecting
accelerators and memories, and on the other hand, the design of a
proper communication infrastructure between the server and the
manycore.

Finally, in terms of monitoring, the systemmust provision proper
and effective methods to let the monitoring infrastructure to get
access to critical data from the system. This will be provided by an
additional network.

2.1 Heterogeneity Support
The previous requirements are the driving goals set for the design of
the MANGO architecture. Adding different accelerators of different
types to a cluster of connected FPGAs makes the system highly
heterogeneous. This leads to additional complexity that needs to
be handled. In order to simplify such task, we have opted for a tile-
based design where accelerators and memory modules are mapped
to. In this approach, the HN cluster reverts to an homogeneous
set of tiles laid out in a 2D mesh configuration. Each tile will offer
the same functionality for communication but within each tile a
different accelerator and memory configuration may be placed. This
means heterogeneity is exercised at tile level. Figure 1 shows the tile
concept. Every accelerator is embedded into a tile. An homogeneous



The MANGO Process for Designing and Programming Multi-Accelerator Multi-FPGA Systems H2RC’18, Nov 2018, Dallas, Texas USA

grid of tiles is span over the grid of physical FPGAs deployed within
the cluster. The number of tiles mapped to each FPGA could even
be different, but taking into account that the 2D mesh configuration
has to be kept.

2.2 Network Architecture
The MANGO network is implemented as a set of modules embed-
ded and distributed over the tiles. The MANGO network is made
of two major components, the ROUTER module and the NI mod-
ule, both present on every tile. The ROUTER provides connectivity
between modules located at neighbor tiles, while the NI connects
tile components to the ROUTER in the local tile. The network is
made of ROUTERs interconnected, one on each tile, and NI modules
connected to one local ROUTER module. The final layout (topol-
ogy) of the network is a 2D-mesh network. One important aspect
of the network is the different link bandwidth attainable between
routers. The pin bandwidth between FPGAs will bound the router’s
communication bandwidth. In order to minimize the impact on
communication bandwidth, we define different phit sizes between
connected routers, depending on their location (either on the same
FPGA or at different FPGAmodules). With this, intra-FPGA commu-
nication is not affected by the inter-FPGA communication limited
bandwidth.

VNs provide traffic isolation and bandwidth reservation opportu-
nities. Indeed, the router bandwidth can be reserved among different
traffic streams, one on each VN, and so among different memory
transfers. This is a key factor to allow the system to meet QoS
requirements regarding memory access bandwidth, as potentially
requested by applications. In order to do that, VNs can be dynami-
cally partitioned with respect to the bandwidth available on the link.
In addition, packets traveling in the network through routers have
a label in their headers, enabling the router to establish priorities
for resource assignment, thereby enabling timing guarantees from
the application perspective.

Related with the communication between the server and the
HN cluster, currently, every architecture supports communication
by Ethernet or PCIe, by means of ProDesign’s MMI64 proprietary
communication protocol. A set of communication channels can be
defined, which, in liaison with VNs can offer independent guaran-
teed bandwidth communication flows.

2.3 Accelerator Interface
In order to provide compatibility and scalability, the MANGO
project has defined a clear and unique set of interfaces to con-
nect any type of accelerator within the MANGO architecture. Two
interfaces (data and control interfaces) are mandatory to be used
by each accelerator while the third one (synchronization interface)
is optional. The data interface is related with the ability of the ac-
celerator to access memory and MANGO registers. A TLB strategy
is implemented on each accelerator, which enables mapping virtual
addresses of the accelerator on physical addresses. A flat physical
memory address space is supported by the concatenation of all
DDR memories implemented on the HN cluster.

The control interface enables configuration and control of the
accelerators. However, accelerators will have different configura-
bility and behavior. Thus, the control interface must be generic

enough and flexible to let accelerators be properly configured based
on their complexities. With this goal in mind, the control interface
is a minimal one which lets the accelerators define their protocols
and specificities.

With the previous two interfaces the accelerators can easily
synchronize with other accelerators or with the main application
running on the server side. Accelerators can synchronize by read-
ing/writing on register-mapped memory locations.

The optional interface allows accelerators to use a more direct
and efficient generic interrupt-based synchronization method. The
interrupt system developed in MANGO for synchronization be-
tween host applications and accelerators consists of a 16-bit inter-
rupt vector that can be masked in order to ignore the interrupts
the accelerator/host application is not interested in. The method
is generic in the sense that every accelerator can define their own
specific interrupts, so they can be commanded from the host to the
accelerator and vice versa.

2.4 Architecture Template Definition
The basic building blocks of the architecture (both hardware and IP
blocks) can be compounded in many different ways and configura-
tions allowing a deep exploration of heterogeneous architectures,
which is the goal of the MANGO project. The designer of a MANGO
architecture must deal with all the complexities of the MANGO
components in a structured and simplified way in order to make
the design process smooth and simple. Indeed, one background and
significant effort performed within the project is the design of a sys-
tem platform able to be easily configured and adapted to multiple
and different configurations of accelerators within the MANGO ar-
chitecture. In this section we describe such effort performed within
MANGO.

The MANGO platform allows the designer to easily define, con-
figure, and implement a supported architecture or a new one. An
architecture configuration is identified by a unique ID and each
architecture defines, among others, the following parameters: I)
number of FPGAs to use in the cluster, II) type of each FPGA to use
in the cluster, III) connectivity between FPGAs within the cluster,
IV) number of tiles on each FPGA defined as the number of rows
and columns of tiles, V) number and exact location of memory
modules in the cluster, VI) number and exact location of I/O de-
vices connections in the cluster, and VII) types of accelerators (and
versions of accelerators) on each tile defined in the cluster.

The complete MANGO architecture has been coded in Verilog
Hardware Description Language (VHDL) with the aim of addressing
every detail of the highly parametrized tile-based template devel-
oped in MANGO. Nevertheless, accelerators can be designed using
different methodologies, e.g. High Level Synthesis (HLS), given that
they absolutely accomplish with the MANGO accelerator interface
defined above. The Vivado Design Suite [6] has been used for be-
havioral simulation, synthesis and implementation purposes. For a
proper management and understanding of the code implementing
the MANGO architecture, a set of hierarchical template modules
have been enforced. Each accelerator (or even new ones) can be
easily added to the project. The tile based design is exploited in
the module hierarchy. A tile includes all the components shown
previously.



H2RC’18, Nov 2018, Dallas, Texas USA R. Tornero et al.

Section Description
FPGA description Gets the FPGA models
FPGA identification Provides the IDs given to every FPGA in the architecture
Multi FPGA Contains all the common parameters required
Clock Allow us to define the clocks used for some architecture subsystems
Topology Contains the description of the MANGO network topology
Memory Collects information about memory technologies and how they are connected to
Input/Output Collects the information on the input/output system devices as how to connect to
Network Describes the type of the data, control and debug network
Constraint Allow us to specify a set of constraints for the architecture

Table 1: Sections on architecture template file.

The architecture enables the definition of multi-accelerators plat-
forms where each accelerator can be of different type or the same
type but with different configurations (e.g. with different number
of cores or cache capacities). To enable such reconfigurability and
flexibility, the template modules has been highly parametrized. The
use of parameters makes the same accelerator module can be in-
stantiated several times (one on each tile) with same or different
configuration parameters, leading to different versions of the same
code but coexisting at the same time on the same MANGO archi-
tecture instance.

The MANGO architecture is defined completely from a single
ASCII template file. The engineer can deploy a brand new architec-
ture by only modifying such file. Every architecture is composed of
a set of sections that groups related architecture definition parame-
ters. Some sections are common to all the architectures, but also
there exist other sections that are architecture dependent. For the
latter case, a macro or define keeps control on enabling or disabling
that section for the architecture. Table 1 describes the main sections
that build an architecture.

2.5 Monitoring, Control and Debug Support
In order to simplify the test and validation process, the MANGO
approach supports an additional network connecting tiles which
handles control, monitoring, and debug information from the accel-
erators. This network is a lightweight implementation of the main
data network with only one VN and with a shorter flit size (perfor-
mance is not a requirement). A complete software infrastructure
has been deployed to handle all the generated control traffic on the
server node.

Control and debug information is accelerator specific. A 32-bit
control port is defined for each unit (accelerator) to send control
and debug information to the server node. All this traffic is tunneled
through the control network and handled by the daemon process
implemented on the server node. A new accelerator will need to
define its own control commands and debug format and enhance
the daemon for proper support.

2.6 FPGA Resource Utilization
Table 2 shows the FPGA resource utilization of the MANGO tile
when there is not any accelerator implemented inside it and when
there is a generic MIPS-based cache coherent 2-core accelerator
implemented in. The results have been obtained for the Virtex 7
V2000T speedgrade -1 Xilinx FPGA [5]. The resource utilization

Resource Tile (without accelerator) Tile (with accelerator)
LUT 3.29 10.72
LUTRAM 2.47 4.94
FF 1.34 5.23
Table 2: FPGA resource percentage utilization of a tile.

shown for a tile without any accelerator implemented in it provides
us the overhead that introduces the MANGO infrastructure with
regards to the complete system. As it can be seen, it is kept below
5% for every type of FPGA resource.

3 CONCLUSIONS
In this paper we have presented the MANGO approach to sup-
port the implementation of multiple accelerators on a multi-FPGA
system. The approach let’s the system engineer to customize a
complete cluster by mixing FPGAs of different vendors and models,
together with DDR memories and IO modules, and then exposing
the configuration of accelerators (IP cores) throughout the multi-
FPGA configuration. The paper has hinted also the interconnection
infrastructure and the communication protocol with support for
multiple flows of communication and the support of bandwidth
reservation policies.

ACKNOWLEDGMENTS
This work is supported by the European Commission through
MANGO project, under the Horizon 2020 FET-HPC program, grant
number 671668.

REFERENCES
[1] Texas Advanced Computing Center. [n. d.]. Retrieved August 15, 2018 from

https://www.tacc.utexas.edu/systems/chameleon
[2] MANGO Consortium. [n. d.]. Retrieved August 15, 2018 from https://www.

mango-project.eu
[3] Prodesign Gmbh. [n. d.]. Retrieved August 15, 2018 from https://www.

prodesign-europe.com
[4] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Con-

stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati,
Joo-Young Kim, Sitaram Lanka, James R. Larus, Eric Peterson, Simon Pope, Aaron
Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. 2016. A reconfigurable
fabric for accelerating large-scale datacenter services. Commun. ACM 59, 11 (2016),
114–122. https://doi.org/10.1145/2996868

[5] Xilinx. [n. d.]. Virtex 7 Series. Retrieved August 15, 2018 from https://www.xilinx.
com/products/silicon-devices/fpga/virtex-7.html#productTable

[6] Xilinx. [n. d.]. Vivado Design Suite. Retrieved August 15, 2018 from https:
//www.xilinx.com/products/design-tools/vivado.html

https://www.tacc.utexas.edu/systems/chameleon
https://www.mango-project.eu
https://www.mango-project.eu
https://www.prodesign-europe.com
https://www.prodesign-europe.com
https://doi.org/10.1145/2996868
https://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html#productTable
https://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html#productTable
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html

	Abstract
	1 Introduction
	2 MANGO Architecture
	2.1 Heterogeneity Support
	2.2 Network Architecture
	2.3 Accelerator Interface
	2.4 Architecture Template Definition
	2.5 Monitoring, Control and Debug Support
	2.6 FPGA Resource Utilization

	3 Conclusions
	Acknowledgments
	References

