Porting a GAMESS Computational Chemistry Kernel to FPGAs

Uma Klaassen — University of Texas at El Paso

Shirley Moore — Oak Ridge National Lab

Mark S. Gordon , Kristopher Keipert — lowa State University
Jeffrey Vetter , Seyong Lee — Oak Ridge National Lab

1. Motivation

Additional effort invested into integrating FPGA device programming to existing
workflows is significant for accelerating compute intensive kernels.

Writing code for scientific applications in HDLs (Hardware Description Languages)
Is complex.

The provides easier FPGA programmability.
« OpenARC translates OpenACC directive based code into OpenCL optimized for FPGAs.
« The Intel OpenCL SDK converts OpenCL code to FPGA executable code.

OpenACC and other directive based programming models hide low level language
complexities.

http://ft.ornl.gov/research/openarc
http://ft.ornl.gov/research/openarc

2. Background

We port a GAMESS kernel to FPGA enabled machines using OpenARC and
evaluate the performance results.

GAMESS computational chemistry kernel contains the Hartree-Fock procedure.

The GAMESS-SIMINT Hartree-Fock quantum chemistry method computations
« Compute molecular properties
« A starting point for higher accuracy, for more computationally demanding methods.

The computational bottleneck of the Hartree-Fock procedure
« Construction of the Fock matrix.
« Requires computation of many electron repulsion integrals (ERISs).

The SIMINT integral package is a highly vectorized, high performance implement
ation of the Obara-Saika ERI evaluation method.

3. Methodology

OpenARC takes only C code as input.

We translated the GAMESS-SIMGMS kernel to pure C code by hand.

We then inserted OpenACC directives to parallelize the code.

We used OpenARC to transform the code into OpenCL optimized for FPGAs.

Intel SDK for OpenCL compiles the code to an FPGA executable.

GAMESS GAMESS GAMLSS
SIMINT ST | SMINT |
ce+i 0)] ' L R | coicr |
i Cponast ‘ — ; Altera .
SAMGAAS + Comoie W - ikl o Y (s SIMGMS
10 Cpenadd) IC, Co+ Hiat Quartus —_— 1 Hoar code
utL v i \' (330) FOpercLkemey) 0ED FPGA aswculatio
Cranan D-wver FORTSANG Or (FORTRAN)
) Driver
T e e ~y ‘ -y S ‘ ‘ ‘
— R et —RET N — =
wolrwe
it J w :
Outaut Outpis " dutput

4. Results

Figure 1 compares execution times of the kernel with increasing problem size.

Problem size is the number of basis set functions, on a Nallatech Stratix V FPGA accelerator
board and on an Intel(R) Xeon(R) E5520 CPU.

Figure 2 indicates the speedup achieved for different problem sizes.
We achieve up to 9.5X speedup on the FPGA.

The tested FPGA (Stratix V) does not contain dedicated floating point cores but the floating
point units are synthesized from existing building blocks.

10
9 s
.. 8 -
100 . /
- ceeeedpecas CPU time (s) o ? 6 /
P creeomeess FPGA time(s) v g /
£ & 4 P
g w0 }b— e e 3 ~—
............ 2
........... 1
-
0
1 " : : : : 30 40 50 60 70 80 90 100 110

40 50 60 70 80 90 100 110 Problem size

Problem size (basis functions)

Figure 1: Runtime on FPGA vs. CPU (logarithmic scale). Figure 2: Speedup obtained on FPGA vs. CPU.

5. Future/Ongoing work

We plan to measure the speedup on the newer Nallatech Arria 10, which has
hardened floating point units and thus offers higher floating point performance.

We will also use the Intel SDK Quartus power estimation tool to estimate power
consumption and will compare power and energy consumption of the CPU and

FPGA implementations.

10
9 A
»
100 8 / /
----- o+ CPU time (5) / /'
= w2 = 6
@ seessieses FPGA time(s) =
£ T s ~
E - &, e
Eﬂ' 10 » — /
. et 3
o et 2
e 1
_— : 0 T T T T T T T 1
1 . T T T T T 1 30 40 50 60 70 80 90 100 110
40 50 60 70 80 90 100 110 .
Problem size

Problem size (basis functions)
Figure 1: Runtime on FPGA vs. CPU (logarithmic scale). Figure 2: Speedup obtained on FPGA vs. CPU.

Questions?

Thank you!

