
© 2018 EuroEXA and Consortia Member Rights Holders
Project ID: 754337

Mike Ashworth, Graham Riley, Andrew Attwood and John Mawer
Advanced Processor Technologies Group

School of Computer Science,
University of Manchester, United Kingdom

mike.ashworth.compsci@manchester.ac.uk

FPGA Acceleration of the LFRic
Weather and Climate Model in the

EuroExa Project Using Vivado HLS

Presenter
Presentation Notes
Title page

Project outline

© 2017 EuroEXA and Consortia Member Rights Holders
Project ID: 754337

Horizon 2020 FETHPC-01-2016:
Co-design of HPC systems and applications

EuroExa started 1st Sep 2017, runs for 3½ years
16 Partners, 8 countries, €20M
Builds on previous projects, esp. ExaNoDe, ExaNeSt,

EcoScale

Aim: design, build, test and evaluate an Exascale
prototype system

Architecture based on ARM CPUs with FPGA accelerators
Three testbed systems: #3 >100 Pflop/s
Low-power design goal to target realistic Exascale system
Architecture evolves in response to application

requirements = co-design
Wide range of apps, incl. weather forecasting, lattice Boltzmann, multiphysics, astrophysics,

astronomy data processing, quantum chemistry, life sciences and bioinformatics

Kick-off meeting 4th-5th Sep 2017,
Barcelona

@euroexa

euroexa.eu

Presenter
Presentation Notes
Content page

Motivation

• FPGAs offer large (OsOM) gains in performance/W
• Also gains in performance/{$£€ }
• Major corporations are using FPGAs in datacentres

for cloud services, analytics, communication, etc.
• H/W traditionally led by Xilinx (ARM CPU + FPGA single chip)

• Intel’s acquisition of Altera led to Heterogeneous
Architecture Research Platform (HARP) (also single chip)

• Predictions: up to 30% of datacenter servers will
have FPGAs by 2020

LFRic Weather and Climate Model

Brand new weather and climate model: LFRic
named after Lewis Fry Richardson (1881-1953)

• Dynamics from the GungHo project 2011-2015
• Scalability – globally uniform grid (no poles)
• Speed – maintain performance at high & low

resolution and for high & low core counts
• Accuracy – need to maintain standing of the model
• Separation of Concerns – PSyClone generated layer

for automated targeting of architectures
• Operational weather forecasts around 2022 –

anniversary of Richardson (1922)

Globally
Uniform
Next
Generation
Highly
Optimized

“Working together
harmoniously”

LFRic profile & call graph

• Baroclinic performance benchmark case
• gprof ... | gprof2dot.py | dot ...

• Two subroutines in the Helmholtz solver use 54% of runtime
• Most is in matrix-vector products within a loop over vertical levels

Zynq UltraScale+ ZCU102
Evaluation Platform

• ARM Cortex A53
quad-core CPU 1.2
GHz

• Dual-core Cortex-R5
real-time processor

• Mali-400 MP2 GPU
• Zynq UltraScale

XCZU9EG-
2FFVB1156 FPGA

Zynq UltraScale+ MPSoC EG

Range of Programming Models

1. C code with Xilinx Vivado HLS and Vivado Design Suite
2. OmpSs@FPGA directive-based (BSC)
3. MaxJ compiler for Maxeler systems
4. OpenCL code with Xilinx SDSoC
5. OpenStream (Uni Man)

• Options 2-5 being investigated by other members of the project

Starting code for Vivado HLS

#define NDF1 8

#define NDF2 6

#define NK 40

#define MVTYPE double

int matvec_8x6x40_vanilla (MVTYPE matrix[NK][NDF2][NDF1],

MVTYPE x[NDF2][NK], MVTYPE lhs[NDF1][NK]) {

int df,j,k;

for (k=0;k<NK;k++) {

for (df=0;df<NDF1;df++) {

lhs[df][k] = 0.0;

for (j=0;j<NDF2;j++) {

lhs[df][k] = lhs[df][k]

+ x[j][k]*matrix[k][j][df];

}

}

}

return 0;

}

Notes:
• Data sizes hard-wired for

HLS
• Vertical loop k is outer
• Vectors x and lhs are

sequential in k (k-last in C)
• Matrix is not (k-first)
• Read-then-write

dependence on lhs
• Flops = 2*NK*NDF1*NDF2

= 3840
• Mem refs = 2*flops = 7680

doubles

Optimizations in Vivado HLS

• Make k the inner loop (loop length 40, independent, sequential access)
• Transpose matrix to k-last to ensure sequential memory access
• HLS pragma to unroll inner loops on k (no benefit from hand unrolling)

• HLS pragma to pipeline outer loop on df
• HLS pragma for input and output arguments including

• num_read_outstanding=8
• max_read_burst_length=64

• Access input and output arguments by memcpy to local arrays to ensure
streaming of loads/stores to/from BRAM (see later)

Optimized code in Vivado HLS

#pragma HLS INTERFACE m_axi depth=128
port=matrix offset=slave bundle=bram /

num_read_outstanding=8 /

num_write_outstanding=8 /

max_read_burst_length=64 /

max_write_burst_length=64

< pragmas for m_axi interfaces for x, lhs
and s_axilite interface for return>

int df,j,k;

MVTYPE ml[NDF2][NK], xl[NDF2][NK],
ll[NDF1][NK];

memcpy (xl, x, NDF2*NK*sizeof(MVTYPE));

for (df=0;df<NDF1;df++) {

#pragma HLS PIPELINE

for (k=0;k<NK;k++) {

#pragma HLS UNROLL

ll[df][k] = 0.0;

}

memcpy (ml, matrix+df*NDF2*NK, /

NDF2*NK*sizeof(MVTYPE));

for (j=0;j<NDF2;j++) {

for (k=0;k<NK;k++) {

#pragma HLS UNROLL

ll[df][k] = ll[df][k]+
xl[j][k]*ml[j][k];

}

}

}

memcpy (lhs, ll,
NDF1*NK*sizeof(MVTYPE));

Vivado HLS Performance Estimate

Performance Estimate:
• Target 2ns clock: design

validated at 2.89ns = 346 MHz
• 2334 cycles for 3840 flops = 1.65

flops/cycle
• Overlapped dmul with dadd
• Starting code was 69841 cycles

Utilization Estimate:
• Try to maximize performance while

minimizing utilization
• Shows percentage of chip ‘real-

estate being utilized

Vivado HLS Performance Timeline

Design with 12 Matrix-Vector Blocks

Vivado DS Resource Utilization

Notes:
• Using most of the BRAM memory
• Using only 7% of DSPs
• Using around half the other logic

(LUT+FF)

ARM driver code

• Setup a two devices /dev/uio0 and /dev/uio1 – two ports on the ZynQ block
• Use mmap to map the FPGA memory into user space
• Assign pointers for each data array to location in user space
• Control loop to divide up the work into 12 “chunks” which will fit into the FPGA

BRAM memory (maximum 12 x 256kB = 3MB) (13 columns in this LFRic model)
• For each chunk:

• Assign work to one of the matrix-vector blocks
• Copy input data into BRAM
• Set the control word “registers” for the block
• Start the block by setting AP_START
• Wait for block to finish by watching AP_IDLE (opportunity for overlap)
• Copy output data from BRAM

• In practice we fill 3MB BRAM, then run all 12 matrix-vector blocks, then copy output
data back and repeat

• Check correctness and time the code

Results for 12 blocks

• Best performance 5.3 Gflop/s
• 510 Mflop/s per block => 1.53

flops/cycle (93% of HLS estimate)
• Parallel efficiency at 12 IP blocks 87%
• Clock scaling 100 to 333 MHz is 94%

efficient
• ARM Cortex A53 single core 177

Mflop/s
• ARM quad-core with OpenMP 615

Mflop/s approx.
• FPGA:ARM quad-core speed-up: 8.6x

Critical Performance Factors

Clock speed

Number of matrix-
vector blocks

Performance of single
matrix-vector block

LFRic matrix-vector
performance comparison

Hardware Matrix-
vector

performance
(Gflop/s

Peak
performance

(Gflop/s)

Percentage
peak

Price Power

ZCU102 FPGA 5.3 600 0.9% $ W

Intel Broadwell E5-
2650 v2 2.60GHz
8 cores

9.86 332.8 3.0% $$$ WWW

• FPGA performance is 54% of Broadwell single socket
• Should be scaled by price & power

Summary

We have
• Used Vivado HLS to develop a matrix-vector kernel

which runs on the UltraScale+ FPGA at 5.3 double
precision Gflop/s (single precision: similar performance, 63% resources)

Issues
• Timing constraints in the Vivado design prevent

larger numbers of blocks and higher clock speeds
• However, performance against Xeon is compelling

Future work

• Generate an IP block and driver for the LFRic code:
apply_variable_hx_kernel_code (HLS done; 1.75 flops/cycle)

• Exploit MPI within LFRic to run across multiple nodes
and multiple FPGAs (done trivially with the matrix-vector kernel)

• How many other kernels can we port to the FPGAs?
• Can we link kernels to avoid data transfer?
• When do we need to reconfigure? At what cost?
• Future hardware: now ZU9, VU9 (early 2019) and HBM

(Xilinx white paper)

© 2018 EuroEXA and Consortia Member Rights Holders
Project ID: 754337

Many thanks
Please connect at

@euroexa or euroexa.eu
Mike Ashworth, Graham Riley, Andrew Attwood and John Mawer

Advanced Processor Technologies Group
School of Computer Science,

University of Manchester, United Kingdom
mike.ashworth.compsci@manchester.ac.uk

Presenter
Presentation Notes
Closing page

	FPGA Acceleration of the LFRic Weather and Climate Model in the EuroExa Project Using Vivado HLS
	Project outline
	Motivation
	LFRic Weather and Climate Model
	LFRic profile & call graph
	Zynq UltraScale+ ZCU102 �Evaluation Platform
	Zynq UltraScale+ MPSoC EG
	Range of Programming Models
	Starting code for Vivado HLS
	Optimizations in Vivado HLS
	Optimized code in Vivado HLS
	Vivado HLS Performance Estimate
	Vivado HLS Performance Timeline
	Design with 12 Matrix-Vector Blocks
	Vivado DS Resource Utilization
	ARM driver code
	Results for 12 blocks
	Critical Performance Factors
	LFRic matrix-vector performance comparison
	Summary
	Future work
	Many thanks�Please connect at �@euroexa or euroexa.eu

