Bringing FPGAs to HPC Production Systems and Codes

Christian Plessl

Paderborn Center for Parallel Computing & Department of Computer Science

Paderborn University, Germany

R2HC Workshop – Nov 11, 2018 – Supercomputing 2018
State of the FPGA Union
Highly Capable FPGA Devices

Example: Intel Stratix 10 GX2800 FPGA

- > 900,000 configurable logic blocks
 - up to 4 Boolean functions of 8 inputs
- 5760 hardened arithmetic units (DSP)
 - fixed point and IEEE 754 SP floating-point
- > 11,000 independent SRAM blocks
 - width/depth/ports highly configurable
- integrated DDR4-2666 memory controllers
- 96 serial transceivers, up to 28.3 Gbps
- typically about 300-600MHz
- power consumption 50-225W

100 TERRA-OPS

10 single-precision TFLOPS

20 TB/s internal SRAM bandwidth (full duplex)

300 TB/s communication bandwidth (full duplex)

up to 80 GFLOPS/W
Increasingly Productive FPGA Tools

• Traditional EDA Software
 – hardware synthesis from VHDL, Verilog
 – simulators, place and route

• General high-level synthesis tools
 – generation of complete accelerators or components from OpenCL or C/C++ with annotations (Intel OpenCL SDK for FPGAs, Xilinx SDAccel)

• Domain-specific tools for important niches
 – networking (P4)
 – digital signal processing (MATLAB/Simulink toolboxes)
 – deep learning inference (Xilinx xDNN, Intel DLA)

• Libraries and ready-to-use applications

 mature but much too cumbersome for general HPC
 higher productivity and increasingly good results
 even higher productivity but narrow scope
 almost inexistent for HPC
Opportunities for FPGAs

- **Compute-bound applications**
 - customization of operations and data formats
 - new methods considering FPGA architecture

- **Memory-bound applications**
 - unrolling and data flow computing with very deep pipelines
 - application-specific, distributed memory architectures

- **Latency-bound applications**
 - speculative or redundant execution

- **I/O-bound applications**
 - on-board network interfaces
 - direct FPGA-to-FPGA communication
Demonstrated Benefits for Proof-of-Concept Codes

• Examples from important HPC domains
 – Linear algebra: CG solver for sparse linear equation systems [1]
 ▪ 20-40x faster than CPU
 – Geophysics: 3D convolution [1]
 ▪ 70x faster than CPU, 14x faster than GPU
 – Molecular dynamics [2]
 ▪ 80x faster than NAMD (single core) CPU
 – Bioinformatics (BLAST) [3]
 ▪ 5x faster than optimized, parallel CPU implementation
 – Climate modeling [4]
 ▪ 4 FPGAs 19x faster than two socket CPU, 7x faster than GPU

What's Missing to Establish FPGAs in HPC?

• Hardware
 – move FPGAs from lab to HPC production systems

• Software
 – (open source) HPC applications and libraries using FPGAs
 – HPC-specific development tools & runtime environment

• Community
 – currently: FPGA ∩ HPC ≈ ∅
 – workshops, conferences, journals, user meetings

• Developer training
 – materials addressing HPC developers and CSE
 – best practices and design patterns
FPGAs at the Paderborn Center for Parallel Computing (PC²)
PC² – Competence Center for Innovative HPC

• Scientific institute of Paderborn University
• Service provider and research institution
 – provision HPC infrastructure and services for computational sciences
 – develop methods and tools for simulation and modeling in cooperation with computational scientists
 – perform computing systems research for energy-efficient HPC, emphasis on heterogeneous and accelerated computing with FPGAs
• Long track record in exploring emerging and off the beaten path technologies
Long Experience in FPGA Research and Systems

- Several generations of research groups working with FPGAs in CS and EE
- Multi-year preparation for deployment of FPGAs in production HPC systems

<table>
<thead>
<tr>
<th>System</th>
<th>Inst</th>
<th>CPU</th>
<th>FPGA</th>
<th>Toolflow</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxeler MPC-C 2012</td>
<td>Xeon X5660</td>
<td>4x Xilinx Virtex-6 SX475T</td>
<td>MaxCompiler</td>
<td>MAX3 FPGA card, MaxRing interconnect</td>
<td></td>
</tr>
<tr>
<td>Nallatech 385A</td>
<td>Xeon E5-1260v2</td>
<td>Intel Arria 10 GX1150</td>
<td>Intel OpenCL</td>
<td>Nallatech 385A FPGA card</td>
<td></td>
</tr>
<tr>
<td>IBM S812L 2016</td>
<td>POWER8</td>
<td>Xilinx Virtex-7 VX690T</td>
<td>Xilinx OpenCL</td>
<td>AlphaData 7V3 FPGA board</td>
<td></td>
</tr>
<tr>
<td>Micron Workstation</td>
<td>Intel i7-5930K</td>
<td>Xilinx Kintex-7 UltrascaleKU115</td>
<td>Xilinx OpenCL</td>
<td>Pico AC-510 FPGA card with Hybrid-memory cube</td>
<td></td>
</tr>
<tr>
<td>XCL cluster 2017</td>
<td>Xeon E5-1630v4</td>
<td>Xilinx Virtex-7 VX690T + Xilinx Kintex Ultrascale KU115</td>
<td>Xilinx OpenCL</td>
<td>8-nodes, 1 AlphaData 7V3 and 1 8K5 FPGA cards each</td>
<td></td>
</tr>
<tr>
<td>HARP cluster 2017</td>
<td>Xeon E5-v4</td>
<td>Intel BDW+FPGA hybrid CPU/FPGA</td>
<td>Intel OpenCL, HDL</td>
<td>10-node cluster with 1 BDW+FPGA processor per node</td>
<td></td>
</tr>
<tr>
<td>Noctua Cluster 2018</td>
<td>Xeon SKL 6148</td>
<td>Intel Stratix 10 GX2800</td>
<td>Intel OpenCL</td>
<td>16 nodes, 2 Nallatech 520N FPGA cards each</td>
<td></td>
</tr>
</tbody>
</table>

selected FPGA systems at PC² lab testbed production
Relevance of FPGAs to PC²

• Noctua project 2018-22
 – research grant for next generation HPC system (10M€)
 and data center building (15M€)

• FPGAs play a strategic role our roadmap
 – exploration of FPGAs in production HPC machines
 – port libraries and real scientific applications to FPGAs
 – work on parallel FPGA implementations (MPI, PGAS)
 – study performance and energy trade-offs

• Investment complemented by research, development and support efforts
 – infrastructure accessible for free for researchers in Germany
 – international collaborations possible and desired, negotiated on case-by-case basis
• Cray CS500 Cluster System
 • 256 CPU nodes
 – 2 x Intel Xeon Skylake Gold 6148, 2 x 20 Cores, 2.4GHz
 – 192 GB RAM
 • 16 FPGA nodes
 – 2 x Intel Stratix 10 GX2800 (Nallatech 520N boards)
 PCIe 3.0 x16, 4 x 8GB DDR4 channels
 – per board 4 QSFP28 ports
 – currently worldwide biggest and most modern FPGA installation in academic HPC system
• 100 Gbps Intel Omni-Path network
• 700 TB Cray ClusterStor L300N storage system

Early access since 9/2018, general availability est. 12/2018
Selected Current Work
Our "Bringing FPGA to HPC" Strategy

Leverage
- target applications contributing high load to our HPC clusters
- focus on parts FPGAs are known to have potential
- widely-usable infrastructure improvements

Application Competence
- in-depth application and method knowledge is key (selection of right methods and benchmark applications)
- co-development with work with code owners

Sustainability
- protect results form abandonment and bitrot
- release as open source, build reusable libraries
Development Flows and System Integration

• Focus on Intel/Xilinx OpenCL toolflows for FPGA
 – encapsulates applications in common infrastructure (some forward compatibility, security)
 – familiarity of some HPC developers with OpenCL or CUDA
 – abstraction level allows for code co-development and maintenance by application owners

• Automated provisioning of different SDK and BSP versions through Slurm
 – interactive and batch use of FPGA nodes
 – job submission with required BSP information: scheduling to FPGAs with requested BSP if present, or re-configuration and reboot
 – simple in theory, but fragility of BSP and driver reconfiguration requires careful handling of edge cases and self-tests
• Time-Domain Nodal DG solver for Maxwell's Equations
 – in-house code by group of Prof. Jens Förstner
 – based on MIDG2 by T. Warburton
 (https://github.com/tcew/MIDG2)
 – applications: nanophotonics and astrophysics

• State of the art method
 – high numerical quality and stability
 – unstructured 3D mesh
 ▪ adapted to material boundaries and regions of interest
 ▪ non-linear materials and multi-physics
 ▪ no global stiffness matrix required

• Suitability for FPGAs
 – high arithmetic intensity, can be controlled by polynomial order
 – local computations, favorable computation to communication ratio
 – suitable for FP32 computation

Target Application: MIDG2*
MIDG2* FPGA Implementation

- Method works on tetrahedral meshes
 - E and H field is defined at nodal points in volume and at surface
 - typ. mesh sizes 10^3–10^6 elements

- Algorithm divided in three kernels running on FPGA
 - Volume kernel
 - Surface kernel
 - Runge-Kutta kernel

- Decoupling of memory accesses
 - overlapping indirect memory access for element $i+1$ with processing element i
• First phase: Arria 10 GX1150 vs. 2x Xeon E5-2670v1
 – two main kernels with >100 GFLOP/s design points
 – using local RAM as buffers and constant memory
 – achieving high off-chip bandwidth through decoupled access
 – FPGA outperforms dual-socket Xeon by ~2x

• Current phase
 – Stratix 10 port functional, with performance headroom
 – scaling to 32 FPGAs with host transfer + MPI
 – working on direct FPGA-to-FPGA communication

[Kenter et al., OpenCL-based FPGA Design to Accelerate the Nodal Discontinuous Galerkin Method for Unstructured Meshes, FCCM’18]
• **CP2K**
 – widely used open-source code for molecular dynamics
 – comprises many methods and usage modes
 – cooperation with Prof. Thomas D. Kühne (Theor. Chemistry)

• **Promising components for FPGAs**
 – approximate linear algebra for linear scaling electronic structure methods (small dense and large sparse matrices)
 – 3D FFT for efficient computation of electrostatic interaction or orbital representations in periodic structures
Approximate Linear Algebra suitable for FPGAs

• Iterative computation of approximate inverse p-th root of symmetric, positive definite matrix A

$$B = A^{-1/p} \quad B_{k+1} = \frac{1}{p}(p + 1)B_k - B_k^p + 1 A$$

– well suited for low precision computing
– initial convergence not not influenced by precision

• FPGA opportunities
– custom floating-point formats
– mixed precision implementation
– reduction of data transfers from/to accelerator

• Status
– low-precision DGEMM for Xilinx FPGAs (>300 GFLOPS FP16)
– Stratix 10 still lots >5x headroom (clock speed, resource utilization, ...)

• Use cases for dedicated network between FPGAs in HPC
 – OpenCL kernels that communicate via channels between cards
 – faster and lower latency connection than MPI via host (avoid PCIe bottleneck)
 – application-specific communication topologies and patterns

• Nallatech 520N card and OpenCL SDK for 18.0.1
 – 4 QSFP+28 network ports per card with up to 100G (current BSP limitation 40G)
 – PCIe 3.0 x16 (current BSP limitation x8)
Promoting Reuse

- All our developments will be released as open-source

- Dense linear algebra
 - development of library functions for matrix multiply (and later convolutions) in progress
 - contribution to libXMMS planned

- Sparse linear algebra
 - developed new massively parallel algorithm for approximate inverse p-th roots of sparse matrices, can be combined with approximate dense inversions
 - integration in libDBCSR in progress

- Fast Fourier Transforms
 - single-precision 3D FFT (16³, 32³, 64³), optimization and further versions on-going
 - proof-of-concept integration in CP2K completed and validated
 - create own FFT library, evaluate feasibility of MKL/FFTW-compatible wrappers
Lessons Learned and Conclusion
Lessons: Procurement of HPC Systems with FPGAs

- You will live on the leading bleeding edge

- FPGAs are extremely exotic for HPC OEMs
 - bid evaluation, benchmarks, and acceptance criteria may ruin the complete deal

- We fared well with procuring a tested solution rather than components
 - makes OEM accountable for overall solution
 - validation of FPGA card in specific server, drivers, toolflow, BSP, workload manager integration
 - handling multi-user/application/tool version/BSPs is still challenging

- There will be a gap between specification and reality
 - its a long chain: FPGA device, board, BSP, software tools, driver, ...

- Substantial lead time from FPGA device/card announcement to mature SKU
• The FPGA ecosystem has substantially improved
 – FPGA can compete head to head with other architectures
 – high-level toolflows finally provide productivity and efficiency (~30% of FPL'17 papers use HLS)

• The time is right to move from proof of concept to actual, parallel HPC applications
 – about 40% of FPL'17 paper target data center/HPC topics
 – field is still stuck in proof of concept case studies
 – publish your work as open-source applications and libraries

• In addition there is still a need to improve the foundations
 – stability and sustainability of software and hardware stack
 – better support for HPC languages and libraries (Fortran, OpenMP, OpenACC, MPI)

• Join us in the effort or bringing FPGAs to HPC