
SimBSP: Enabling RTL Simulation
for Intel FPGA OpenCL Kernels∗

Ahmed Sanaullah Chen Yang Daniel Crawley Martin C. Herbordt
CAAD Lab, ECE Department, Boston University

Abstract—RTL simulation is an integral step in FPGA devel-
opment since it provides cycle accurate information regarding
the behavior and performance of custom architectures, without
having to compile the design to actual hardware. Despite its
advantages, however, RTL simulation is not currently supported
by a number of commercial FPGA OpenCL toolflows, including
Intel OpenCL SDK for FPGAs (IOCLF). Obtaining reliable
performance values for OpenCL kernels requires a full compi-
lation to hardware, while emulation can only provide functional
verification of the C code. Thus, development and optimization
time-frames for IOCLF designs can be on the order of days,
even for simple applications. In this work, we present our
custom Board Support Package for IOCLF, called SimBSP, which
enables OpenCL kernels to be compiled for RTL simulation. Use
of SimBSP reduces the time taken per OpenCL code optimization
iteration from hours to minutes. We provide details regarding
the standard kernel ports created by the IOCLF compiler, which
can be used by testbenches to interface the generated design.
We also list the addresses and descriptions of configuration
registers that are used to set kernel parameters and provide
a start trigger. Finally, we present details of SimBSP toolflow,
which is integrated into the standard IOCLF and automates the
process of generating kernel HDL and testbenches, and setting
up the simulation environment. Our work on SimBSP will be
made available Open Source to drive a community effort towards
further improving the toolflow.

I. INTRODUCTION

Compiling FPGA-based designs to hardware is a time-
consuming process that can take many hours to complete,
depending on architectural complexity. As shown in Figure
1a, placing this compilation on the critical path–especially
for the multiple iterations of optimization inherent in the
development process–can significantly increase development
time-frames; users must wait for hardware generation before
validating their implementation and measuring performance
values. RTL simulation, using tools such as ModelSim [1],
helps alleviate this compilation overhead by computing cycle-
accurate behavior of the HDL design without generating actual
hardware. This allows users to easily debug their designs,
identify performance bottlenecks, analyze implementation ef-
ficiency, and iterate over the optimization space for their code
without requiring the design to be programmed onto the FPGA
(Figure 1b).

The Intel OpenCL SDK for FPGAs (IOCLF) toolflow [2]
already provides a number of methods for estimating kernel

∗This work was supported in part by the NSF through Awards
#CNS-1405695 and #CCF-1618303/7960; by the NIH through Award
#1R41GM128533; by grants from Microsoft and Red Hat; and by Altera
through donated FPGAs, tools, and IP.

Fig. 1. Toolflows for developing FPGA applications. The standard toolflow
(a) requires compilation to hardware in order to validate designs and measure
performance. Performing design optimizations using this approach is slow
due to large compilation time (hours/days). Having the capability of RTL
simulations (b) enables debugging and reliable performance estimates without
compiling to hardware.

performance without requiring a full compilation to hardware.
These include Emulation and Reports. Emulation is used to
simulate kernel code for functional verification. Compiling
for emulation allows the compiler to generate CPU equivalent
code for FPGA-specific constructs, such as channels, and then
execute the entire computation in software. This is not only
useful for ensuring that computation and memory accesses
have been correctly defined, but can also identify run-time
faults, such as occurrences of deadlocks. It does not, however,
provide any information regarding kernel code mapping to
hardware or estimated performance.

Reports are generated by the compiler to provide an
overview of kernel translation to hardware. Here, we briefly
list the main categories of these reports and their contribution
towards code optimization. A comprehensive list of reports
and their detailed description are provided in the IOCLF best
practices guide [3].

• Loop analysis is used to determine initiation intervals
(II) for loops in the kernel and the dependencies causing
high IIs. Resolving these dependencies allows loops to



operate stall free.
• Area analysis provides estimates of resource usage and

implementation details for data structures. This is partic-
ularly useful for determining whether the compiler has
correctly inferred the optimal hardware based on access
patterns, or is resorting to sub-optimal, high-resource
“safe” options such as memory replication and barrel
shifters.

• System viewer gives a graphical overview of the kernel
computation and memory accesses. Kernel execution is
represented as sequential blocks, with each block carrying
out a varying number of operations such as memory
transactions, channel calls and loop iterations. Details
provided include latencies, stalls, types and sizes of Load-
Store units created for each memory transaction, and the
dependencies between blocks.

• Kernel memory viewer gives a graphical overview of the
connectivity of Load-Store units with external memory
banks. This can be used to verify that the compiler has
correctly inferred off-chip access patterns.

The two approaches for estimating kernel performance de-
scribed above provide high level (and select) details regarding
the C to HDL translation, which can be used to perform
initial code improvements. These approaches, however, do
not guarantee good performance. Kernel codes with no loop
dependencies, initialization intervals equal to 1, efficient mem-
ories and low latencies can still be sub-optimal. This is be-
cause little information is provided regarding the composition,
organization, and connectivity of compute pipelines. To truly
identify bottlenecks in the design and optimize them, low-level
details are required regarding implementation and behavior of
the entire system. Therefore, RTL simulation continues to be a
key development stage that does not have a reliable alternative
in the commercial IOCLF toolflow.

In this work, we have developed a custom Board Support
Package (BSP) [4]–[6], called SimBSP, that enables compila-
tion of OpenCL kernels for RTL simulation. SimBSP is based
on the Quartus [7] API, and can thus be used as part of the
standard IOCLF compilation by setting appropriate environ-
ment variables. It is composed primarily of two components,
(i) a testbench template that can interface IOCLF generated
kernels, and (ii) compilation scripts for generating simulation
models and setting up the simulation environment.

SimBSP can reduce the time needed for an iteration of
design optimization from hours to minutes, depending on
the complexity of the design. We have used this approach
ourselves when optimizing OpenCL kernels [8], [9]. Moreover,
the simplicity of SimBSP enables it to be used in academic
teaching environments, including in-class practical training
and workshops. At the PAPAA short course [10], students were
able to quickly apply multiple levels of OpenCL optimizations
after only a small amount of instruction and with virtually no
previous OpenCL expertise.

In the rest of this paper, we provide details regarding
how these two components are implemented, and also discuss
further features that can be easily supported in future versions

of SimBSP. Our work is based on the Intel Arria 10 reference
BSP (a10gx) and IOCLF 17.1 toolflow.

II. TESTBENCH

In this section, we discuss details regarding the SimBSP
testbench template. We first describe the interfaces exposed
by the kernel module (instantiated within the testbench). We
then list the configuration registers that are used to set kernel
parameters; the testbench must assign appropriate values to
these registers before kernel execution can be started.

A. Kernel Interfaces

Table I provides details regarding instantiated kernel ports.
Clock frequency is determined at compile time based on post-
routing timing models and so an accurate value cannot be
known for simulation. Therefore, performance estimates made
using SimBSP are a measure of compute latencies, instead
of actual execution time. kernel cra is an Avalon Memory
Mapping (AVMM) slave interface to configuration registers
within the kernel while kernel mem0 is an AVMM master
interface for reads/writes to external memory. kernel irq is a
1-bit flag raised on kernel completion. Finally, the crc snoop
streaming slave interface is not used in SimBSP since it is not
directly involved in kernel execution.

TABLE I
KERNEL INTERFACE AND DESCRIPTIONS

Name Type Interface Description
clock clk Clock Kernel clock

clock reset n Reset Active low kernel reset
cc snoop Streaming Not used
kernel cra Memory Mapped Interface to configuration registers
kernel irq Interrupt Interrupt to host machine

kernel mem0 Memory Mapped Interface to global memory

B. Configuration Registers

Table II lists the addresses and kernel parameters that are
stored in configuration registers. These registers are 64 bits
wide, and the testbench can set the value of an entire register
(2 32-bit parameters) every cycle using the kernel cra port.
Once all configuration registers have been assigned required
values, setting Bit 0 of the register at address 0x0 triggers the
start of kernel execution.

TABLE II
OPENCL CONFIGURATION REGISTERS

Address Bits [63:32] Bits [31:0]
0x0 - Start (Bit 0)
0x28 Workgroup Size Workgroup Dimensions
0x30 Global Size[1] Global Size[0]
0x38 Number of Workgroups[0] Global Size[2]
0x40 Number of Workgroups[2] Number of Workgroups[1]
0x48 Local Size[1] Local Size[0]
0x50 Global Offset[0] Local Size[2]
0x58 Global Offset[2] Global Offset[1]

0x60 - end Argument Pointer[63:32] Argument Pointer[31:0]

Apart from specifying the shape and size of work-
items/work-groups, configuration registers are also used to



store 64-bit pointers to off-chip memory for kernel arguments.
Since the number of kernel arguments can vary for individual
applications, addresses from 0x60 onwards can all be used for
this purpose.

III. COMPILATION SCRIPTS

In this section, we present the compilation scripts that are
used as part of the IOCLF toolflow to enable RTL simulation.
There are two such scripts used by SimBSP as shown in Figure
2, i.e. simulate.tcl and msim setup.tcl, while the entire process
is divided into three stages. These stages are discussed in detail
below. It is important to note that only simulate.tcl is a new
contribution, while msim setup.tcl is automatically generated
when compiling for simulation.

• Stage 1: We use the standard command for kernel compi-
lation, i.e. aoc kernel.cl, to invoke a C to HDL translation
stage. The result of this translation is a QSYS [11] system
file which contains the kernel implementation.

• Stage 2: After generating the QSYS file, the compiler
automatically runs our custom script called simulate.tcl.
This script performs three important functions. First, it
removes logic that cannot be simulated from the QSYS
system; this logic can be safely eliminated since it corre-
sponds to modules that do not impact kernel execution,
e.g., System Description ROM. Next, the QSYS file is
compiled for simulation in order to generate the required
HDL files. Finally, the default testbench is replaced
with a SimBSP testbench. At this point, the simulation
directories have been set up, and so the command aoc
kernel.cl terminates.

• Stage 3: In the last stage, we use Modelsim to manually
source the final script, i.e. msim setup.tcl. This will
compile the generated HDL (from stage 2) and launch
the RTL simulation.

Fig. 2. The compilation process used by SimBSP to generate simulation
models. Blocks in the dashed rectangle represent the standard IOCLF toolflow,
while the remaining blocks are specific to SimBSP.

IV. DISCUSSION AND FUTURE WORK

In this abstract, we outline the importance of RTL simu-
lations for reducing development timeframes of FPGA based
designs. We present a custom Board Support Package, called
SimBSP, which adds this important functionality to the Intel
OpenCL SDK for FPGAs. We provide details regarding how
the SimBSP testbench interfaces kernel logic, and how the
entire process of C to RTL simulation can be achieved using
simple compilation scripts within SimBSP.

SimBSP provides an initial exploration into the addition of
RTL simulation to the IOCLF toolflow. In future versions of
SimBSP, we are aiming to achieve the following targets.

• Make SimBSP available as Open Source in order
to drive community efforts towards adding more fea-
tures/capabilities to SimBSP.

• Implement a cycle-accurate simulation model for off-chip
memory in order to get even more reliable performance
estimates. Currently, all DRAM access latencies are sim-
ulated as a constant.

• Provide support for other interfaces, apart from the ones
listed in Table I, e.g., a streaming network interface.

This work is part of a larger project to develop a systemati-
cally and empirically guided toolflow for OpenCL on FPGAs
[8], [9]. In directly related work [12], we describe in detail
methods for removing OpenCL wrappers, and applying test
cases directly at the inputs of generated compute pipelines.

REFERENCES

[1] “ModelSim,” https://www.mentor.com/products/fv/modelsim/ ,
accessed: 2018-01-16.

[2] “Intel FPGA SDK for OpenCL,” https://www.intel.com/content/www
/us/en/programmable/products/design-software/embedded-software-
developers/opencl/developer-zone.html, accessed: 2018-08-30.

[3] “Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide,”
https://www.intel.com/content/dam/www/
programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl-best-practices-
guide.pdf, accessed: 2018-10-12.

[4] “Nallatech FPGA Accelerators support the Altera SDK for Open Com-
puting Language (OpenCL),” http://www.nallatech.com/solutions/fpga-
accelerated-computing/opencl-software-bsps/, accessed: 2018-01-16.

[5] “BittWare OpenCL Board Support Packages,” http://www.bittware.com/
wp-content/uploads/datasheets/ds-OpenCL BSP.pdf, accessed: 2018-01-
16.

[6] “Development Tools and IP,” http://gidel.com/development-tools-and-
ip/, accessed: 2018-08-30.

[7] “Intel Quartus Prime Software Suit,” https://www.intel.com/
content/www/us/en/software/programmable/quartus-
prime/overview.html, accessed: 2018-08-30.

[8] A. Sanaullah and M. Herbordt, “FPGA HPC using OpenCL: Case Study
in 3D FFT,” in Proc. International Symposium on Highly Efficient
Accelerators and Reconfigurable Technologies, 2018.

[9] ——, “An Empirically Guided Optimization Framework for FPGA
OpenCL,” in Proc. IEEE Conf. on Field Programmable Technology,
2018.

[10] “Croucher Summer Course: Performance-Aware Programming with Ap-
plication Accelerators,” http://cscpapaa.eee.hku.hk/, accessed: 2018-09-
1.

[11] “Platform Designer (formerly Qsys),” https://www.intel.com/content/
www/us/en/programmable/products/design-software/fpga-
design/quartus-prime/features/qts-platform-designer.html, accessed:
2018-08-30.

[12] A. Sanaullah and M. Herbordt, “Unlocking Performance-
Programmability by Penetrating the Intel FPGA OpenCL Toolflow,” in
IEEE High Perf. Extreme Computing Conf., 2018.


