
Acce l e ra t i ng In te l l i gence
J o h n D . D a v i s , P h . D .

2

%

ASIC

GPU

FPGA

2

Hardware Accelerators Break Through the Processing Wall

What about “Data Gravity”?
Push compute near the Data

Bigstream Confidential © 2018

3

BIG DATA PLATFORMS

Many-cores GPU FPGA

Data Scientists &
Developers

Performance
Engineering

Acceleration Programming Model

Data Science Programming Model Focus on
Macroarchitecture

Focus on
Microarchitecture

Programming Model Gap Skills Gap

Inhibitor: Programming Model Gap for Hardware Accelerators

Bigstream Confidential © 2018

4

Cross platform

Cross acceleration hardware

Intelligent, automatic
computation slicing

Address the whole data market

Zero code change

Dataflow Adaptation Layer

Bigstream Dataflow

Bigstream Hypervisor

HYPER-ACCELERATION

2X to 30X acceleration

BIG DATA PLATFORMS

Many-cores GPU FPGA

Introducing: Bigstream Hyper-acceleration Layer

Goal: Provider of Open-ecosystem for Hyper-acceleration

Bigstream Confidential © 2018

5

Apache Spark

Executor Node

Resource
Manager

Many-cores

Application
Master

Catalyst

Cluster
Management

Master NodeClient Application

Big Data
Platform APIs

Application
Commands

Node Manager

Spark Task

Executors

Tasks

Extended Query
Optimization Strategies

Bigstream Confidential © 2018

Resource management messages

Physical
Plan

HYPER-ACCELE RA TI ON

User Space
File System

NVMe / PCIe DriverOS

Host CPU Host DRAM

Host Interface Controller

SSD

Hardware

User Space

Non-accelerated Spark

OSS/3rd Party

Bigstream Confidential © 2018

6

HYPER-ACCELE RA TI ON

User Space
File System

NVMe / PCIe DriverOS

Host CPU Host DRAM

Host Interface Controller

SSD

Hardware

User Space

Non-accelerated Spark

OSS/3rd Party

Bigstream Confidential © 2018

7

101010001111….

Semantic Wall

scan + filter + shuffle

Object/file (read/write)

SQL+time series+risk models + …

Accel

8

Bigstream Seamless Acceleration of Apache Spark

Executor Node

Bigstream
Compiler

Resource
Manager

Many-cores GPU FPGA

Catalyst

Cluster
Management

Master NodeClient Application

Big Data
Platform APIs

Application
Commands

Node Manager

Spark Task

• Zero Code Change

• Cross Platform
• Intelligent, Automatic

Computation Slicing
• Cross-Hardware Acceleration

• 2-30X Acceleration

Y
Bigstream Runtime

Executors

N
Accelerate?

Physical Plan

Tasks (Normal/Hyper-accelerated)

HW Accelerator
TemplatesHyper-Acc Tasks

Resource management messages

Application
Master

9

Hyper-Acceleration Layered Compilation Approach

Bigstream Confidential © 2018

Ingest SQL

Compression (5 var.)
JSON
CSV

AVRO
Parquet

ORC
Kafka
FIX

PCRE

Map (12 var.)
Project/Filter (40 var.)

Sort
Hashaggregate/

Sortaggregate (16 var.)
Window (15 var.)

Join/Shuffle (12 var.)
SQL UDF (7 var.)

10

HW Accelerator Engines

Bigstream Confidential © 2018

Deserialization

JSON

CSV

Parquet (under development)

FIX (under development)

Decompression
Snappy

GZIP (3rd Party)

Encryption/
Decryption

AES

SQL

Project

Filter

Sort

Hash Aggregate

Search/Regex PCRE (3rd Party)

CPU Cores RISC-V (3rd Party)

Machine
Learning

Linear/Logistic
Regression

K-means

Deep
Learning

CNN (3rd Party)

RNN (3rd Party)

Networking
IP/UDP

IP/TCP (3rd Party)

11

General Application and HW Characteristics

Bigstream Confidential © 2018

• Application characteristics:
• Batch and streaming analytics applications
• Collection of computation/transformation stages
• Terabytes to Petabytes or more of data
• Large clusters: 10’s – 10,000’s servers
• I/O (network and/or storage) and compute bound

• How we use the FPGA:
• Build out pipelines and import as kernels
• Computational overlays (Time Division Multiplexing)
• Offload and Inline (Storage and Network) acceleration
• Moving between Streaming, Memory Mapped, and P2P DMA with Software
• Bringing Computation to the Data.

HYPER-ACCELE RA TI ON

Database of
Templates

User Space
File System

FPGA Driver

NVMe / PCIe DriverOS

Host CPU Host DRAM

Host Interface Controller

SSD FPGA

Database of
IPs

Hardware

User Space

1

1. Identify and load FPGA bitstream based on
acceleration template match

FPGA

Offload Base Accelerator
Ecosystem

OSS/3rd Party

(Existing Stack)

Template 1

Template 2

Template 3

Engine 1

Engine 2

Engine 3

12

HYPER-ACCELE RA TI ON

Database of
Templates

User Space
File System

FPGA Driver

NVMe / PCIe DriverOS

Host CPU Host DRAM

Host Interface Controller

SSD FPGA

Database of
IPs

Hardware

User Space

2

1. Identify and load FPGA bitstream based on
acceleration template match

2. Software configuration of FPGA to
customize hardware template for the
application

1

FPGA

Offload Base Accelerator
Ecosystem

Template 1

Template 2

Template 3

Engine 1

Engine 2

Engine 3

13

OSS/3rd Party

(Existing Stack)

HYPER-ACCELE RA TI ON

Database of
Templates

User Space
File System

FPGA Driver

NVMe / PCIe DriverOS

Host CPU Host DRAM

Host Interface Controller

SSD FPGA

Database of
IPs

Hardware

User Space

FPGA

3

1. Identify and load FPGA bitstream based on
acceleration template match

2. Software configuration of FPGA to
customize hardware template for the
application

3. Issue “accelerated” compute task
(requires I/O requests to the SSD)

12

Offload Base Accelerator
Ecosystem

Template 1

Template 2

Template 3

Engine 1

Engine 2

Engine 3

14

OSS/3rd Party

(Existing Stack)

HYPER-ACCELE RA TI ON

Database of
Templates

User Space
File System

FPGA Driver

NVMe / PCIe DriverOS

Host CPU Host DRAM

Host Interface Controller

SSD FPGA

Database of
IPs

Hardware

User Space

3

4

1. Identify and load FPGA bitstream based on
acceleration template match

2. Software configuration of FPGA to
customize hardware template for the
application

4. Copy input data from host to FPGA
memory and back again to the
application user space memory to
complete

12

3. Issue “accelerated” compute task
(requires I/O requests to the SSD)

FPGA

Offload Base Accelerator
Ecosystem

Template 1

Template 2

Template 3

Engine 1

Engine 2

Engine 3

15

OSS/3rd Party

(Existing Stack)

HYPER-ACCELE RA TI ON

Database of
Templates

User Space
File System

FPGA Driver

NVMe / PCIe DriverOS

Host CPU Host DRAM

Host Interface Controller

SSD FPGA

Database of
IPs

Hardware

User Space

1. Identify and load FPGA bitstream based on
acceleration template match

FPGAOSS/3rd Party

(Existing Stack)

Template 1

Template 2

Template 3

Engine 1

Engine 2

Engine 3

16

2. Software configuration of FPGA to
customize hardware template for the
application

HW Acceleration with
Application Intelligence

SQL+time series+risk models + …

scan + filter

Object/file (read/write)

+ shuffle

Overall Acceleration Comparison

~3100 secs

~9000 secs

~1800 secs

Baseline – No Acceleration

Hardware Acceleration Only: ~3x

Software + Hardware Acceleration: ~5x

17

~20X Speedup

Offload Performance: 5 Node Cluster

0

1

2

3

4

5

6

5 8 19 20 42 43 56 68 73

Ingest-Heavy Query

TPC-DS SpeedUp

1 Master Node + 4 Worker Nodes
Spark baseline vs FPGA acceleration with Zero Code Change

19

•Rewind for Computational Storage

HYPER-ACCELE RA TI ON

Database of
Templates

User Space
File System

FPGA Driver

NVMe / PCIe DriverOS

Host CPU Host DRAM

Host Interface Controller

SSD FPGA

Database of
IPs

Hardware

User Space

2

1. Identify and load FPGA bitstream based on
acceleration template match

2. Software configuration of FPGA to
customize hardware template for the
application

1

FPGA

Computational Storage

Template 1

Template 2

Template 3

Engine 1

Engine 2

Engine 3

20

OSS/3rd Party

(Existing Stack)

HYPER-ACCELE RA TI ON

Database of
Templates

User Space
File System

FPGA Driver

NVMe / PCIe DriverOS

Host CPU Host DRAM

Host Interface Controller

SSD FPGA

Database of
IPs

Hardware

User Space

FPGA

3

1. Identify and load FPGA bitstream based on
acceleration template match

2. Software configuration of FPGA to
customize hardware template for the
application

12

Computational Storage

Template 1

Template 2

Template 3

Engine 1

Engine 2

Engine 3

21

OSS/3rd Party

(Existing Stack) FPGA DRAM

3. Issue “accelerated” I/O + compute
requests to the SSD to pump data into
the FPGA

HYPER-ACCELE RA TI ON

Database of
Templates

User Space
File System

FPGA Driver

NVMe / PCIe DriverOS

Host CPU Host DRAM

Host Interface Controller

SSD FPGA

Database of
IPs

Hardware

User Space

3

4

1. Identify and load FPGA bitstream based on
acceleration template match

2. Software configuration of FPGA to
customize hardware template for the
application

12

FPGA

Template 1

Template 2

Template 3

Engine 1

Engine 2

Engine 3

22

OSS/3rd Party

(Existing Stack) FPGA DRAM

3. Issue “accelerated” I/O + compute
requests to the SSD to pump data into
the FPGA

4. FPGA copies the result to the
application user space

Computational Storage

OpenCL Code
• Memory-mapped DMA
// Read from SSD part

buffer = (char*) malloc (size);

bytes_read = fread(buffer, 1, size, _fd);

//WRITE PART- from host to fpga

err = clEnqueueWriteBuffer(commands, buffer, CL_TRUE, 0,

(data_actual_size + 96), json_write_host_mem, 0, NULL, & write_event);

clWaitForEvents(1, & write_event);

//Actual compute task

err = clEnqueueTask(commands, kernel, 0, NULL, & kernel_event);

clWaitForEvents(1, & kernel_event);

//READ PART - from fpga to host

err |= clEnqueueReadBuffer(commands, json_data_ptr,

CL_TRUE, s_read_offset, bytes_to_read + 32, son_read_host_mem, 0, NULL, & readevent2);

˃ P2P DMA

// Read from SSD & write to fpga

clCreateBuffer(context[l], CL_MEM_READ_ONLY | CL_MEM_EXT_PTR_XILINX,

(aligned_size), & xmem_flags, & err);

_mapped_virtual_addr = clEnqueueMapBuffer(commands, d_axi00_ptr0_wr,

CL_TRUE, CL_MAP_READ | CL_MAP_WRITE, 0, (aligned_size), 0, NULL, & map_event, & err);

clWaitForEvents(1, & map_event);

bytes_read = read(_fd, ((char *) _mapped_virtual_addr), size);

//Actual compute task

err = clEnqueueTask(commands, kernel, 0, NULL, & kernel_event);

clWaitForEvents(1, & kernel_event);

//READ PART -from fpga to host

err |= clEnqueueReadBuffer(commands, json_data_ptr, CL_TRUE,

s_read_offset, bytes_to_read + 32, son_read_host_mem, 0, NULL, & readevent2);

Same code can run in VU9P+ and ZU19, just change the target device

23

P2P Comparison

• SmartSSD (SSD + FPGA)
• 45% Utilization (BRAM, LUTs, DSPs)

• System level results 6c Xeon Workstation

• Spark vs P2P DMA

• Single FPGA, FPGA Pooling, & Clusters of FPGAs
• TPC-DS with 340 GB to 2.7 TB

• Up to 2 SmartSSDs/server

• 5 node cluster (1 master node and 4 worker nodes)

24

System-Level Results
• Row-based engine with TPC-DS queries

• Lower CPU utilization and fewer cores

• Higher device I/O bandwidth

• Lower host PCIe bandwidth

• Reduced CPU DRAM Utilization

• Opportunities
• Not all DMAs are the same.

• Flexibility to mix and match DMA

• When to use P2P?

25

Spark Spark

Spark Bigstream

BigstreamBigstream

P2P Performance: 5 Node Cluster

0

1

2

3

4

5

6

5 8 19 20 42 43 56 68 73 76

Ingest-Heavy Queries

TPC-DS SpeedUp

1 Master Node + 4 Worker Nodes
Spark baseline vs FPGA acceleration with Zero Code Change

Data Streamer Accel 1

Accel 3Accel 4

inData stream

Data

Intermediate
data

AggData

in
C
h
a
n
n
e
l

o
u
tC

h
a
n
n
e
l

Intermediate
data

Accelerators Everywhere!

Result

FPGA

Flash
Storage

Accel 2

Bigstream Confidential © 2018

Input

27

Open Hyper-Acceleration Initiative

• Goal: Extend the development community around hyper-
acceleration

• Enable different developers from completely differently skill set
• HW Template and engine developers

• HW platform developers (add new FPGAs and FPGA cards)

• Add new Platforms (i.e., Presto, Hive, TF, etc.)

• Invitation only contributions at this time
• If interested, please come talk to me

28

OHAI Open APIs

Dataflow Adaptation Layer

Bigstream Dataflow

Bigstream Hypervisor
HYPER-ACCELERATION

BIG DATA PLATFORMS

Many-cores GPU FPGA

OHAI APIs

OHAI APIs

Conclusions

• Flexibility
• Accelerating more than just compute: moving compute to the data vs. data to

compute

• Programmability
• Time division multiplexing/hardware overlays
• Software and Hardware configuration

• Generality
• Combining HW and SW acceleration transparently embedded in Big Data Platforms

• Automatically
• Bigstream Hyper-Acceleration with Zero Code Change

30

31

Thank You
John D. Davis, Ph.D.
john@bigstream.co

