
 Porting a GAMESS Computational Chemistry Kernel to FPGAs

 Uma Klaassen – University of Texas at El Paso

Shirley Moore – Oak Ridge National Lab

Mark S. Gordon , Kristopher Keipert – Iowa State University

Jeffrey Vetter , Seyong Lee – Oak Ridge National Lab

1. Motivation

• Additional effort invested into integrating FPGA device programming to existing

 workflows is significant for accelerating compute intensive kernels.

• Writing code for scientific applications in HDLs (Hardware Description Languages)

 is complex.

• The OpenARC compiler provides easier FPGA programmability.

• OpenARC translates OpenACC directive based code into OpenCL optimized for FPGAs.

• The Intel OpenCL SDK converts OpenCL code to FPGA executable code.

• OpenACC and other directive based programming models hide low level language
complexities.

http://ft.ornl.gov/research/openarc
http://ft.ornl.gov/research/openarc

2. Background

• We port a GAMESS kernel to FPGA enabled machines using OpenARC and

 evaluate the performance results.

• GAMESS computational chemistry kernel contains the Hartree-Fock procedure.

• The GAMESS-SIMINT Hartree-Fock quantum chemistry method computations

• Compute molecular properties

• A starting point for higher accuracy, for more computationally demanding methods.

• The computational bottleneck of the Hartree-Fock procedure

• Construction of the Fock matrix.

• Requires computation of many electron repulsion integrals (ERIs).

• The SIMINT integral package is a highly vectorized, high performance implement
ation of the Obara-Saika ERI evaluation method.

3. Methodology

• OpenARC takes only C code as input.

• We translated the GAMESS-SIMGMS kernel to pure C code by hand.

• We then inserted OpenACC directives to parallelize the code.

• We used OpenARC to transform the code into OpenCL optimized for FPGAs.

• Intel SDK for OpenCL compiles the code to an FPGA executable.

4. Results

• Figure 1 compares execution times of the kernel with increasing problem size.

• Problem size is the number of basis set functions, on a Nallatech Stratix V FPGA accelerator
board and on an Intel(R) Xeon(R) E5520 CPU.

• Figure 2 indicates the speedup achieved for different problem sizes.

• We achieve up to 9.5X speedup on the FPGA.

• The tested FPGA (Stratix V) does not contain dedicated floating point cores but the floating
point units are synthesized from existing building blocks.

Figure 1: Runtime on FPGA vs. CPU (logarithmic scale).

.

 Figure 2: Speedup obtained on FPGA vs. CPU.

.

5. Future/Ongoing work

• We plan to measure the speedup on the newer Nallatech Arria 10, which has

 hardened floating point units and thus offers higher floating point performance.

• We will also use the Intel SDK Quartus power estimation tool to estimate power
consumption and will compare power and energy consumption of the CPU and
FPGA implementations.

Figure 1: Runtime on FPGA vs. CPU (logarithmic scale).

.

 Figure 2: Speedup obtained on FPGA vs. CPU.

.

Thank you!

Questions?

