
SimBSP
Enabling RTL Simulation

for Intel FPGA OpenCL Kernels

Ahmed Sanaullah, Chen Yang, Daniel Crawley and Martin C. Herbordt
Department of Electrical and Computer Engineering, Boston University

Boston University Slideshow Title Goes Here

The Intel OpenCL Toolflow

Develop
Code Generate Hardware Measure

Result
Good
Perf?

Yes
Hours / Days

Emulate Reports

Done

No

Presenter
Presentation Notes
We’ve had a great deal of success with the Intel OpenCL toolflow and we are very impressed with the compiler. But there are a number of problems starting with the time to actually generate the hardware.

Boston University Slideshow Title Goes Here

Code Development Challenges

 There are a number of challenges associated
with code development, such as:
 Reducing development time

 Implementing efficient pipelines

 Even codes which took a long time to develop are
not guaranteed to be efficient

 Reducing lines of code needed to express designs

 Maintaining designs with relative ease across
toolflow/API/SDK updates

 Expertise required and learning curves

11/21/2018

Presenter
Presentation Notes
In fact there are a number of problems. It’s not always obvious how to generate good code – in fact sometimes you need to do the opposite of what the best practices tell you. And others ….

Boston University Slideshow Title Goes Here

Project Overview
Advancing OpenCL for FPGAs
(without modifying the compiler or
other proprietary design tools)

11/21/2018

An Empirically Guided
Optimization Framework

Hacking the Toolflow
to get …

FFT In-Depth
Case Study
HEART18

Optimization
Characterization
FPT18

Rapid
turnaround
HPEC18

RTL
Simulation
H2RC18

Presenter
Presentation Notes
This short presentation is the fourth part of a study on advancing OpenCL for FPGAs without modifying the compiler or other proprietary design tools. The first part of this had to do with trying to create systematic optimizations, the in-depth case study at HEART and the broad version at FPT in December. But to deal with other problems, especially turnaround time, which we talked about at HPEC in September today’s talk on enabling RTL simulation – these require hacking the tool flow.

Boston University Slideshow Title Goes Here

Augmentations
Problems to be addressed –
1. Performance-programmability gap: Optimizing OpenCL code is hard
2. No RTL simulation capabilities in the standard OpenCL toolflow
3. Hard to integrate OpenCL generated pipelines into existing structures

Solution
 Cannot rewrite a new compiler to address these shortcomings
 Hence, we augment the existing Intel toolflow

Benefits of Our Work
 Systematic optimizations that are easy to apply, and can even be

automated
 Rapid turnaround necessary to be able to evaluate optimizations
 Integration of OpenCL pipelines into existing structures

11/21/2018

Presenter
Presentation Notes
Together we address these three problems – performance-programmability, turn-around time, and RTL simulation.

Boston University Slideshow Title Goes Here

Augmentation 1
11/21/2018

Develop
Code

Systematic
Optimizations Emulate Reports

FPT18, HEART18

Generate Hardware Measure
Result

Good
Perf?

Yes

Done

No

Presenter
Presentation Notes
I’d like to very briefly talk about the optimization project …

Boston University Slideshow Title Goes Here

Apply optimization methods to parallel computing dwarfs

A. Sanaullah, R. Patel, and M. Herbordt, “An Empirically Guided Optimization Framework for FPGA OpenCL,” in Proc. IEEE Conf. on Field Programmable Technology, 2018.

Boston University Slideshow Title Goes Here

Characterization of Optimizations

Boston University Slideshow Title Goes Here

Comparison with Different Platforms
• Outperform existing CPU by 1.2x on average

• Outperform previous FPGA OpenCL by 5x
on average

• Within 12% of average hand tuned HDL
performance

• We estimate a 4x increase in performance of
our OpenCL designs using Intel Stratix 10

Boston University Slideshow Title Goes Here

Augmentation 2
11/21/2018

Develop
Code

Systematic
Optimizations Emulate

Done

Reports

Generate Hardware
for Full OpenCL

RTL
Simulation

Re-
interface

Isolate
Pipelines

Done Generate Hardware
for custom system

Good
Perf?

FPT18, HEART18
HPEC18, HEART18

No

No

Yes Yes

OpenCL-HDL

Integrate?

Gen
HDL

Boston University Slideshow Title Goes Here

Usage of Compute Pipeline HDL
 Analytics for optimizing kernel code

 RTL simulation
 Determine latency
 Verify functional correctness
 Remember to include all the files from the source file directory

 Compilation
 Post-synthesis resource usage

 More reliable than post compilation log file of normal toolflow
 Post place&route resource usage and frequency

 Create custom wrapper and fit design to board
 Significantly smaller fitting time due to no BSP
 Faster design iterations based on feedback

 Custom deployment
 Integration of compute pipelines into existing HDL codes

Boston University Slideshow Title Goes Here

Finding Our Source File
 Compilation Breakpoint

 Perform full compilation with the –v flag
 Terminate once successful source file generation is displayed (can also be automated by modifying tcl files)

 Source Files
 Located in [Path to Kernel File]/<kernel_filename>/kernel_subsystem/<kernel_filename>_system_140/synth/

 Folder contains the implemented kernel file, <kernel_filename>.v, as well as additional modules needed for
compilation (including custom RTL)

 Change .v to .sv before using

11/21/2018

~~~~~~“Path to .cl file”~~~~~~

Presenter
Presentation Notes
 Data interfaces can be generated as either individual ports or LSUs (Avalon interface to external modules).  The latter can be bypassed by creating explicit ports for the required variable and connecting the LSU's source or sink to it (\textit{o{\_}readdata}/\textit{i{\_}writedata}).  LSUs are typically created when a memory access depends on the outer loop iterator and consume a significant amount of chip resources.  Bypassing the LSU can potentially result in a path latency mismatch.  This can be fixed by manually adding a delay to existing individual data inputs.



Boston University Slideshow Title Goes Here

Finding Our Code Within the File
 Basic blocks are modules used to implement the kernel

 Construct logic using basic behavioral functions and Altera IP blocks
 A single kernel can generate multiple basic blocks
 Number and function of these modules depends on kernel implementation

 Observed rules of typical basic block generation
 Each normal loop generates a basic block module 
 Nested normal loops generate independent modules and connect to their parent loop module  
 Unrolled loops will also generate a separate module.  

 However, consecutive unrolled loops, or any unrolled nested loop within an unrolled loop, will not 
generate a new module

 All compute pipelines are within the same basic block
 Since all compute loops are unrolled

13

11/21/2018

Presenter
Presentation Notes
From previous slide, we know that all of the compute code is within the project directory->kernel.sv file.Within the kernel.sv file, we have a number of basic blocks. Exactly one of them is our code. There are some tricks to figure out which one since the .sv file could have tens of thousands of lines of code and multiple potential basic blocks.Largest basic block in terms of lines of codeLook for a unique design component e.g. floating point unit, custom RTL“kernel_function” module -> set this as top module -> synthesis -> RTL viewer1) Has worked for us in every single kernel that we tested



Boston University Slideshow Title Goes Here

Results

14

 FPGA 
 Intel® Arria® 10AX115H3F34E2SGE3

 427,200 ALMs
 1506K Logic Elements
 1518 DSP Blocks
 53Mb On-chip Memory

 Intel® SDK for OpenCLTM 16.0
 Intel® FFT IP Core 

 CPU
 2.7 GHz Intel® Xeon® E5-2680

 eight core
 Intel® C++ Compiler
 Intel® MKL DFTI 

 GPU
 NVIDIA Tesla P100 PCIe 12GB

 3584 CUDA Cores
 549 GB/s Off-Chip Memory (HBM2)

 CUDA 8.0
 cuFFT



Boston University Slideshow Title Goes Here

Augmentation 3
11/21/2018

Develop
Code

Systematic
Optimizations Emulate

Done

Reports

Generate Hardware 
for Full OpenCL

RTL
Simulation

Re-
interface

Isolate
Pipelines

Done Generate Hardware
for custom system Integrate? Good

Perf?

Good
Perf?

RTL
Simulation

Flow 
Type?

FPT18, HEART18
HPEC18, HEART18
H2RC18

No

No

No

Yes

Yes Yes

OpenCL-HDL

SimBSP

Gen
HDL

Presenter
Presentation Notes
Apart from simulating specific compute pipelines, we also wanted to support a full OpenCL simulation. However, we wanted to make this easier to use than OpenCL-HDL, since this would primarily be used by software developers who wanted minimal interaction with HDL. As a result, we augmented the toolflow with scripts to setup the RTL simulation, that were packaged as a Board Support Package (BSP). We call this SimBSP. Users simply link to SimBSP and compile normally. No new installations are required beyond the standard Intel tooflow. While simulating the entire OpenCL system restricts the test cases that we can apply to pipelines, there are a number of benefits to SimBSP:o)    SimBSP works well for most applications. OpenCL-HDL heavily favors streaming applications since due to the complexity/difficulty of supporting non-streaming/arbitrary memory accesses at the lowest level. We can test for bottlenecks in memory modules, arbitration logic, schedulers etc. We can conduct research beyond optimizations to the application only, and start to target system level changes to OpenCL as we understand the functionality better. E.g. complex arbitration modules for global memory access.SimBSP interfaces are created at the highest level and do not change significantly with individual applications. Thus it is easier to use and maintain.  



Boston University Slideshow Title Goes Here

Emulation

11/21/2018

 Used to simulate kernel code for functional verification.
 Compiling for emulation allows the compiler to

 generate CPU equivalent code for FPGA-specific constructs
 such as channels

 execute the entire computation in software. 

 This is useful for:
 ensuring that computation and memory accesses have been 

correctly defined
 identify run-time faults

 such as occurrences of deadlocks. 



Boston University Slideshow Title Goes Here

Emulation
 Used to simulate kernel code for functional verification.
 Compiling for emulation allows the compiler to

 generate CPU equivalent code for FPGA-specific constructs
 such as channels

 execute the entire computation in software. 

 This is useful for:
 ensuring that computation and memory accesses have been 

correctly defined
 identify run-time faults

 such as occurrences of deadlocks. 

11/21/2018

Emulation does not provide any information regarding kernel code 
mapping to hardware or estimated performance



Boston University Slideshow Title Goes Here

Reports
 Generated automatically during the initial compilation (C-HDL translation)
 Give the following information

 Loop analysis
 Used to determine initiation intervals (II) for loops in the kernel and the dependencies causing 

high IIs. 
 Resolving these dependencies allows loops to operate stall free.

 Area analysis 
 Provides estimates of resource usage and implementation details for data structures. 
 This is particularly useful for determining if the compiler:

 has correctly inferred the optimal hardware based on access patterns. 
 is resorting to sub-optimal, high-resource “safe” options such as memory replication and 

barrel shifters.
 System viewer 

 Gives a graphical overview of the kernel computation and memory accesses. 
 Kernel execution is represented as sequential blocks, with each block carrying out a varying 

number of operations 
 such as memory transactions, channel calls and loop iterations. 

 Details provided include 
 latencies, stalls, types and sizes of Load-Store units created for each memory transaction, 
 the dependencies between blocks.

 Kernel memory viewer 
 Gives a graphical overview of the connectivity of Load-Store units with external memory banks.
 Can be used to verify that the compiler has correctly inferred off-chip access patterns. 

. 

11/21/2018



Boston University Slideshow Title Goes Here

Reports
 Generated automatically during the initial compilation (C-HDL translation)
 Gives the following information

 Loop analysis
 Used to determine initiation intervals (II) for loops in the kernel and the dependencies causing 

high IIs. 
 Resolving these dependencies allows loops to operate stall free.

 Area analysis 
 Provides estimates of resource usage and implementation details for data structures. 
 This is particularly useful for determining if the compiler:

 has correctly inferred the optimal hardware based on access patterns. 
 is resorting to sub-optimal, high-resource “safe” options such as memory replication and 

barrel shifters.
 System viewer 

 Gives a graphical overview of the kernel computation and memory accesses. 
 Kernel execution is represented as sequential blocks, with each block carrying out a varying 

number of operations 
 such as memory transactions, channel calls and loop iterations. 

 Details provided include 
 latencies, stalls, types and sizes of Load-Store units created for each memory transaction, 
 the dependencies between blocks.

 Kernel memory viewer 
 Gives a graphical overview of the connectivity of Load-Store units with external memory banks.
 Can be used to verify that the compiler has correctly inferred off-chip access patterns. 

. 

11/21/2018

Kernel codes with no loop dependencies, initialization intervals equal 
to 1, efficient memories and low latencies can still be sub-optimal



Boston University Slideshow Title Goes Here

What is a BSP?

 BSP = the files needed to wrap user specified kernel logic 
i) compilation scripts
ii) board.qsys (the Shell)
iii) XML files which are used to tell the compiler, among other things, 

which scripts to pick up and execute
iv) some HDL files for "top" and "freeze_wrapper" modules.

To modify
i) For the XML file, we link to a main "TCL" compilation script (called 

"import_compile.tcl" in most BSPs) which ends up calling the rest. 
These compilation scripts are responsible for all operations after the 
C-to-HDL translation. 

ii) The last script takes the bitstream (.sof file) and packages it into the 
OpenCL bitstream (.aocx file). 

11/21/2018



Boston University Slideshow Title Goes Here

SimBSP

Very lightweight – no “board.qsys”, just
- XML files
- Compilation scripts
- Testbench template

11/21/2018



Boston University Slideshow Title Goes Here

SimBSP
Compilation 
Flow

11/21/2018

Done for all compilations.
We replace “freeze wrapper” 
with the testbench.
In the "board_spec.xml" 
file, we modify the 
"synthesize cmd" to link 
compilation to our custom 
"simulate.tcl" script.

Input HDL & QSYS files. 
OpenCL compiler execs our 
simulate.tcl script and 
removes non-simulation 
models.  Compile as usual.
Replace some files with 
custom ones (testbench)

Execute msim_setup link 
and set up simulation 
(much detail in signals, 
etc. 

Presenter
Presentation Notes
Here we provide details of the backend SimBSP flow. This is divided into 3 stages. Stage 1 (grey box):This is the operations done for any and all compilations. That is, we compile the kernel code, which results in a translation of the C code to HDL, and generation of system QSYS files that describes wrappers for this kernel HDL. It is this “kernel_system” that is used to talk to the BSP (“board.qsys”). A freeze wrapper is usually inserted between the “kernel_system” and BSP, which hold inputs and outputs constant while the kernel PR region is being programmed. In our work though, we will replace this freeze wrapper with our testbench. Stage 2 (Simulate.tcl):Once the HDL and QSYS files have been generated, the OpenCL compiler executes the “simulate.tcl” script. This script first takes the “kernel_system” from the previous stage and removes all modules that do not have simulation models. Such modules, e.g. system description ROM, do not affect the execution of the kernel itself and can thus be safely removed. Then, the qsys file is compiled for simulation using native Quartus commands. A new simulation directory is created and the resulting HDL files and scripts are then copied into it. Then, certain default files are replaced with our custom ones. This includes a testbench written specifically for OpenCL which has all the required interfaces. Stage 3 (msim_setup.tcl)Within ModelSim, users navigate to the simulation directory created above. The “msim_setup” is sourced and users can start the simulation using the command “ld”, which compiles and links the required HDL.



Boston University Slideshow Title Goes Here

Matrix Multiply Kernel Code

11/21/2018

#define SIZE 16

__kernel  void mmm(__global float* restrict a, __global float* restrict b, __global 

float* restrict c){

for (int i = 0; i < SIZE; i++){

for (int j =0; j < SIZE; j++){

float temp = 0;

for (int k =0; k < SIZE; k++){

temp += (a[i*SIZE+k] * b[k*SIZE+j]);

}

c[i*SIZE+j] = temp;

}

}

}

After linking to SimBSP, we 
compile the kernel as usual.
Since the compilation forks after 
generating HDL, i.e. to set up the 
sim environment, no .sof file is 
generated.

Presenter
Presentation Notes
In this talk, we use the example of a matrix multiplication code. We also show the front end for the SimBSP compilation flow. As we can see from the compilation, it is very simple. After linking to SimBSP (instead of the normal one, such as Gidel Proc10 or Nallatech), we compile the kernel as we normally would. Since the compilation forks after generating HDL, i.e. setting up the simulation environment instead of synthesis+fitting, no .sof (bitstream) file is generated. 



Boston University Slideshow Title Goes Here

Testbench: Interfaces

11/21/2018

Testbench OpenCL
System

clock
reset

cc_snoop
kernel_cra
kernel_irq

kernel_mem0

Presenter
Presentation Notes
Here we list the different types of interfaces that need to be handled by the testbench. Apart from the typical ones for clock and reset, we also have the following:CRA: used to write to, and read from, configuration registers. More details in this regards on the next slides. IRQ: used to signal to the host, via the PCIe controller, that the kernel has finished executing. Mem0: interface to the DRAM. The opencl system implements an arbiter to support requests from multiple Load Store Units in the system. CC_SNOOP: not used. 



Boston University Slideshow Title Goes Here

Testbench: Configuration Registers

11/21/2018

Testbench OpenCL
System

clock
reset

cc_snoop
kernel_cra
kernel_irq

kernel_mem0

Presenter
Presentation Notes
Table lists the addresses and kernel parameters that are stored in configuration registers. These registers are 64 bits wide, and the testbench can set the value of an entire register (2 32-bit parameters) every cycle using the kernel cra port.Once all configuration registers have been assigned required values, setting Bit 0 of the register at address 0x0 triggers the start of kernel execution. Apart from specifying the shape and size of workitems/work-groups, configuration registers are also used to store 64-bit pointers to off-chip memory for kernel arguments.Since the number of kernel arguments can vary for individual applications, addresses from 0x60 onwards can all be used for this purpose.



Boston University Slideshow Title Goes Here

Waveforms: Configuration

26

11/21/2018

Presenter
Presentation Notes
Here we show waveforms for setting up the values in the control registers.



Boston University Slideshow Title Goes Here

Waveforms: Configuration

27

11/21/2018

Address Bits [63:32] Bits [31:0] Value

0x28 Workgroup_Size Workgroup_Dimensions 00000001_00000001

0x30 Global_Size[1] Global_Size[0] 00000001_00000001

0x38 Number_of_Workgroups[0] Global_Size[2] 00000001_00000001

0x40 Number_of_Workgroups[2] Number_of_Workgroups[1] 00000001_00000001

0x48 Local_Size[1] Local_Size[0] 00000001_00000001

0x50 Global_Offset[0] Local_Size[2] 00000000_00000001

0x58 Global_Offset[2] Global_Offset[1] 00000000_00000000

0x60 Pointer “a” 00000000_40000000

0x68 Pointer “b” 00000000_80000000

0x70 Pointer “c” 00000000_C0000000

0x00 - Start (Bit 0) 00000000_00000001

Presenter
Presentation Notes
In this table, we shown the values given to control registers, and the order in which they are assigned. We assign 1 to all sizes and dimensions (since it is a single work item kernel), and 0 to all offsets. Since we have three parameters to the MMM kernel, we use addresses 0x60, 0x68 and 0x70 to set the pointer values for these kernel arguments. Once all values have been set, we set the start bit to 1.  



Boston University Slideshow Title Goes Here

Waveforms: Kernel Execution

11/21/2018

Start Finish

Interrupt 
signal to 

host

Data
Reuse 

Presenter
Presentation Notes
Here we show the execution of the entire system. The start and finish signal are indicated. Interrupt flag is also raised along with the finish signal.An important observation here is that while writes are frequent, reads happen in small bursts. This indicates that the compiler inferred opportunities of data reuse, and is utilizing local caches in the Load Store Unit modules to store certain values. 



Boston University Slideshow Title Goes Here

THANK YOU



Boston University Slideshow Title Goes Here

Programming Model?
This is an issue because OpenCL is not sufficiently expressive to allow 
programmer to explicitly express all Intel FPGA capabilities. Several alternatives:
Choice 1:  Program Intel FPGA as if it were a GPU
Rationale:  Since OpenCL maps well to GPUs, and the GPU model is a subset of 
the Intel FPGA model, and GPU code is efficient for many applications, this should 
be reasonable, if not perfect.
Problem:  Gives very poor performance

Choice 2:  Program Intel FPGA as if it were an Intel® FPGA
Rationale:  Although support is a subset of HDL support, there are Intel® FPGA-
specific extensions, including channels and embedded HDL.
Problem:  Gives very poor performance

Choice 3:  Program Intel FPGA as if were a single threaded CPU
This means:  Single work item/group AND single work group AND single kernel
Rationale:  Huh?
Rationale:  The Intel OpenCL compiler is REALLY GOOD – turn it loose!
Problems (solved here):  Long compile times, need systematic optimizations



Boston University Slideshow Title Goes Here

Optimizing OpenCL Kernels

 V1: Cache Optimized CPU Code
 CPU architecture resembles FPGAs more than GPUs

 V2: Typical FPGA Optimizations / Recommended Best Practices
 SWI kernels, Channels, Constants, Loop unrolling, Coalesced loops

 V3: Single Kernel Implementation
 Remove channels

 Channels isolate resources and prevent global optimizations
 Kernels are launched sequentially, potentially resulting in race conditions, 

deadlocks and high synchronization costs
 Instead, let Intel OpenCL compiler infer task parallelism within a single kernel

 Use code fragments that are tied to the same loop iterator but have no data 
dependencies

 Intel OpenCL compiler utilizes delay modules instead of blocking channels for 
synchronization of data paths which is more efficient



Boston University Slideshow Title Goes Here

Optimizing OpenCL Kernels, cont.
 V4: Infer Pipeline Registers as Registers

 Large arrays can be inferred as BRAMs instead of registers
 Rapidly increases resource usage due to memory replication to meet throughput

 Avoid using large variable arrays where possible
 Use scripts to generate and use individual variables

 V5: Explicit computations
 Provide as much detail as possible regarding the computation

 Even if it is an apparent suboptimal practice such as
 Un-coalescing loops to help infer access patterns
 Small constant arrays instead of single large one
 Intermediate variables for complex computations
 Manually unrolling a loop and specifying tree based computations using 

parenthesis 
 Extra kernel parameters that are pointers to the same memory space

 One per task
 manually guarantee no RAW data dependencies between tasks

 Helps the Intel OpenCL compiler infer the desired architecture with greater accuracy

V6: Avoid conditional statements e.g. if, else
 Use conditional assignments instead 



Boston University Slideshow Title Goes Here

Creating a New Interface 
11/21/2018

Presenter
Presentation Notes
Could be more cases for direct data but thus far, these are the three cases we have observed



Boston University Slideshow Title Goes Here

Creating a New Interface 
11/21/2018

Control Ports

Control Ports

 Consists of clock, resetn,
Stall and Valid ports

 Stall ports used by a basic
block to stall upstream
modules

 Valid ports used to stall
downstream basic blocks

Presenter
Presentation Notes
Could be more cases for direct data but thus far, these are the three cases we have observed



Boston University Slideshow Title Goes Here

Creating a New Interface 
11/21/2018

Control Ports
Load Store Unit Ports

Control Ports

 Consists of clock, resetn,
Stall and Valid ports

 Stall ports used by a basic
block to stall upstream
modules

 Valid ports used to stall
downstream basic blocks

Load Store Unit (LSU) Ports

 Consists of Avalon
interfaces to LSU modules

 LSU modules sink and
source data to compute
pipelines

 Remove LSU modules and
interface pipelines with
required data-buses

Presenter
Presentation Notes
Could be more cases for direct data but thus far, these are the three cases we have observed



Boston University Slideshow Title Goes Here

Creating a New Interface 
11/21/2018

Control Ports
Load Store Unit Ports
Feedback Ports

Control Ports

 Consists of clock, resetn,
Stall and Valid ports

 Stall ports used by a basic
block to stall upstream
modules

 Valid ports used to stall
downstream basic blocks

Load Store Unit (LSU) Ports

 Consists of Avalon
interfaces to LSU modules

 LSU modules sink and
source data to compute
pipelines

 Remove LSU modules and
interface pipelines with
required data-buses

Feedback Ports

 Used to select between
initial and steady state
values of state registers

 Hardwired – User cannot
modify at run time

 Paired output-input ports
connect to each other while
individual inputs have a
constant value

Presenter
Presentation Notes
Could be more cases for direct data but thus far, these are the three cases we have observed



Boston University Slideshow Title Goes Here

Creating a New Interface 
11/21/2018

Control Ports
Load Store Unit Ports
Feedback Ports
Don’t Care Ports

Control Ports

 Consists of clock, resetn,
Stall and Valid ports

 Stall ports used by a basic
block to stall upstream
modules

 Valid ports used to stall
downstream basic blocks

Load Store Unit (LSU) Ports

 Consists of Avalon
interfaces to LSU modules

 LSU modules sink and
source data to compute
pipelines

 Remove LSU modules and
interface pipelines with
required data-buses

Feedback Ports

 Used to select between
initial and steady state
values of state registers

 Hardwired – User cannot
modify at run time

 Paired output-input ports
connect to each other while
individual inputs have a
constant value

Don’t Care Ports 
 Typically correspond to a variety 

of logic such as 
 Parallel control and data paths

that do not interact with
compute pipelines
 Logic that interfaces load store

unit (LSU) modules e.g.
address computation

 Since we remove LSU modules, 
and since there is no interaction 
with compute pipelines, we can 
leave these pins unconnected

Presenter
Presentation Notes
Could be more cases for direct data but thus far, these are the three cases we have observed



Boston University Slideshow Title Goes Here

Creating a New Interface 
11/21/2018

Control Ports
Load Store Unit Ports
Feedback Ports
Don’t Care Ports

Control Ports

 Consists of clock, resetn,
Stall and Valid ports

 Stall ports used by a basic
block to stall upstream
modules

 Valid ports used to stall
downstream basic blocks

Load Store Unit (LSU) Ports

 Consists of Avalon
interfaces to LSU modules

 LSU modules sink and
source data to compute
pipelines

 Remove LSU modules and
interface pipelines with
required data-buses

Feedback Ports

 Used to select between
initial and steady state
values of state registers

 Hardwired – User cannot
modify at run time

 Paired output-input ports
connect to each other while
individual inputs have a
constant value

Don’t Care Ports 
 Typically correspond to a variety 

of logic such as 
 Parallel control and data paths

that do not interact with
compute pipelines
 Logic that interfaces load store

unit (LSU) modules e.g.
address computation

 Since we remove LSU modules, 
and since there is no interaction 
with compute pipelines, we can 
leave these pins unconnected

Direct Ports
(not shown)

 Direct Kernel Input : if the kernel
has a constant input. Appears as a
N bit input to the kernel based on
variable type

 Direct Data : Data is available as a
direct bus. Typically occurs when
compiler moves LSU unit out of the
basic block due to:
 outer loop variable not used in

index/address computations
 Problem size is too small

 Initial Values

Presenter
Presentation Notes
Could be more cases for direct data but thus far, these are the three cases we have observed



Boston University Slideshow Title Goes Here

Creating a New Interface 
11/21/2018

Control Ports
Load Store Unit Ports
Feedback Ports
Don’t Care Ports

Control Ports

 Consists of clock, resetn,
Stall and Valid ports

 Stall ports used by a basic
block to stall upstream
modules

 Valid ports used to stall
downstream basic blocks

Load Store Unit (LSU) Ports

 Consists of Avalon
interfaces to LSU modules

 LSU modules sink and
source data to compute
pipelines

 Remove LSU modules and
interface pipelines with
required data-buses

Feedback Ports

 Used to select between
initial and steady state
values of state registers

 Hardwired – User cannot
modify at run time

 Paired output-input ports
connect to each other while
individual inputs have a
constant value

Don’t Care Ports 
 Typically correspond to a variety 

of logic such as 
 Parallel control and data paths

that do not interact with
compute pipelines
 Logic that interfaces load store

unit (LSU) modules e.g.
address computation

 Since we remove LSU modules, 
and since there is no interaction 
with compute pipelines, we can 
leave these pins unconnected

Direct Ports
(not shown)

 Direct Kernel Input : if the kernel
has a constant input. Appears as a
N bit input to the kernel based on
variable type

 Direct Data : Data is available as a
direct bus. Typically occurs when
compiler moves LSU unit out of the
basic block due to:
 outer loop variable not used in

index/address computations
 Problem size is too small

 Initial Values

Presenter
Presentation Notes
Could be more cases for direct data but thus far, these are the three cases we have observed


	SimBSP�Enabling RTL Simulation�for Intel FPGA OpenCL Kernels
	The Intel OpenCL Toolflow
	Code Development Challenges
	Project Overview
	Augmentations
	Augmentation 1
	Apply optimization methods to parallel computing dwarfs
	Characterization of Optimizations
	Comparison with Different Platforms
	Augmentation 2
	Usage of Compute Pipeline HDL
	Finding Our Source File
	Finding Our Code Within the File
	Results
	Augmentation 3
	Emulation
	Emulation
	Reports
	Reports
	What is a BSP?
	SimBSP
	SimBSP �Compilation �Flow
	Matrix Multiply Kernel Code
	Testbench: Interfaces
	Testbench: Configuration Registers
	Waveforms: Configuration
	Waveforms: Configuration
	Waveforms: Kernel Execution
	Thank You
	Programming Model?
	Optimizing OpenCL Kernels
	Optimizing OpenCL Kernels, cont.
	Creating a New Interface 
	Creating a New Interface 
	Creating a New Interface 
	Creating a New Interface 
	Creating a New Interface 
	Creating a New Interface 
	Creating a New Interface 

