SimBSP
Enabling RTL Simulation
for Intel FPGA OpenCL Kernels

Ahmed Sanaullah, Chen Yang, Daniel Crawley and Martin C. Herbordt
Department of Electrical and Computer Engineering, Boston University

BOSTON
UNIVERSITY

The Intel OpenCL Toolflow

No
Develop Measure Good
Code Emulate Reports Generate Hardware Result Perf?
<€ >
Hours / Days
Yes

Presenter
Presentation Notes
We’ve had a great deal of success with the Intel OpenCL toolflow and we are very impressed with the compiler. But there are a number of problems starting with the time to actually generate the hardware.

Code Development Challenges

= There are a number of challenges associated
with code development, such as:

= Reducing development time
= Implementing efficient pipelines

= Even codes which took a long time to develop are
not guaranteed to be efficient

Reducing lines of code needed to express designs

Maintaining designs with relative ease across
toolflow/API/SDK updates

= EXxpertise required and learning curves

Presenter
Presentation Notes
In fact there are a number of problems. It’s not always obvious how to generate good code – in fact sometimes you need to do the opposite of what the best practices tell you. And others ….

@ 11/21/2018

Project Overview
Advancing OpenCL for FPGAs

(without modifying the compiler or
other proprietary design tools)

¥

An Empirically Guided Hacking the Toolflow
Optimization Framework to get ...

FFT In-Depth Optimization Rapid RTL

Case Study Characterization turnaround Simulation

HEART18 FPT18 HPEC18 H2RC18

Presenter
Presentation Notes
This short presentation is the fourth part of a study on advancing OpenCL for FPGAs without modifying the compiler or other proprietary design tools. The first part of this had to do with trying to create systematic optimizations, the in-depth case study at HEART and the broad version at FPT in December. But to deal with other problems, especially turnaround time, which we talked about at HPEC in September today’s talk on enabling RTL simulation – these require hacking the tool flow.

L
Augmentations

Problems to be addressed —

1. Performance-programmability gap: Optimizing OpenCL code is hard
2. No RTL simulation capabilities in the standard OpenCL toolflow
3. Hard to integrate OpenCL generated pipelines into existing structures

Solution

= Cannot rewrite a new compiler to address these shortcomings
= Hence, we augment the existing Intel toolflow

Benefits of Our Work
= Systematic optimizations that are easy to apply, and can even be
automated

= Rapid turnaround necessary to be able to evaluate optimizations
= |ntegration of OpenCL pipelines into existing structures

Presenter
Presentation Notes
Together we address these three problems – performance-programmability, turn-around time, and RTL simulation.

No

Good
Perf?

Measure

Generate Hardware o

Reports

Augmentation 1

. FPT18, HEART18

€ >
N ”

Hours / Days

AT Systematic Measure
Y Optimizations Emulate Reports Generate Hardware Result
Good
?
Perf? No

Yes

Presenter
Presentation Notes
I’d like to very briefly talk about the optimization project …

Apply optimization methods to parallel computing dwarfs

A. Sanaullah, R. Patel, and M. Herbordt, “An Empirically Guided Optimization Framework for FPGA OpenCL,” in Proc. IEEE Conf. on Field Programmable Technology, 2018.

Benchmarks Dwarf Problem Size
NW Dynamic Programming 16K x16K Integer Table
FFT Spectral Methods 64 point Radix-2 1D FFT, 8192 Vectors
Range Limited N-Body 180 particles per cell, 15% pass rate
PME Structured Grids 1,000,000 Particles, 323 grid, 3D Tri-Cubic Interpolation
MMM Dense Linear Algebra 1K x 1K Matrix, Single Precision
SpMV Sparse Linear Algebra 1K x 1K Matrix, Single Precision, 5%-Sparsity, NZ=51122
CRC Combinational Logic 100MB CRC32

Ver. | Optimizations

(GPU code for porting to FPGA OpenCL)
Single thread code with cache optimization
Implement task parallel computations in sep- NW
arate kernels and connect them using channels
Fully unroll all loops w/ #pragma unroll FFT
Minimize variable declaration outside com- ..
pute loops — use temps where possible Range Limited
Use constants for problem sizes and data values PME

— instead of relying on off-chip memory access
Coalesce memory operations MMM
Implement the entire computation within a sin-
gle kernel and avoid using channels SPMV
4 Reduce array sizes to infer pipeline registers as
registers, instead of BRAMs CRC
5 Perform computations in detail, using tempo-
rary variables to store intermediate results

6 Use predication instead of conditional branch
statements when defining forks in the data path

T
iy

V-6

Benchmarks

ST]

NNYNE

(951

NNNYYNNYNE

EINENANANANANANES

A \ANANANANANRNE

NSNNY O INSNSN
NY NN SN

Characterization of Optimizations

Average Incremental Impact of Individual Optimizations Execution Time Comparison for Different MIVIM Baselines
1000 1
[«}]
E
100 g 0.1
°
=
:
g 10 X 001 = MMM JIK
o ho]
n Q B MMM KIJ
1 E 0.001 I I B MMM Block
I O
] 11
0 0.0001
- V-2 - - V-5 V-6 V-1 - - - V-5 V-6
Code Versions Code Version
Speedup of Code Versions Relative to Version 1 (Baseline)
10000
mV-1
1000 mV-2
100 V3
,3.' mV-4
i 10 B V-5
v
1 m V-6
0.1 I
0.01

Range Limited SpMV CRC
Benchmarks

N
Comparison with Different Platforms

* Outperform existing CPU by 1.2x on average Average Speedup Relative to CPU

* Outperform previous FPGA OpenCL by 5x

on average
a3
« Within 12% of average hand tuned HDL -
performance I
* We estimate a 4x increase in performance of I | I X k
. o o Verilog Previous Our Worl Our Worl
our OpenCL designs using Intel Stratix 10 FPGA OpencL (Arria 10) (stratix 10)

Compute Platform/Approach

Normalized Execution Time Comparison for Different Platforms

1
0.
ECPU
HGPU
0.0 Verilog

M Previous FPGA OpenCL
M Our Work (Arria 10)

0.001

Range Limited SpMV
Benchmarks

=

Normalized Execution Time
=

No

]
t t. : ! Devel M Good
levelop easure 00
A u g m e n a I O n Code Emulate | Reports Generate Hardware Result Perf?

& S
>

Hours / Days

| FPT18, HEART18)
- HPEC18, HEART18

DL Systematic L poo o Gen OpenCL-HDL
(ofo1: -3 Optimizations P HDL v

Isolate

Pipelines
Generate Hardware
for Full OpenCL Re-
interface

Generate Hardware | Integrate? Good RTL

for custom system Yes Yes Perf? Simulation

No

I
Usage of Compute Pipeline HC

= Analytics for optimizing kernel code
= RTL simulation
= Determine latency
= Verify functional correctness
= Remember to include all the files from the source file directory
= Compilation
= Post-synthesis resource usage
= More reliable than post compilation log file of normal toolflow
= Post place&route resource usage and frequency
= Create custom wrapper and fit design to board
= Significantly smaller fitting time due to no BSP
= Faster design iterations based on feedback

|=

= Custom deployment
= |ntegration of compute pipelines into existing HDL codes

e ——
Finding Our Source File

= Compilation Breakpoint
= Perform full compilation with the —v flag
= Terminate once successful source file generation is displayed (can also be automated by modifying tcl files)

= Source Files
= Located in [Path to Kernel File]/<kernel_filename>/kernel_subsystem/<kernel_filename>_system_140/synth/

= Folder contains the implemented kernel file, <kernel filename>.v, as well as additional modules needed for
compilation (including custom RTL)

/tTt6a/kernel_system/fTTt64_sy\tem_l48/synths s

acl_address_to_bankaddress.v acl_ic_slave_wrp.v adl worF group dlapatcher v
acl a]lgned “burst_coalesced lsu.v acl_ic_to_avm.v

acl_i1c_wrp_reg.v

acl_id_iterator.w

acl_kernel_finish_detector.v

: acl 11 fifo.v
__av m_to ic.v acl 11 ram fifo.w L
acl data fifo.v acl loop limiter.v _tlng 1oad stores.v
acl_debug_mem.v acl_memlx.v lsu_burst master.v
acl_enable sink.w acl_mem staging reg.v lsu_enabled.v
acl fifo. acl_multistage_accumulator.v su_ic_top.v
acl finis ﬁlgﬂ31 chain_element.v acl multistage adder.wv lsu_non _aligned write.v
acl_fp_add_a1e. acl opti d clz 27.v lsu_pipelined.v
ac]_fp_cu~tom_c1: v acl pipeline.v lsu_prefetch_block.v
acl_fp_dot2_ale.v acl_pop.v lsu_read_cache.v
acl_fp_mdot2_ale.v acl_push.v s mple.v
acl_fp_sub_ale.v ; shift_register.v s reaming_prefetch.v
acl_full_detector.v : taging_reg.v lsu_streaming.v
acl_ic_intf.v ; 11_free_sink.v lsu_top.v
acl_ic_local_mem_router.v ; rt_signal_chain_element.v lsu_wide_wrapper.wv
acl_ic_master_endpoint.v ; ask_copy_finish_detector.v six_three_comp.v
acl_ic_rrp_reg.v acl_toggle detect.v ternary add.v
slave endpoint.v acl_token_Ffifo counter.v ¥S1X _S1X _COMp.V
3 acl valid fifo counter.v

= Change .v to .sv before using

Presenter
Presentation Notes
 Data interfaces can be generated as either individual ports or LSUs (Avalon interface to external modules). The latter can be bypassed by creating explicit ports for the required variable and connecting the LSU's source or sink to it (\textit{o{_}readdata}/\textit{i{_}writedata}). LSUs are typically created when a memory access depends on the outer loop iterator and consume a significant amount of chip resources. Bypassing the LSU can potentially result in a path latency mismatch. This can be fixed by manually adding a delay to existing individual data inputs.

e ——
Finding Our Code Within the File

Basic blocks are modules used to implement the kernel
= Construct logic using basic behavioral functions and Altera IP blocks

= A single kernel can generate multiple basic blocks
Number and function of these modules depends on kernel implementation

= Observed rules of typical basic block generation

= Each normal loop generates a basic block module
Nested normal loops generate independent modules and connect to their parent loop module

Unrolled loops will also generate a separate module.
However, consecutive unrolled loops, or any unrolled nested loop within an unrolled loop, will not

generate a new module

All compute pipelines are within the same basic block
Since all compute loops are unrolled

O Instances
execFFT_basic_block_|

cFFT_basic_block_0)

#- [loop_limiter_2 (acl_loop_limiter)
[#- [system_cycle_time_module (execFFT_sys_cycle_time)
B Primitives

= Ports

Presenter
Presentation Notes
From previous slide, we know that all of the compute code is within the project directory->kernel.sv file.
Within the kernel.sv file, we have a number of basic blocks. Exactly one of them is our code.
There are some tricks to figure out which one since the .sv file could have tens of thousands of lines of code and multiple potential basic blocks.

Largest basic block in terms of lines of code
Look for a unique design component e.g. floating point unit, custom RTL
“kernel_function” module -> set this as top module -> synthesis -> RTL viewer

1) Has worked for us in every single kernel that we tested

S D o lts

= FPGA

= Intel® Arria® 10AX115H3F34E2SGE3 TABLE I

LATENCY AND RESOURCE USAGE FOR OPENCL-HDL 1D FFT

= 427,200 ALMs

= 1506K Logic Elements FFT Size | Latency (cycles) ALM DSP
] g 20 I849(<1%) | 56(4%)
: ;g;/lsb%sn':_’ci:ocl\:semor 16 37 1387(1%) | 168(11%)
P y 32 Y] 723702%) | 456(30%)
= |ntel® SDK for OpenCL™ 16.0 64 53 18.705(4%) | 1160(76%)
p

= Intel® FFT IP Core

- CPU TABLE 11
LATENCY AND RESOURCE USAGE FOR IP-CORE 1D FFT
= 2.7 GHz Intel® Xeon® E5-2680 FFT Size | Latency (cycles) ALM DSP
) iaht 8 16 26,759(6%) 96(6%)
eight core 6 32 11.13203%) | 256(17%)
= Intel® C++ Compiler 32 64 63,322(15%) | 832(55%)
64 128 176,285(41% 1412(93%
= Intel® MKL DFTI S 0%
= GPU
= NVIDIA Tesla P100 PCle 12GB . IP Core Resource Usage wrt OpenCL-HDL
= 3584 CUDA Cores
- 14 m DSP
= 549 GB/s Off-Chip Memory (HBM2) 12
- CUDAS8.0 , 10 ALV
= cuFFT 5 8
6
EXECUTION TIME (US) FOR 3D FFT IMPLEMENTATIONS : I
Design 16° [32° [64° , N ml = L] |
CPU 22.0 | 55.0 | 288.0 8 16 32 64 Mean
GPU 20.7 | 23.6 431 FFT Size
IP Core 1.8 6.8 31.1 IP core resource usage with respect to OpenCL-HDL. OpenCL-HDL
OpenCL-HDL 1.8 6.6 25.8 designs consume both fewer ALMs and DSPs.

No

]
t t. Devel M Good
levelop easure 00
A u g m e n a I O n 3 Code Emulate = Reports Generate Hardware Result Perf?

& S
>

Hours / Days
Yes

FPT18, HEART18

HPEC18, HEART18

H2RC18
DTN Systematic o poo . Gen Flow OpenCL-HDL
LT3 Optimizations > HDL Type?]
; SimBSP
Isolate
No ! Pipelines
Generate Hardware Good RTL
for Full OpenCL Yes Perf? Simulation Re-
\ interface
No™
Generate Hardware Good RTL
— ? —
for custom system Yes N Yes Perf? Simulation
I

No

Presenter
Presentation Notes
Apart from simulating specific compute pipelines, we also wanted to support a full OpenCL simulation. However, we wanted to make this easier to use than OpenCL-HDL, since this would primarily be used by software developers who wanted minimal interaction with HDL.

As a result, we augmented the toolflow with scripts to setup the RTL simulation, that were packaged as a Board Support Package (BSP). We call this SimBSP. Users simply link to SimBSP and compile normally. No new installations are required beyond the standard Intel tooflow.

While simulating the entire OpenCL system restricts the test cases that we can apply to pipelines, there are a number of benefits to SimBSP:
o) SimBSP works well for most applications. OpenCL-HDL heavily favors streaming applications since due to the complexity/difficulty of supporting non-streaming/arbitrary memory accesses at the lowest level.
We can test for bottlenecks in memory modules, arbitration logic, schedulers etc.
We can conduct research beyond optimizations to the application only, and start to target system level changes to OpenCL as we understand the functionality better. E.g. complex arbitration modules for global memory access.
SimBSP interfaces are created at the highest level and do not change significantly with individual applications. Thus it is easier to use and maintain.

Emulation

= Used to simulate kernel code for functional verification.

= Compiling for emulation allows the compiler to
= generate CPU equivalent code for FPGA-specific constructs
= such as channels
= execute the entire computation in software.

= This is useful for:

= ensuring that computation and memory accesses have been
correctly defined

= identify run-time faults
= such as occurrences of deadlocks.

Emulation

= Used to simulate kernel code for functional verification.

= Compiling for emulation allows the compiler to
= generate CPU equivalent code for FPGA-specific constructs
= such as channels

Emulation does not prowde any mformatlon regarding kernel code

mapplng to hardware or estimated performance

u <] UT 0 C omputation and memaoryvy d o o nave peejl
correctly defined
= identify run-time faults
= such as occurrences of deadlocks.

———
Reports

. Generated automatically during the initial compilation (C-HDL translation)
. Give the following information
= Loop analysis

= Used to determine initiation intervals (Il) for loops in the kernel and the dependencies causing
high lIs.

= Resolving these dependencies allows loops to operate stall free.
= Area analysis
= Provides estimates of resource usage and implementation details for data structures.
= This is particularly useful for determining if the compiler:
= has correctly inferred the optimal hardware based on access patterns.

= s resorting to sub-optimal, high-resource “safe” options such as memory replication and
barrel shifters.

= System viewer
= Gives a graphical overview of the kernel computation and memory accesses.

= Kernel execution is represented as sequential blocks, with each block carrying out a varying
number of operations

= such as memory transactions, channel calls and loop iterations.
= Details provided include
= |atencies, stalls, types and sizes of Load-Store units created for each memory transaction,
= the dependencies between blocks.
= Kernel memory viewer
= Gives a graphical overview of the connectivity of Load-Store units with external memory banks.
= Can be used to verify that the compiler has correctly inferred off-chip access patterns.

———
Reports

. Generated automatically during the initial compilation (C-HDL translation)
. Gives the following information
= Loop analysis

= Used to determine initiation intervals (Il) for loops in the kernel and the dependencies causing
high lIs.

= Resolving these dependencies allows loops to operate stall free.

= Area analysis
= Provides estimates of resource usage and implementation details for data structures.
= This is particularly useful for determlnlng if the compiler:

Kernel codes with no loop dependenmes |n|t|aI|zat|on mtervals equal

to 1, efficient memories and low latencies can still be sub-optimal

= Gives a graphical overview of the kernel computation and memory accesses.

= Kernel execution is represented as sequential blocks, with each block carrying out a varying
number of operations

= such as memory transactions, channel calls and loop iterations.
= Details provided include
= |atencies, stalls, types and sizes of Load-Store units created for each memory transaction,
= the dependencies between blocks.
= Kernel memory viewer
= Gives a graphical overview of the connectivity of Load-Store units with external memory banks.
= Can be used to verify that the compiler has correctly inferred off-chip access patterns.

S £ . L
What is a BSP?

= BSP = the files needed to wrap user specified kernel logic
1) compilation scripts
i) board.gsys (the Shell)

i) XML files which are used to tell the compiler, among other things,
which scripts to pick up and execute

Iv) some HDL files for "top" and "freeze wrapper" modules.

To modify

1) For the XML file, we link to a main "TCL" compilation script (called
"import_compile.tcl" in most BSPs) which ends up calling the rest.
These compilation scripts are responsible for all operations after the
C-to-HDL translation.

i) The last script takes the bitstream (.sof file) and packages it into the
OpenCL bitstream (.aocx file).

.
SIMBSP

Very lightweight — no “board.qgsys”, just
- XML files

- Compilation scripts

- Testbench template

SimBSP
Compilation
Flow

aoc kernel.cl

Done for all compilations.
We replace “freeze wrapper”
with the testbench.

In the "board_spec.xml"
file, we modify the
"synthesize cmd" to link
compilation to our custom
"simulate.tcl" script.

Cto HDL
Translation

kernel_system.qsys =

Input HDL & QSYS files.
OpenCL compiler execs our
simulate.tcl script and
removes non-simulation
models. Compile as usual.
Replace some files with
custom ones (testbench)

OpenCL

Testbench

Template

simulate.tcl

Remove wrapper logic
w/o simulation models

kernel_system.qsys

Generate
kernel_system.qsys
for simulation

Kernel HDL &
Default Testbench

msim_setup.tcl

Setup simulation
environment

Lavnch simulation

Execute msim_setup link
and set up simulation
(much detail in signals,
etc.

| Replace default \

testbench with OpenCL

I specific template and \
update application data

Presenter
Presentation Notes
Here we provide details of the backend SimBSP flow. This is divided into 3 stages.

Stage 1 (grey box):
This is the operations done for any and all compilations. That is, we compile the kernel code, which results in a translation of the C code to HDL, and generation of system QSYS files that describes wrappers for this kernel HDL. It is this “kernel_system” that is used to talk to the BSP (“board.qsys”). A freeze wrapper is usually inserted between the “kernel_system” and BSP, which hold inputs and outputs constant while the kernel PR region is being programmed. In our work though, we will replace this freeze wrapper with our testbench.

Stage 2 (Simulate.tcl):
Once the HDL and QSYS files have been generated, the OpenCL compiler executes the “simulate.tcl” script. This script first takes the “kernel_system” from the previous stage and removes all modules that do not have simulation models. Such modules, e.g. system description ROM, do not affect the execution of the kernel itself and can thus be safely removed.

Then, the qsys file is compiled for simulation using native Quartus commands. A new simulation directory is created and the resulting HDL files and scripts are then copied into it. Then, certain default files are replaced with our custom ones. This includes a testbench written specifically for OpenCL which has all the required interfaces.

Stage 3 (msim_setup.tcl)
Within ModelSim, users navigate to the simulation directory created above. The “msim_setup” is sourced and users can start the simulation using the command “ld”, which compiles and links the required HDL.

e ————————————————————————————
Matrix Multiply Kernel Code

#define SIZE 16
__kernel void mmm(__global float* restrict a, _ global float* restrict b, _ global
float* restrict c){
for (int i = 0; 1 < SIZE; i++){
for (int j =0; j < SIZE; j++){
float temp = 0;
for (int k =0; k < SIZE; k++){
temp += (a[i*SIZE+k] * b[k*SIZE+j]);
}
c[i*SIZE+]j] = temp;

E:“Research~PAPPA~kernel_file>*aoc —v mmm.cl

J oc: Environment checks are completed successfully.
} ou are now compiling the full flow?!?
oc: Selected default target hoard alBgx

o . oc: Running OpenCL parser....
After |Iﬂklng to S|mBSP, we oc: OpenCL parser completed successfully.

ile the k | | oc: Compiling....
compi e the kernel as usual. %@k%ngtwith IFP 1{]3::5}1.9 leted cull

. At irst stage compilation completed successfully.

Since the Compllatlon forks after Hardware generation completed successfully.

generating HDL’ i.e. to set up the Warning:= Cannot find a FPGA programming <.sof> file

sim environment, no .sof file is
generated.

Presenter
Presentation Notes
In this talk, we use the example of a matrix multiplication code.

We also show the front end for the SimBSP compilation flow.

As we can see from the compilation, it is very simple. After linking to SimBSP (instead of the normal one, such as Gidel Proc10 or Nallatech), we compile the kernel as we normally would. Since the compilation forks after generating HDL, i.e. setting up the simulation environment instead of synthesis+fitting, no .sof (bitstream) file is generated.

Testbench: Interfaces

clock

reset

cc_shoop
Testbench kernel_cra OpenCL
System

kernel_irq

kernel_mem0O

Name Type Interface Description
clock_clk Clock Kernel clock
clock_reset_n Reset Active low kernel reset
CC_snoop Streaming Not used
kernel_cra Memory Mapped | Interface to configuration registers
kernel_irq Interrupt Interrupt to host machine
kernel_mem(O | Memory Mapped Interface to global memory

Presenter
Presentation Notes
Here we list the different types of interfaces that need to be handled by the testbench.
Apart from the typical ones for clock and reset, we also have the following:

CRA: used to write to, and read from, configuration registers. More details in this regards on the next slides.
IRQ: used to signal to the host, via the PCIe controller, that the kernel has finished executing.
Mem0: interface to the DRAM. The opencl system implements an arbiter to support requests from multiple Load Store Units in the system.
CC_SNOOP: not used.

Testbench: Configuration Registers

Testbench

clock

reset

cc_shoop

OpenCL

kernel _cra

kernel_irq

System

kernel_mem0O

Address

Bits [63:32]

Bits [31:0]

0x0

Start (Bit 0)

0x28

Workgroup_Size

Workgroup_Dimensions

0x30

Global_Size[1]

Global_Size|0]

0x38

Number_of_ Workgroups[0]

Global_Size|2]

0x40

Number_of_Workgroups|2]

Number_of_Workgroups| 1]

Ox48

Local_Size[1]

Local_Size|0]

0x50

Global_Offset]0]

Local_Size[2]

0x38

Global_Offset[2]

Global_Offset[1]

Ox60) - end

Argument_Pointer|63:32]

Argument_Pointer[31:0]

Presenter
Presentation Notes
Table lists the addresses and kernel parameters that are stored in configuration registers. These registers are 64 bits wide, and the testbench can set the value of an entire register (2 32-bit parameters) every cycle using the kernel cra port.
Once all configuration registers have been assigned required values, setting Bit 0 of the register at address 0x0 triggers the start of kernel execution. Apart from specifying the shape and size of workitems/work-groups, configuration registers are also used to store 64-bit pointers to off-chip memory for kernel arguments.
Since the number of kernel arguments can vary for individual applications, addresses from 0x60 onwards can all be used for this purpose.

T R T T R T R R T

Waveforms: Configuration

11/21/2018

oooodd

Q0000000

AT

01

UUUUUUUU?UUUUUUUUWUUUUUI
00000000G0000000
Qo

1
0000000 1B0000001

Q0000028

00000030

00000033 00000040

00000043

0000000100000001

1000000000000320000@0000000008

00000000

0000001

1
0000000000000000

1
D00D0000HI000000

1
00000000300

00000050

00000058

Q0000060

00000063

00000070

00000000

0000000000000001

0000000000000000

Q000000040000000

0000000030000000 | 00003000:

0000000 | 0000000000000001

Presenter
Presentation Notes
Here we show waveforms for setting up the values in the control registers.

.- ______________________________________zws
Waveforms: Configuration

ftb_mmmkernel_system_instfmm... |St0
Jtb_mmm/dodk 1

1
00a,.. 00000000] (X 00000000
]

Address Bits [63:32] Bits [31:0] Value 100000000000000

»| 0x28 Workgroup_Size Workgroup_Dimensions 00000001_00000001

| ox3o Global_Size[1] Global_Size[0] 00000001_00000001

0x38 Number_of Workgroups[0] Global_Size[2] 00000001_00000001
0x40 00000001_00000001
00000001_00000001
0x50 Global_Offset[0] Local_Size[2] 00000000_00000001 |som—
0x58 Global_Offset[2] Global_Offset[1] 00000000_00000000
0x60 Pointer “a” 00000000_40000000

Number_of Workgroups[2] Number_of Workgroups[1]

0x48 Local_Size[1] Local_Size[0]

0x68 Pointer “b” 00000000_80000000

0x70 Pointer “c” 00000000_C0000000
00000000_00000001

0x00 Start (Bit 0)

______________ Q000006s 00000000

Presenter
Presentation Notes
In this table, we shown the values given to control registers, and the order in which they are assigned.
We assign 1 to all sizes and dimensions (since it is a single work item kernel), and 0 to all offsets.
Since we have three parameters to the MMM kernel, we use addresses 0x60, 0x68 and 0x70 to set the pointer values for these kernel arguments.
Once all values have been set, we set the start bit to 1.

Waveforms: Kernel Execution

[tb_mmmkernel_system_ins
Jtb_mmmkernel_system_ins!
[th_mmm/dodk
[th_mmm,resetn

[tb_mmm address

[tb_mmm fread

Jth_mmm fwrite
[th_mmm/data_out
[tb_mmm byte_enable
Jth_mmm,burst_count
[tb_mmmkernel_irg

[th_mmm/avs_cra_readdata
[tb_mmm/avs_cra_write
Jth_mmm/avs_cra_waitrequest
[th_mmm/avs_cra_address
[tb_mmm/favs_cra_writedata

Start

mm_system/mmm/kernelfstart_kernel
mm_systemmmmkernel ffinish

Jth_mmm/avs_cra_readdatavalid

Finish

g AR cot

Data
Reuse

— r o o Vi e r !

T T —
(EMoL jor [o Yo [Jor | Yorl Jorl Toil

Interrupt
signal to
host

Presenter
Presentation Notes
Here we show the execution of the entire system.
The start and finish signal are indicated. Interrupt flag is also raised along with the finish signal.
An important observation here is that while writes are frequent, reads happen in small bursts. This indicates that the compiler inferred opportunities of data reuse, and is utilizing local caches in the Load Store Unit modules to store certain values.

THANK YOU

.
Programming Model?

This is an issue because OpenCL is not sufficiently expressive to allow
programmer to explicitly express all Intel FPGA capabilities. Several alternatives:

Choice 1: Program Intel FPGA as if it were a GPU

Rationale: Since OpenCL maps well to GPUs, and the GPU model is a subset of
the Intel FPGA model, and GPU code is efficient for many applications, this should
be reasonable, if not perfect.

Problem: Gives very poor performance

Choice 2: Program Intel FPGA as if it were an Intel® FPGA

Rationale: Although support is a subset of HDL support, there are Intel® FPGA-
specific extensions, including channels and embedded HDL.

Problem: Gives very poor performance

Choice 3: Program Intel FPGA as if were a single threaded CPU
This means: Single work item/group AND single work group
Rationale: Huh?

Rationale: The Intel OpenCL compiler is REALLY GOOD — turn it loose!
Problems (solved here): Long compile times, need systematic optimizations

I
Optimizing OpenCL Kernels

= V1: Cache Optimized CPU Code
= CPU architecture resembles FPGAs more than GPUs

= V2: Typical FPGA Optimizations / Recommended Best Practices

= SWI kernels, Channels, Constants, Loop unrolling, Coalesced loops

= V3: Single Kernel Implementation

= Remove channels
= Channels isolate resources and prevent global optimizations
= Kernels are launched sequentially, potentially resulting in race conditions,
deadlocks and high synchronization costs
= |nstead, let Intel OpenCL compiler infer task parallelism within a single kernel
= Use code fragments that are tied to the same loop iterator but have no data
dependencies
= |ntel OpenCL compiler utilizes delay modules instead of blocking channels for
synchronization of data paths which is more efficient

e
Optimizing OpenCL Kernels, cont.

= V4. Infer Pipeline Registers as Registers

= Large arrays can be inferred as BRAMs instead of registers

= Rapidly increases resource usage due to memory replication to meet throughput
= Avoid using large variable arrays where possible

= Use scripts to generate and use individual variables

= V5: Explicit computations

= Provide as much detail as possible regarding the computation
= Even if it is an apparent suboptimal practice such as
= Un-coalescing loops to help infer access patterns
= Small constant arrays instead of single large one
= Intermediate variables for complex computations

= Manually unrolling a loop and specifying tree based computations using
parenthesis

= Extra kernel parameters that are pointers to the same memory space
= One per task
= manually guarantee no RAW data dependencies between tasks
= Helps the Intel OpenCL compiler infer the desired architecture with greater accuracy

V6: Avoid conditional statements e.g. if, else
= Use conditional assignments instead

reating a New Interface

execFFT_basic_block_3

Zwm local bb3 Id memcoalesce null load 0 readdatal2047.0] 0%
avm_local bb3 Id_memcoalesce_null_load 0 readdatavalid |

avm_local_bb3 Id_memcoalesce_null_load 0 waitrequest

avm local bbd 1d_memcoalesce null load 0 address[31 0]

_J|avm_local bb3 |d_memcoalesce null load 0 burstcount
i avm local bbd 1d_memcoalesce null load 0 byteenable[255.0

_J|avm_local_bb3 |d_memcoalesce null_load 0 enable

~Jlavm_local bb3 Id_memcoalesce_null load 0 _read

i avm local bbd 1d_memcoalesce null load 0 writedata[2047.0]

avm_local_bb3 _|d_memcoalesce null_load 0 write

avm_local_bb3_|d_memcoalesce _null load 0 writeack |5

avm local bb3 Jd_memcoalesce null load 02 readdatal2047 010

avm_local_bb3 |d_memcoalesce_null_load 02 readdatavalid | B8

avm_local_bb3 ld_memcoalesce_null_load 02 waitrequest |
avm_local_bb3 Id_memcoalesce null_load 02 writeack |5

avm local bb3 st memcoalesce null insertValue 63 readdata/2047 0]

avm_local_bb3_st_ memcoalesce_null_insertValue 63 readdatavalid | B

avm_local_bb3 st memcoalesce_null_insertValue 63

avm_local bb3 st memcoalesce null_insertValue 63 writeack |

avm local bb3 st memcoalesce null insertValue 63137 readdata2047.0]

request|

avm_local_bb3 st memcoalesce_null_insertValue 63137 readdatavalid |
request|

avm_local_bb3 st memcoalesce_null_inseriValue G313

avm_local bb3 st memcoalesce_null_insertValue 63137
clock2x

writeack |

clock

input_ap _ctr_addr[63..0]

input ap cirs addr63_0]

input c0 exe1073.0]

input_c0_exeff3 0] [
input_c0_exedf3. 0] I

iavm local bbd Id_memcoalesce null load 02_address[31.0]
~||avm_local_bb3 |d_memcoalesce null load 02_burstcount

i avm local bibd |d_memcoalesce null load 02 _byieenable[255.0

~J|avm_local_bb3 |d_memcoalesce null load 02 enable

~Javm_local_bb3 ld_memcoalesce null load 02 read

avm local bbd |d_memcoalesce null load 02 writedata[2047.0

i avm_local_bb3_Id_memcoalesce_null_load 02 write

avm local bbd st memcoalesce null insertValue 63 address[31.0

~J|avm_local_bb3 st memcoalesce null_insertValue 63 burstcount

i avm local bbd st memcoalesce null insertValue 63 byvieenable[255.0
_J|avm_local_bb3 st memcoalesce null_inserfValue 53 enable

Sl avm_local bb3 st memcoalesce null_insertValue 63 read

i avm local bibd st memcoalesce null insertValue 63 writedatal2047_.0
~J|avm_local_bb3 st memcoalesce null_insertValue 63 write

i avm local bbd st memcoalesce null insertValue 63137 address[31.0]
_J|avm_local_bb3 st memcoalesce null_insertValue 63137 burstcount

ol avm local bb3 st memcoalesce null insertValue 53137 byteenable[255_ 0]
~J|avm_local_bb3 st memcoalesce null_insertValue 63137 enable

avm_local_bb3_st_memcoalesce_null_insertValue_63137 read

avm local bibd st memcoalesce null insertValue 63137 writedata[2047,

input_cQ_exe1131.0]

input_c0_exitsd c0 exil2[447 0]

input_cQ_exed63[3.0] 18
input_c0_exed [

stall in

input_forked |
resetn [

start [
walid_in |
32'n1 workgroup_size[31. 0] | llivh _c0 exe

llivb c0 exed63(3..0]

CJ|avm_local_bb3 st memcoalesce null_insertValue 63137 write

b _bb3 add436[31.0]

Wb _bb3 c0 exel7s[31.0]

b bb3 c0 exed79[31.0]
b _bb3 c0_exe3B0[63.0]
- Mdﬁ”‘ﬂ 0]
_||vb_bb3 c0 exel?
il ivh_c0 exef[3..0]
b c0 exed(3.0]

lvb_c0_exe10(3.0]

b cl_exed

|| vib_forked
| stall_out
|| valid_out

(execFFT_basic_block_3)

Presenter
Presentation Notes

Could be more cases for direct data but thus far, these are the three cases we have observed

Creating a New Interface

execFFT_basic_block_3

avm_local bb3 Ild_memcoalesce null load 0 readdata[2047. 0]

avm_local_bb3 Id_memcoalesce_null_load 0 waitrequest

avmn_local bb3 Id_memcoalesce_null_load 0 readdatavalid |

~|lavm_local bb3_|d_memcoalesce

avm_local bb3 |d_memcoalesce

load 0 byteenable[255_0

_lavm_local bb3 |d_memcoalesce null load O enable
~f|avm_local_bb3 |d_memcoalesce_null_load 0 read
avm_local bb3 |d_memcoalesce null load 0 writedata2047. 0]

avm_local_bb3 |d_memcoalesce

load_0_write

avm_local_bb3 Id_memcoalesce_null_load 0 writeack [5

avm_local_bb3 |d_memcoalesce_null load 02 readdatavalid B8

awm_local_bb3_|d_memcoalesce_null_load 02 w.

avm_local_bb3 Id_memcoalesce_null_load 02 _writeack |5

avm local bb3 st memcoalesce null_insertValue 63 readdata2047. 0]

3_st_memcoalesce_null_insertValue 63 equest

avm_local bb3 st memcoalesce null_insertValue 53 writeack |5

avm local bb3 st memcoalesce null_insertValue 63137 readdatal2047.0]

avm_local_bb3 st memcoalesce null_insertValue 63137 readdatavalid |
itrequest |

avm_local_bb3d st memcoalesce null_insertValue 53137

avm_local bb3 st memcoalesce_null_insertValue 63137 writeack |

clock2x

input_ap cirs_addr(63..0]

input_ap _ctr_addr[63..0] 1

in) exeh[3..0]

input c0 exe10{3.0]

input_c0_exedf3 01 [0

input_c0_exell[31.0]

avm_local bb3 |d_memcoalesce

~|lavm_local bb3_|d_memcoalesce

avm_local bb3 |d_memcoalesce

~|lavm_local bb3_|d_memcoalesce

~flavm_local_bb3 |d_memcoalesce

avm_local bb3 |d_memcoalesce

| avm_local_bb3_|d_memcoalesce

AV
flavm insertValue
il insertValue
flavm b memcoalesce insertValue
S avm inseriValue 6
il insertValue
flavm insertValue
il insertValue &
flavm insertValue
2V inzertalue
flavm insertValue
avm_local_bb3_st_memcoalesce_null_insertValue_63137
avm_local bb3 st memcoalesce null insertValue 53137
avm_local bb3 st memcoalesce null_insertValue 53137 write

input_c0_exe463[3.0]

input_c0 _exitsd cl exil2[447 0]

input_c0_exed |

b _bb3 add436[31.0]

Wb _bb3 ol exelTE[31.0]

vb_bb3 c0 _exedT3[31 0]

32'n1 workgroup_size[31. 0|

input_forked |

v _bb3 cO exe3B0[63. 0]

_ivb_bb3 c0 exed51[63 0]

_|ivb_bb3 ol exel?

v c0 exe6[3..0]

lltvb _c0 exed[3.0]

lvb_c0_exel0[3..0]

fvh ol exed5313..0]

Wb _cl_exed

b

_ | vb_forked

i

(execFFT_basic_block_3)

- Control Ports

Control Ports

Consists of clock, resetn,
Stall and Valid ports

Stall ports used by a basic
block to stall upstream
modules

Valid ports used to stall
downstream basic blocks

Presenter
Presentation Notes

Could be more cases for direct data but thus far, these are the three cases we have observed

e ————————————————————————————
Creating a New Interface — controi Ports

— |Load Store Unit Ports

execFFT_basic_block_3

gad 0 add 0
L d_memcoalesce o gad 0 purstcoun

avm local bb3 |d_memcoalesce null load 0 byteenable[255. 0

avm_local_bb3 |d_memcoalesce _null load 0 enable

TG | P e — Load Store Unit (LSU) Ports
——— = Consists of Avalon
e \.'|1 sftmlfnl inseV-Swak : E: EE EE: : : E E i“'. I . interfaces to LSU mOdUIeS

aym local bb3 st memcoalesce null insertValue 63 read

memcoalesce null insertys wiitedatal2047 0
I T —— P — = LSU modules sink and
input_ap _ctr_addr[63..0] 1 g gcal bib memcoglesce null inzertya Tl ount
input_ap_cirs_addr[63_0] 2 ocal bb memenalesee pull jnserfiiy 7 puteepable 0
EETERICNI] ere——————— source data to compute
input_c0_exedf3 01 [0 Z coal b menszlecre ool inoarlis e . .
input c0_exel0f3..0] 3 ocal bb memcoalesce null insertya T yritedatal2047 0 pl pellnes
input_c0_exell[31 01 avm local bb3 st memcoalesce null insertyalue 63137 write
input_c0_exed63[3.0] 18 ol tvb _bb3 addd36[31.0]
input_c_exed | lltvb bb3 c0 exel78[31.0]
input_c0 exits9 c0 exila[d47.0) llfvb bb3 c0 exed79[31.0]
input_forked | v _bb3 cO exe3B0[63. 0]
= = Remove LSU modules and
sialenle||vb_bb3_ch_exel?
b _c_exe6]3. 0] 1 1 1 1
i e e interface pipelines with
32'hlwolkgroup_size[SJ..[l_ lltvb c0 exel0[3.0) .
YR required data-buses
Wb _cl_exed
_ | vb_forked
i
e

(execFFT_basic_block_3)

Presenter
Presentation Notes

Could be more cases for direct data but thus far, these are the three cases we have observed

e ————————————————————————————
Creating a New Interface — controi Ports

| — |Load Store Unit Ports
execFFbaS|c blck_ T ' — FeedbaCk Ports

avm local bb3 |d_memcoalesce null load 0 byteenable[255. 0
avm_local_bb3 |d_memcoalesce _null load 0 enable

e e Feedback Ports

avm _local bbd Id_memcoalesce null load 02 writeack 3 ocal pb3 Jd memcoalesce null load O A

il s T —————— = Used to select between
— nitial and steady state
EET—— - \.'m II 3 st Ie uII ;r.\-fue 53 - Values Of State registers

.inEut Ap _cir addrSZ}.D_ F gcal bib memcoglesce 1 |,- g : count .
EETETTTE] - mrrer——————r— = Hardwired — User cannot

_i.f"gtufflgé'filiim"m' e e modify at run time

1[31.0] avm local bb3 st memcoalesce null insertyalue 63137 write
b _bb3 add436[31.0]
b _bbd cl exelTA[31.0]

vb_bb3 c0 _exedT3[31 0]

Wb _bb3 c0 exe3B0[63.0]

o 123 0 s = Paired output-input ports

é connect to each other while

individual inputs have a

Wb _cl_exed

o constant value
block_3)

bl

(execFFT_basic

Presenter
Presentation Notes

Could be more cases for direct data but thus far, these are the three cases we have observed

e ————————————————————————————
Creating a New Interface

execFFT_basic_block_3

Control Ports
Load Store Unit Ports

i i Feedback Ports
\.'m II 3 I r‘"Ie uII I "l_e;nabe 2550 Don ’t Ca re PO rtS

| Don’t Care Ports
————— ————————— - Typically correspond to a variety
— e of logic such as
. —————————— . Parallel control and data paths
rrr———————————_ PO — that do not interact with
compute pipelines
T e————— - Logic that interfaces load store

S B it (SU) modues eg.

input c0_exe1073.01 15 y :
input ¢ exe11[31.0]| : avm local bb3 st memcoalesce null insertyalue 63137 write dd t t.
inout_ofl_evedr3rd il ik hh3_add43Rizl ol - a reSS Com pu a Ion

T - lin bh3 co exe178m31 01
inout_cO exith® cl exil2[447. 01 . Wit b3 ci exe770131 00

input forked Ih.'h bh3 el _exe3ROMRT 01

R it 63 cn exedntisa ol

bhoa e = Since we remove LSU modules,

Uit o0 exeda ol
it o0 evearz

¥ gy and since there is no interaction

llnh c0 exeanaiz o0

e with compute pipelines, we can
' leave these pins unconnected

32'n1 workgroup_size[31..0

(execFFT_basic_block_3)

Presenter
Presentation Notes

Could be more cases for direct data but thus far, these are the three cases we have observed

e ————————————————————————————
Creating a New Interface — controi Ports

| nad Qtnra | Init Darte
execFFbasic blck_ o ' Dlrect Ports
\.'m II 3 I r‘"Ie uII I "le;nabe 255_() (not ShOWn)
i iz = Direct Kernel Input : if the kernel
e o FET——— has a constant input. Appears as a
N bit input to the kernel based on

variable type

avm _local bbd Id_memcoalesce null load 02 writeack 3 ocal pb3 Jd memcoalesce null load O A

LS s —1 = Direct Data : Data is available as a

_ e TE———————— direct bus. Typically occurs when

ThT Emm=————m compiler moves LSU unit out of the
i PrrEr——n——"" basic block due to:

— * outer loop variable not used in

[T index/address computations

R it 63 cn exedntisa ol

input_forked

lih 63 cn exe12
. .
e = Problem size is too small
[-
5 o exer03_ o
llnh c0 exeanaiz o0
it cn exed

 [r—

32'n1 workgroup_size[31..0

= |nitial Values

(execFFT_basic_block_3)

Presenter
Presentation Notes

Could be more cases for direct data but thus far, these are the three cases we have observed

e ————————————————————————————
Creating a New Interface

execFFT_basic_block_3

g\ gl o 0 TENC o8 & g [} ogg b
avm _local bb3 Id_memcoalesce nul Il _load 0w

- Control Ports
| nad QtAara | Init Darte

Direct Ports
(not shown)
= Direct Kernel Input : if the kernel

hae a4 rAnectant inniit Annaare ac a

data out2[2047..0]

[> data_out2[2047..0]
data outl[2047..0]

[> data_out1[2047..0]

uut
+
clock D clock
resetn| > resetn
data_in2[2047..0] [_y——<atan22047.0
data_in1[2047..0] [y—<2ia 0120470
(fft64)

32'n1 workgroup_size[31..0

o WLivh_bh3 cfl exedR11A3 0]

|
I
;.
i o0 exernz m
|
I
I

heh_hh3 ol pxel?
vh_ch_exefl3 01

vh_cl_exedf3l3 01

heh_rfl_pred

(execFFT_basic_block_3)

MaexX7aaaress compu@anons
= Problem size is too small

= |nitial Values

Presenter
Presentation Notes

Could be more cases for direct data but thus far, these are the three cases we have observed

	SimBSP�Enabling RTL Simulation�for Intel FPGA OpenCL Kernels
	The Intel OpenCL Toolflow
	Code Development Challenges
	Project Overview
	Augmentations
	Augmentation 1
	Apply optimization methods to parallel computing dwarfs
	Characterization of Optimizations
	Comparison with Different Platforms
	Augmentation 2
	Usage of Compute Pipeline HDL
	Finding Our Source File
	Finding Our Code Within the File
	Results
	Augmentation 3
	Emulation
	Emulation
	Reports
	Reports
	What is a BSP?
	SimBSP
	SimBSP �Compilation �Flow
	Matrix Multiply Kernel Code
	Testbench: Interfaces
	Testbench: Configuration Registers
	Waveforms: Configuration
	Waveforms: Configuration
	Waveforms: Kernel Execution
	Thank You
	Programming Model?
	Optimizing OpenCL Kernels
	Optimizing OpenCL Kernels, cont.
	Creating a New Interface
	Creating a New Interface
	Creating a New Interface
	Creating a New Interface
	Creating a New Interface
	Creating a New Interface
	Creating a New Interface

