

Bringing FPGAs to HPC Production Systems and Codes

Christian Plessl

Paderborn Center for Parallel Computing & Department of Computer Science

Paderborn University, Germany

R2HC Workshop – Nov 11, 2018 – Supercomputing 2018

State of the FPGA Union

Highly Capable FPGA Devices

Example: Intel Stratix 10 GX2800 FPGA

- > 900,000 configurable logic blocks
 - up to 4 Boolean functions of 8 inputs
- 5760 hardened arithmetic units (DSP)
 - fixed point and IEEE 754 SP floating-point
- > 11,000 independent SRAM blocks
 - width/depth/ports highly configurable
- integrated DDR4-2666 memory controllers
- 96 serial transceivers, up to 28.3 Gbps
- typically about 300-600MHz
- power consumption 50-225W

100 TERRA-OPS

10 single-precision TFLOPS

20 TB/s internal SRAM bandwidth (full duplex)

300 TB/s communication bandwidth (full duplex)

up to 80 GFLOPS/W

Increasingly Productive FPGA Tools

- Traditional EDA Software
 - hardware synthesis from VHDL, Verilog
 - simulators, place and route
- General high-level synthesis tools
 - generation of complete accelerators or components from OpenCL or C/C++ with annotations (Intel OpenCL SDK for FPGAs, Xilinx SDAccel)
- Domain-specific tools for important niches
 - networking (P4)
 - digital signal processing (MATLAB/Simulink toolboxes)
 - deep learning inference (Xilinx xDNN, Intel DLA)
- Libraries and ready-to-use applications

mature but much too cumbersome for general HPC

higher productivity and increasingly good results

even higher productivity but narrow scope

almost inexistent for HPC

Opportunities for FPGAs

- Compute-bound applications
 - customization of operations and data formats
 - new methods considering FPGA architecture
- Memory-bound applications
 - unrolling and data flow computing with very deep pipelines
 - application-specific, distributed memory architectures
- Latency-bound applications
 - speculative or redundant execution
- I/O-bound applications
 - on-board network interfaces
 - direct FPGA-to-FPGA communication

Demonstrated Benefits for Proof-of-Concept Codes

- Examples from important HPC domains
 - Linear algebra: CG solver for sparse linear equation systems [1]
 - 20-40x faster than CPU
 - Geophysics: 3D convolution [1]
 - 70x faster than CPU, 14x faster than GPU
 - Molecular dynamics [2]
 - 80x faster than NAMD (single core) CPU
 - Bioinformatics (BLAST) [3]
 - 5x faster than optimized, parallel CPU implementation
 - Climate modeling [4]
 - 4 FPGAs 19x faster than two socket CPU, 7x faster than GPU

[1] O. Lindtjorn, R. G. Clapp, O. Pell, O. Mencer, M. J. Flynn, and H. Fu. Beyond traditional microprocessors for geoscience high-performance computing applications. IEEE Micro, Mar.–Apr. 2011.

[2] M. Chiu and M. C. Herbordt. Molecular dynamics simulations on high-performance reconfigurable computing systems. ACM TRETS Nov. 2010.

[3] A. Mahram, and M. C. Herbordt. NCBI BLASTP on High-Performance Reconfigurable Computing System. ACM TRETS Jan 2015.

[4] L. Gan, H. Fu, W. Luk et. al. Solving the Global Atmospheric Equations through Heterogeneous Reconfigurable Platforms. ACM TRETS Mar. 2015

What's Missing to Establish FPGAs in HPC?

- Hardware
 - move FPGAs from lab to HPC production systems
- Software
 - (open source) HPC applications and libraries using FPGAs
 - HPC-specific development tools & runtime environment
- Community
 - − currently: FPGA \cap HPC ≈ Ø
 - workshops, conferences, journals, user meetings
- Developer training
 - materials addressing HPC developers and CSE
 - best practices and design patterns

FPGAs at the Paderborn Center for Parallel Computing (PC²)

PC² – Competence Center for Innovative HPC

- Scientific institute of Paderborn University
- Service provider and research institution
 - provision HPC infrastructure and services for computational sciences
 - develop methods and tools for simulation and modeling in cooperation with computational scientists
 - perform computing systems research for energyefficient HPC, emphasis on heterogeneous and accelerated computing with FPGAs
- Long track record in exploring emerging and off the beaten path technologies

Long Experience in FPGA Research and Systems

- Several generations of research groups working with FPGAs in CS and EE
- Multi-year preparation for deployment of FPGAs in production HPC systems

System	Inst	CPU	FPGA	Toolflow	Properties
Maxeler MPC-C	2012	Xeon X5660	4x Xilinx Virtex-6 SX475T	MaxCompiler	MAX3 FPGA card, MaxRing interconnect
Nallatech 385A	2016	Xeon E5-1260v2	Intel Arria 10 GX1150	Intel OpenCL	Nallatech 385A FPGA card
IBM S812L	2016	POWER8	Xilinx Virtex-7 VX690T	Xilinx OpenCL	AlphaData 7V3 FPGA board
Micron Workstation	2016	Intel i7-5930K	Xilinx Kintex-7 UltrascaleKU115	Xilinx OpenCL	Pico AC-510 FPGA card with Hybrid- memory cube
XCL cluster	2017	Xeon E5-1630v4	Xilinx Virtex-7 VX690T + Xilinx Kintex Ultrascale KU115	Xilinx OpenCL	8-nodes, 1 AlphaData 7V3 and 1 8K5 FPGA cards each
HARP cluster	2017	Xeon E5-v4	Intel BDW+FPGA hybrid CPU/FPGA	Intel OpenCL, HDL	10-node cluster with 1 BDW+FPGA processor per node
Noctua Cluster	2018	Xeon SKL 6148	Intel Stratix 10 GX2800	Intel OpenCL	16 nodes, 2 Nallatech 520N FPGA cards each

Relevance of FPGAs to PC²

- Noctua project 2018-22
 - research grant for next generation HPC system (10M€) and data center building (15M€)
- FPGAs play a strategic role our roadmap
 - exploration of FPGAs in production HPC machines
 - port libraries and real scientific applications to FPGAs
 - work on parallel FPGA implementations (MPI, PGAS)
 - study performance and energy trade-offs
- Investment complemented by research, development and support efforts
 - infrastructure accessible for free for researchers in Germany
 - international collaborations possible and desired, negotiated on case-by-case basis

Noctua HPC System (Phase 1)

- Cray CS500 Cluster System
- 256 CPU nodes
 - 2 x Intel Xeon Skylake Gold 6148, 2 x 20 Cores, 2.4GHz
 - 192 GB RAM
- 16 FPGA nodes
 - 2 x Intel Stratix 10 GX2800 (Nallatech 520N boards)
 PCIe 3.0 x16, 4 x 8GB DDR4 channels
 - per board 4 QSFP28 ports
 - currently worldwide biggest and most modern FPGA installation in academic HPC system
- 100 Gbps Intel Omni-Path network
- 700 TB Cray ClusterStor L300N storage system

Early access since 9/2018, general availability est. 12/2018

Selected Current Work

Our "Bringing FPGA to HPC" Strategy

Leverage	 target applications contributing high load to our HPC clusters focus on parts FPGAs are known to have potential widely-usable infrastructure improvements
Application Competence	 in-depth application and method knowledge is key (selection of right methods and benchmark applications) co-development with work with code owners

Sustainability

- protect results form abandonment and bitrot
- release as open source, build reusable libraries

Development Flows and System Integration

- Focus on Intel/Xilinx OpenCL toolflows for FPGA
 - encapsulates applications in common infrastructure (some forward compatibility, security)
 - familiarity of some HPC developers with OpenCL or CUDA
 - abstraction level allows for code co-development and maintenance by application owners
- Automated provisioning of different SDK and BSP versions through Slurm
 - interactive and batch use of FPGA nodes
 - job submission with required BSP information: scheduling to FPGAs with requested BSP if present, or re-configuration and reboot
 - simple in theory, but fragility of BSP and driver reconfiguration requires careful handling of edge cases and self-tests

OpenCL

Target Application: MIDG2*

- Time-Domain Nodal DG solver for Maxwell's Equations
 - in-house code by group of Prof. Jens Förstner
 - based on MIDG2 by T. Warburton (https://github.com/tcew/MIDG2)
 - applications: nanophotonics and astrophysics
- State of the art method
 - high numerical quality and stability
 - unstructured 3D mesh
 - adapted to material boundaries and regions of interest
 - non-linear materials and multi-physics
 - no global stiffness matrix required

- Suitability for FPGAs
 - high arithmetic intensity, can be controlled by polynomial order
 - local computations, favorable computation to communication ratio
 - suitable for FP32 computation

MIDG2* FPGA Implementation

- Method works on tetrahedral meshes
 - E and H field is defined at nodal points in volume and at surface
 - typ. mesh sizes 10³–10⁶ elements
- Algorithm divided in three kernels running on FPGA
 - Volume kernel
 - Surface kernel
 - Runge-Kutta kernel
- Decoupling of memory accesses
 - overlapping indirect memory access for element i+1 with processing element i

MIDG2* Early Results

- First phase: Arria 10 GX1150 vs. 2x Xeon E5-2670v1
 - two main kernels with >100 GFLOP/s design points
 - using local RAM as buffers and constant memory
 - achieving high off-chip bandwidth through decoupled access
 - FPGA outperforms dual-socket Xeon by ~2x

- Kenter et al., OpenCL-based FPGA Design to Accelerate the Nodal Discontinuous Galerkin Method for Unstructured Meshes, FCCM'18]
 - Stratix 10 port functional, with performance headroom
 - scaling to 32 FPGAs with host transfer + MPI
 - working on direct FPGA-to-FPGA communication

Target Application: CP2K

- CP2K
 - widely used open-source code for molecular dynamics
 - comprises many methods and usage modes
 - cooperation with Prof. Thomas D. Kühne (Theor. Chemistry)
- Promising components for FPGAs
 - approximate linear algebra for linear scaling electronic structure methods (small dense and large sparse matrices)
 - <u>3D FFT</u> for efficient computation of electrostatic interaction or orbital representations in periodic structures

network of hydrogen bonds in water

Approximate Linear Algebra suitable for FPGAs

 Iterative computation of approximate inverse pth root of symmetric, positive definite matrix A

$$\mathbf{B} = \mathbf{A}^{-1/p} \qquad \mathbf{B}_{k+1} = \frac{1}{2} \left((p+1)\mathbf{B}_k - \mathbf{B}_k^{p+1} \mathbf{A} \right)$$

- well suited for low precision computing
 initial convergence not not influenced by precision
- FPGA opportunities
 - custom floating-point formats
 - mixed precision implementation
 - reduction of data transfers from/to accelerator
- Status
 - low-precision DGEMM for Xilinx FPGAs (>300 GFLOPS FP16)
 - Stratix 10 still lots >5x headroom (clock speed, resource utilization, ...)

approximation error for custom floating point formats

$$\left|B_{k}-A^{-1/2}\right|_{F} = \sqrt{\sum_{i=1}^{N}\sum_{j=1}^{N}\left|b_{ij}-\alpha_{ij}\right|^{2}}$$

error metric (Frobenius norm)

- Richters, Lass, Walther, Plessl, Kühne: A General Algorithm to Calculate the Inverse Principal p-th Root of Symmetric Positive Definite Matrices. Communications in Computational Physics, 2018.
- Lass, Kühne, Plessl: Using Approximate Computing for the Calculation of Inverse Matrix p-th Roots. IEEE Embedded Systems Letters. 2018.

Dedicated Network between FPGAs

- Use cases for dedicated network between FPGAs in HPC
 - OpenCL kernels that communicate via channels between cards
 - faster and lower latency connection than MPI via host (avoid PCIe bottleneck)
 - application-specific communication topologies and patterns
- Nallatech 520N card and OpenCL SDK for 18.0.1
 - 4 QSFP+28 network ports per card with up to 100G (current BSP limitation 40G)
 - PCIe 3.0 x16 (current BSP limitation x8)

Promoting Reuse

- All our developments will be released as open-source
- Dense linear algebra
 - development of library functions for matrix multiply (and later convolutions) in progress
 - contribution to libXMMS planned
- Sparse linear algebra
 - developed new massively parallel algorithm for approximate inverse p-th roots of sparse matrices, can be combined with approximate dense inversions
 - integration in libDBCSR in progress
- Fast Fourier Transforms
 - single-precision 3D FFT (16³, 32³, 64³), optimization and further versions on-going
 - proof-of-concept integration in CP2K completed and validated
 - create own FFT library, evaluate feasibility of MKL/FFTW-compatible wrappers

Lessons Learned and Conclusion

Lessons: Procurement of HPC Systems with FPGAs

• You will live on the leading bleeding edge

- FPGAs are extremely exotic for HPC OEMs
 - bid evaluation, benchmarks, and acceptance criteria may ruin the complete deal
- We fared well with procuring a tested solution rather than components
 - makes OEM accountable for overall solution
 - validation of FPGA card in specific server, drivers, toolflow, BSP, workload manager integration
 - handling multi-user/application/tool version/BSPs is still challenging
- There will be a gap between specification and reality
 - its a long chain: FPGA device, board, BSP, software tools, driver, ...
- Substantial lead time from FPGA device/card announcement to mature SKU

Conclusions

- The FPGA ecosystem has substantially improved
 - FPGA can compete head to head with other architectures
 - high-level toolflows finally provide productivity and efficiency (~30% of FPL'17 papers use HLS)
- The time is right to move from proof of concept to actual, parallel HPC applications
 - about 40% of FPL'17 paper target data center/HPC topics
 - field is still stuck in proof of concept case studies
 - publish your work as open-source applications and libraries
- In addition there is still a need to improve the foundations
 - stability and sustainability of software and hardware stack
 - better support for HPC languages and libraries (Fortran, OpenMP, OpenACC, MPI)
- Join us in the effort or bringing FPGAs to HPC

christian.plessl@uni-paderborn.de https://pc2.uni-paderborn.de Twitter: @plessl // @pc2_upb