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EURO * Project outline

FUNDED BY THE ELROFEAN UNION. * *

Horizon 2020 FETHPC-01-2016:
Co-design of HPC systems and applications @eu roexa
EuroExa started 1st Sep 2017, runs for 3% years
16 Partners, 8 countries, €20M
Builds on previous projects, esp. ExaNoDe, ExaNeSt,
EcoScale

euroexa.eu

Aim: design, build, test and evaluate an Exascale
prototype system

Architecture based on ARM CPUs with FPGA accelerators

Three testbed systems: #3 >100 Pflop/s

Low-power design goal to target realistic Exascale system

Architecture evolves in response to application
requirements = co-design

Wide range of apps, incl. weather forecasting, lattice Boltzmann, multiphysics, astrophysics,
astronomy data processing, quantum chemistry, life sciences and bioinformatics

Kick-off meeting 4th-5th Sep 2017,
Barcelona
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EUROEXA : Motivation

* FPGAs offer large (OsOM) gains in performance/W
* Also gains in performance/{S£€B}

* Major corporations are using FPGAs in datacentres
for cloud services, analytics, communication, etc.

* H/W traditionally led by Xilinx (arm cpu + FpGA single chip)

* Intel’s acquisition of Altera led to Heterogeneous
Architecture Research Platform (HARP) (aiso single chip)

* Predictions: up to 30% of datacenter servers will
have FPGAs by 2020




EUROEXA LFRic Weather and Climate Model

Brand new weather and climate model: LFRic

named after Lewis Fry Richardson (1881-1953) Globally
Uniform
* Dynamics from the GungHo project 2011-2015 Next
 Scalability — globally uniform grid (no poles) Generation
« Speed — maintain performance at high & low Highly
resolution and for high & low core counts Optimized
* Accuracy — need to maintain standing of the model — A<
» Separation of Concerns — PSyClone generated layer S R

for automated targeting of architectures

e Operational weather forecasts around 2022 —
anniversary of Richardson (1922)

Met Office _é Sen ey ™

RESEARCH COUNCIL -

“Working together
harmoniously”

Science & Technolog
Facilities Council




EURO - LFRic profile & call graph

FUNDED BY THE ELROPEAN UNION * *

e Baroclinic performance benchmark case

e gprof... | gprof2dot.py | dot ...

* Two subroutines in the Helmholtz solver use 54% of runtime
* Most is in matrix-vector products within a loop over vertical levels

34 .34%
176076288x

19.44% —
76076288 T
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EUROEXA
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Processing System

Application Processing Unit
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Range of Programming Models

C code with Xilinx Vivado HLS and Vivado Design Suite
OmpSs@FPGA directive-based (BSC)

MaxJ compiler for Maxeler systems

OpenCL code with Xilinx SDSoC

OpenStream (Uni Man)

1.
2.
3.
4.
5.

e Options 2-5 being investigated by other members of the project
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EURO :
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Starting code for Vivado HLS

#define NDF1 8
#define NDF2 6
#define NK 40
#define MVTYPE double
int matvec 8x6x40_vanilla (MVTYPE matrix[NK] [NDF2] [NDF1],
MVTYPE x[NDF2] [NK], MVTYPE lhs[NDF1][NK]) ({
int df,j,k;
for (k=0;k<NK;k++) {
for (df=0;df<NDF1;df++) {
lhs[df] [k] = 0.0;
for (j=0;j<NDF2;j++) {
lhs[df] [k] = lhs[df] [k]
+ x[Jj] [k]*matrix[k] []] [d£f];

}

return 0;

Notes:

Data sizes hard-wired for
HLS

Vertical loop k is outer

Vectors x and lhs are
sequential in k (k-last in C)
Matrix is not (k-first)
Read-then-write
dependence on |hs

Flops = 2*NK*NDF1*NDF2
= 3840

Mem refs = 2*flops = 7680
doubles




EUROEXA : Optimizations in Vivado HLS

DED &Y THE ELROPEAN UNION. * *

* Make k the inner loop (loop length 40, independent, sequential access)
* Transpose matrix to k-last to ensure sequential memory access

e HLS pragma to unroll inner loops on k (no benefit from hand unrolling)

* HLS pragma to pipeline outer loop on df

e HLS pragma for input and output arguments including
* num_read_outstanding=8
* max_read_burst_length=64

e Access input and output arguments by memcpy to local arrays to ensure
streaming of loads/stores to/from BRAM (see later)




EURO % Optimized code in Vivado HLS

FUNDED BY THE ELROFEAN UNION. * *

#pragma HLS INTERFACE m axi depth=128 > for (k=0;k<NK;k++) {
port=matrix offset=slave bundle=bram /
#pragma HLS UNROLL

num read outstanding=8 / 11[df][k] = 0.0;
num write outstanding=8 / }
max_read burst length=64 / memcpy (ml, matrix+df*NDF2*NK, /
max write burst length=64 NDF2*NK*sizeof (MVTYPE)) ;

< pragmas for m axi interfaces for x, lhg for (j=0;3j<NDF2;j++) {

and s_axilité_interface for return>
for (k=0;k<NK;k++) {

#pragma HLS UNROLL

11[df] [k] = 1l1[df] [k]+
MVTYPE ml [NDF2] [NK], x1[NDF2] [NK], x1[j]1 [k]*ml[j] [k];
11 [NDF1] [NK] ;

}

int df,Jj,k;

memcpy (x1, x, NDF2*NK*sizeof (MVTYPE)) ;

for (df=0;df<NDF1;df++) ({
}

#pragma HLS PIPELINE

memcpy (lhs, 11,
NDF1*NK*sizeof (MVTYPE)) ;
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EURO + Vivado HLS Performance Estimate

FUNDED BY THE ELROFEAN UNION. * *

Performance Estimates

-] Timing (ns)
=1 Summary
Clock Target Estimated Uncertainty Utilization Estimate:
ap_clk 2.00 2.89 0.25 oo _
» Try to maximize performance while
-| Latency (clock cycles) S L. . .
minimizing utilization
=] Summary
Latency | Interval » Shows percentage of chip ‘real-
min| max min| max| Type estate being utilized
2334 2334 2334 2334 none
. . -1 Summary
* Tar_get 2ns clock: design Name  BRAM_18K DSP48E FF  LUT URAM
validated at 2.89ns = 346 MHz DSP - -
Expression - - o 701
» 2334 cycles for 3840 flops = 1.65 FIFO . - | -
rops/cyCIe Instance 4 10 2527 2222
_ Memory 4 - 0 0
» Overlapped dmul with dadd Multiplexer - - - 4280
. Register - - 20672 - -
» Starting code was 69841 cycles Total 8 10 23199 7203 0O
Available 1824 2520548160 274080 0

Utilization (%) ~0 ~0 4 2




EUROEXA* *} Vivado HLS Performance Timeline

FUNDED BY THE ELROPEAN LNION. * *

Current Module : matvec_8x6x40_v6

Operation\Control Step C172 C173 C174 =TS C176 C177 C178 C179 C180 C181 Cc182 C183 c184 =
331 tmp_18_0_27(dmul)
332 ml_@_38(read)
333 tmp_19 @_14(dadd)
334 tmp_18_0_28(dmul)
335 ml_@_3i1(read)
336 tmp_19_0_15(dadd)
337 tmp_18 @_29(dmul)
338 ml_@_32(read)
339 tmp_19_0_16(dadd)
340 tmp_18_0_306(dmul)
341 ml_@_33(read)
342 tmp_19 @_17(dadd)
343 tmp_18 @_31(dmul)
344 ml_8_34(read)
345 tmp_19_0_18(dadd)
346 tmp_18 @_32(dmul)
347 ml_B_35(read)
348 tmp_19_0_19(dadd)
349 tmp_18_0_33(dmul)
350 ml_@_36(read)
357" tmp_19 @_20(dadd)
352 tmp_18 @_34(dmul)
353 ml_@_37(read)
354 tmp_19_0_21(dadd)
355 tmp_18 8_35(dmul)
356 ml_@_38(read)
357 tmp_19 @_22(dadd)
358 tmp_18_0_36(dmul)

e e I L T T, W
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EURO : Design with 12 Matrix-Vector Blocks

FUNDED BY THE ELROFEAN UNION. * x

Diagram ? - F el X
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EURO * Vivado DS Resource Utilization

FUNDED BY THE ELROFEAN UNION. * *

Utilization ? 0O a X
Q = = 14 Summary I3
Hierarchy Ab
Resource Utilization Ayailable Utilization %
v CLB Logic LUT 172995 274080 63.12
F7 Muxes (=1%) LUTRAM 1141 144000 0.79
v CLB LUTs (63%) ’ FF 299214 548160 52,75
LUT as Logic [ BRAM 816 912 89.47
v LUT as Memor, DSP 168 2520 6.67
LUT as Shil
10 3 328 0.91
LUT as Disl
F8 Muxes (<1%) BUFG : 104 0:50
CARRYE (4%) MMEM ! N 2200
~ CLB Reqgisters (53
Register as Fli
T LUT A 63%
w CLB Logic Distributior )
v LUT as Logic (53% LUTRAMY 1%
using 05 and FF 23
using 05 outp BRAM 895
using 06 outp DSF 1 tes
v LUT as Memory (1 109 1% ]
« LUT as Shift Re BUFGH 1% NOteS'
using 06 o MMM 25% .
Lsing 05 a | | | e Using most of the BRAM memory
w LUT as Distribt 0 25 =0 73 . 0
Jsing 05 Utilization (%) * Using only 7% of DSPs
w LUT Flip Flop Pairs . .
UTFE paire * Using around half the other logic
LUT-FF pairs w (LUT+F F)
fully used LUT-




EUROEXA : ARM driver code

FUNDED BY THE ELROFEAN UNION. * *

* Setup a two devices /dev/uio0 and /dev/uiol — two ports on the ZynQ block
* Use mmap to map the FPGA memory into user space
* Assign pointers for each data array to location in user space

* Control loop to divide up the work into 12 “chunks” which will fit into the FPGA
BRAM memory (maximum 12 x 256kB = 3MB) (13 columns in this LFRic model)
* For each chunk:
e Assign work to one of the matrix-vector blocks
e Copy input data into BRAM
Set the control word “registers” for the block
Start the block by setting AP_START
Wait for block to finish by watching AP_IDLE (opportunity for overlap)
* Copy output data from BRAM

* In practice we fill 3SMB BRAM, then run all 12 matrix-vector blocks, then copy output
data back and repeat

* Check correctness and time the code




EUROEXA : Results for 12 blocks

FUNDED BY THE ELROFEAN UNION. * *

=333 MHz

ey ==250 MHz

i
o

=§=100 MHz

B
o
]

Best performance 5.3 Gflop/s

* 510 Mflop/s per block => 1.53
flops/cycle (93% of HLS estimate)

* Parallel efficiency at 12 IP blocks 87%

* Clock scaling 100 to 333 MHz is 94%
efficient

 ARM Cortex A53 single core 177
Mflop/s

 ARM gquad-core with OpenMP 615
Mflop/s approx.

* FPGA:ARM quad-core speed-up: 8.6x

Performance double-precision Gflop/s
[ o
o o

oy
o
1

0.0

Number of matrix-vector IP blocks
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EURO & Critical Performance Factors

FUNDED BY THE ELROPEAN UNION *

Diagram ? - F el X
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* Designer Assistance available. Run Elock Automatiog
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EUROEY A LFRic matrix-vector
=== performance comparison

Hardware Matrix- Peak Percentage
vector performance peak
performance (Gflop/s)
(Gflop/s
ZCU102 FPGA 5.3 600 0.9% S W
Intel Broadwell E5- 9.86 332.8 3.0% SSS WWWwW
2650 v2 2.60GHz
8 cores

* FPGA performance is 54% of Broadwell single socket
* Should be scaled by price & power




FUNDED BY THE E

LROPEAN UNION

& Summary

We have

* Used Vivado HLS to develop a matrix-vector kernel
which runs on the UltraScale+ FPGA at 5.3 double
prECiSiOn GflOp/S (single precision: similar performance, 63% resources)

Issues

* Timing constraints in the Vivado designh prevent
larger numbers of blocks and higher clock speeds

* However, performance against Xeon is compelling
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' Future work

 Generate an IP block and driver for the LFRic code:
apply variable _hx_kernel code (His done; 1.75 flops/cycle)

* Exploit MPI within LFRic to run across multiple nodes
and mU|t|p|e FPGAS (done trivially with the matrix-vector kernel)

* How many other kernels can we port to the FPGAs?
e Can we link kernels to avoid data transfer?

* When do we need to reconfigure? At what cost?
e Future hardware: now ZU9, VU9 (early 20199 and HBM

(Xilinx white paper)
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