
FPGAs for Supercomputing: Progress and Challenges

Hal Finkel2 (hfinkel@anl.gov), Zheming Jin2, Kazutomo Yoshii1, and Franck Cappello1

1Mathematics and Computer Science (MCS)
2Leadership Computing Facility (ALCF)
 Argonne National Laboratory

H2RC: Third International Workshop on
Heterogeneous Computing with Reconfigurable Logic

Friday, November 18, 2017
Denver, CO

mailto:hfinkel@anl.gov

Outline

● Why are FPGAs interesting? Where in HPC systems do they work best?

● Can FPGAs competitively accelerate traditional HPC workloads?

● Challenges and potential solutions to FPGA programming.

For some things, FPGAs are really good!

http://escholarship.org/uc/item/35x310n6

70x faster!

bioinformatics

For some things, FPGAs are really good!

machine learning and neural networks

http://ieeexplore.ieee.org/abstract/document/7577314/

FPGA is faster than both
the CPU and GPU,

10x more power efficient,
and a much higher percentage

of peak!

http://www.socforhpc.org/wp-content/uploads/2015/06/SBorkar-SoC-WS-DAC-June-7-2015-v1.pptx

Parallelism Triumphs As We Head Toward Exascale

1986 1991 1996 2001 2006 2011 2016 2021
1

10

R
e
la

ti
v
e
 T

ra
n
si

st
o
r

Pe
rf

Giga

Tera

Peta
Exa

32x from transistor
32x from parallelism

8x from transistor
128x from parallelism

1.5x from transistor
670x from parallelism

System performance from parallelism

http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/201604/McCormick-ASCAC.pdf

(Maybe) It's All About the Power...

Do FPGA's
perform less

data movement
per computation?

http://www.socforhpc.org/wp-content/uploads/2015/06/SBorkar-SoC-WS-DAC-June-7-2015-v1.pptx

To Decrease Energy, Move Data Less!

On-die Data Movement vs Compute

Interconnect energy (per mm) reduces slower than compute
On-die data movement energy will start to dominate

90 65 45 32 22 14 10 7
0

0.2
0.4
0.6
0.8

1
1.2

Technology (nm)

Source: Intel

On die IC energy/mm
Compute energy

6X
60%

https://www.semiwiki.com/forum/content/6160-2016-leading-edge-semiconductor-landscape.html

Compute vs. Movement – Changes Afoot

http://iwcse.phys.ntu.edu.tw/plenary/HorstSimon_IWCSE2013.pdf

(2013)

FPGAs vs. CPUs

http://evergreen.loyola.edu/dhhoe/www/HoeResearchFPGA.htm

FPGA

http://www.ics.ele.tue.nl/~heco/courses/EmbSystems/adv-architectures.ppt

CPU

Where Does the Power Go (CPU)?

http://link.springer.com/article/10.1186/1687-3963-2013-9

(Model with (# register files) x (read ports) x (write ports))

Fetch and decode
take most of the

energy!

More centralized register
files means more data
movement which takes

more power.

Only a small portion
of the energy goes
to the underlying

computation.

See also: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2008-130.pdf

Modern FPGAs: DSP Blocks and Block RAM

http://yosefk.com/blog/category/hardware

Design mapped
(Place & Route)

Intel Stratix 10 will have up to:
● 5760 DSP Blocks = 9.2 SP TFLOPS
● 11721 20Kb Block RAMs = 28MB
● 64-bit 4-core ARM @ 1.5 GHz

https://www.altera.com/products/fpga/stratix-series/stratix-10/features.html

DSP blocks multiply
(Intel/Altera FPGAs have full SP FMA)

An experiment...

● Nallatech 385A Arria10
board

● 200 – 300 MHz (depend on
a design)

● 20 nm
● two DRAM channels. 34.1

GB/s peak

● Sandy Bridge E5-2670
● 2.6 GHz (3.3 GHz w/ turbo)
● 32 nm
● four DRAM channels. 51.2

GB/s peak

An experiment: Power is Measured...

● Intel RAPL is used to measure
CPU energy
– CPU and memory

● Yokogawa WT310, an external
power meter, is used to measure
the FPGA power
– FPGA_pwr = meter_pwr -

host_idle_pwr +
FPGA_idle_pwr (~17 W)

– Note that meter_pwr includes
both CPU and FPGA

An experiment: Random Access with Computation using OpenCL

● # work-units is 256
● CPU: Sandy Bridge (4ch memory)
● FPGA: Arria 10 (2ch memory)

for (int i = 0; i < M; i++) {
 double8 tmp;
 index = rand() % len;
 tmp = array[index];
 sum += (tmp.s0 + tmp.s1) / 2.0;
 sum += (tmp.s2 + tmp.s3) / 2.0;
 sum += (tmp.s4 + tmp.s5) / 2.0;
 sum += (tmp.s6 + tmp.s7) / 2.0;
}

An experiment: Random Access with Computation using OpenCL

● # work-units is 256
● CPU: Sandy Bridge (2ch memory)
● FPGA: Arria 10 (2ch memory)

for (int i = 0; i < M; i++) {
 double8 tmp;
 index = rand() % len;
 tmp = array[index];
 sum += (tmp.s0 + tmp.s1) / 2.0;
 sum += (tmp.s2 + tmp.s3) / 2.0;
 sum += (tmp.s4 + tmp.s5) / 2.0;
 sum += (tmp.s6 + tmp.s7) / 2.0;
}

Make the comparison more fair...

FPGAs – Power Estimates at Peak (Compute) Performance

On an Arria 10 (GX1150), if you instantiate all of the DSPs doing floating-point
operations (1518 DSPs) and then estimate the power consumption...

12.5 25 37.5 50 62.5 75 87.5 100.0
0

20

40

60

80

100

120

140

160

180

Power

Power (W)

Toggle Rate (%)

What Happens for a “Real” Compute Task

The earth's shape is modeled as an ellipsoid.
The shortest distance along the surface of an
ellipsoid between two points on the surface is
along the geodesic. Computing the geodesic
distance (in OpenCL):

What Happens for a “Real” Compute Task

On an Arria 10 GX1150 FPGA (Nallatech 385A), for single precision:

For double precision:
(fpc) == --fp-relaxed

What Happens for a “Real” Compute Task

Power and Time...

Optimal time vs. optimal power can differ a lot.

What Happens for a “Real” Compute Task

And so…

Comparing the Arria 10, an Intel Xeon Phi Knights Landing (KNL)
7210 processor with 64 cores and four threads per core, and an
NVIDIA K80 with 2496 cores.

The power efficiency of the single-precision kernel on FPGA is 1.35X better than K80
and KNL7210 while the power efficiency of the double-precision kernel on FPGA 1.36X
and 1.72X worse than CPU and GPU respectively.

High-End CPU + FPGA Systems Are Coming...

● Intel/Altera are starting to produce Xeon + FPGA systems
● Xilinx are producing ARM + FPGA systems

These are not just embedded cores,
but state-of-the-art multicore CPUs

Low latency and high bandwidth

CPU + FPGA systems fit nicely into the
HPC accelerator model! (“#pragma omp
target” can work for FPGAs too)

https://www.nextplatform.com/2016/03/14/intel-marrying-fpga-beefy-broadwell-open-compute-future/

A cache!

Challenges Remain...

● OpenMP 4 technology for FPGAs is in its infancy (even less mature than the GPU
implementations).

● High-level synthesis technology has come a long way, but is just now starting to give
competitive performance to hand-programmed HDL designs.

● CPU + FPGA systems with cache-coherent interconnects are very new.
● High-performance overlay architectures have been created in academia, but none

targeting HPC workloads. High-performance on-chip networks are tricky.
● No one has yet created a complete HPC-practical toolchain.

Theoretical maximum performance on many algorithms on GPUs is 50-70%.
This is lower than CPU systems, but CPU systems have higher overhead.

In theory, FPGAs offer high percentage of peak and low overhead,
but can that be realized in practice?

Conclusions

✔ FPGA technology offers the most-promising direction toward higher FLOPS/Watt.

✔ FPGAs, soon combined with powerful CPUs, will naturally fit into our accelerator-infused HPC ecosystem.

✔ FPGAs can compete with CPUs/GPUs on traditional workloads while excelling at bioinformatics, machine

learning, and more!

✔ Combining high-level synthesis with overlay architectures can address FPGA programming challenges.

✔ Even so, pulling all of the pieces together will be challenging!

➔ ALCF is supported by DOE/SC under contract DE-AC02-06CH11357

Extra Slides

FPGAs – Molecular Dynamics – Strong Scaling Again!

Martin Herbordt (Boston University)

FPGAs – Molecular Dynamics – Strong Scaling Again!

Martin Herbordt (Boston University)

GFLOPS/Watt (Single Precision)

Intel Skylake Intel Knights Landing NVIDIA Pascal Altera Stratix 10 Xilinx Virtex Ultrascale+
0

20

40

60

80

100

120

GFLOPS/Watt

● http://wccftech.com/massive-intel-xeon-e5-xeon-e7-skylake-purley-biggest-advancement-nehalem/ - Taking 165 W max range
● http://cgo.org/cgo2016/wp-content/uploads/2016/04/sodani-slides.pdf
● http://www.xilinx.com/applications/high-performance-computing.html - Ultrascale+ figure inferred by a 33% performance increase (from Hotchips presentation)
● https://devblogs.nvidia.com/parallelforall/inside-pascal/
● https://www.altera.com/products/fpga/stratix-series/stratix-10/features.html

Marketing Numbers
for unreleased products…

(be skeptical)

Do these FPGA
numbers include
system memory?

http://wccftech.com/massive-intel-xeon-e5-xeon-e7-skylake-purley-biggest-advancement-nehalem/
http://cgo.org/cgo2016/wp-content/uploads/2016/04/sodani-slides.pdf
http://www.xilinx.com/applications/high-performance-computing.html
https://devblogs.nvidia.com/parallelforall/inside-pascal/
https://www.altera.com/products/fpga/stratix-series/stratix-10/features.html

GFLOPS/Watt (Single Precision) – Let's be more realistic...

Intel Skylake Intel Knights Landing NVIDIA Pascal Altera Stratix 10 Xilinx Virtex Ultrascale+
0

20

40

60

80

100

120

GFLOPS/Watt

● http://www.tomshardware.com/reviews/intel-core-i7-5960x-haswell-e-cpu,3918-13.html
● https://hal.inria.fr/hal-00686006v2/document
● http://www.eecg.toronto.edu/~davor/papers/capalija_fpl2014_slides.pdf - Tile approach yields 75% of peak clock rate on full device

Conclusion: FPGAs are a competitive HPC accelerator technology by 2017!

90% of peak
on a CPU is excellent!

70% of peak
on a GPU is excellent!

Plus system memory:
assuming 6W for 16 GB DDR4

(and 150 W for the FPGA)

http://www.tomshardware.com/reviews/intel-core-i7-5960x-haswell-e-cpu,3918-13.html
https://hal.inria.fr/hal-00686006v2/document
http://www.eecg.toronto.edu/~davor/papers/capalija_fpl2014_slides.pdf

GFLOPS/device (Single Precision)

Intel Skylake Intel Knights Landing NVIDIA Pascal Altera Stratix 10 Xilinx Virtex Ultrascale+
0

2000

4000

6000

8000

10000

12000

GFLOPS

● https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/pt/stratix-10-product-table.pdf - Largest variant with all DSPs doing FMAs @ the 800 MHz max
● http://www.xilinx.com/support/documentation/ip_documentation/ru/floating-point.html
● http://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf - LUTs, not DSPs, are the limiting resource – filling device with FMAs @ 1 GHz
● https://devblogs.nvidia.com/parallelforall/inside-pascal/
● http://wccftech.com/massive-intel-xeon-e5-xeon-e7-skylake-purley-biggest-advancement-nehalem/ - 28 cores @ 3.7 GHz * 16 FP ops per cycle * 2 for FMA (assuming same clock rate as the

E5-1660 v2)
● http://cgo.org/cgo2016/wp-content/uploads/2016/04/sodani-slides.pdf

All in theory...

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/pt/stratix-10-product-table.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ru/floating-point.html
http://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://devblogs.nvidia.com/parallelforall/inside-pascal/
http://wccftech.com/massive-intel-xeon-e5-xeon-e7-skylake-purley-biggest-advancement-nehalem/
http://cgo.org/cgo2016/wp-content/uploads/2016/04/sodani-slides.pdf

GFLOPS/device (Single Precision) – Let's be more realistic...

Intel Skylake Intel Knights Landing NVIDIA Pascal Altera Stratix 10 Xilinx Virtex Ultrascale+
0

2000

4000

6000

8000

10000

12000

GFLOPS

● https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01222-understanding-peak-floating-point-performance-claims.pdf
● https://www.altera.com/en_US/pdfs/literature/wp/wp-01028.pdf (old but still useful)

90% of peak
on a CPU is excellent!

70% of peak
on a GPU is excellent!

80% usage at peak
frequency of an

FPGA is excellent!

Xilinx has no hard FP logic...
Reserving 30% of the

LUTs for other purposes.

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01222-understanding-peak-floating-point-performance-claims.pdf
https://www.altera.com/en_US/pdfs/literature/wp/wp-01028.pdf

Common Algorithm Classes in HPC

http://crd.lbl.gov/assets/pubs_presos/CDS/ATG/WassermanSOTON.pdf

Common Algorithm Classes in HPC – What do they need?

http://crd.lbl.gov/assets/pubs_presos/CDS/ATG/WassermanSOTON.pdf

FPGAs Can Help Everyone!

Compute Bound
(FPGAs have lots of compute)

Memory-Latency Bound
(FPGAs can pipeline deeply)

Memory-Bandwidth Bound
(FPGAs can do on-the-fly compression)

FP
G

A
s

ha
ve

 lo
ts

 o
f r

eg
is

te
rs

FP
G

A
s have lots em

bedded m
em

ory

Logic Synthesis

Place & Route

High-level Synthesis

datapathcontroller

Behavior
level

RT level
(VHDL, Verilog)

Gate level
(netlist)

C, C++, SystemC, OpenCL

High-level languages (OpenMP, OpenACC, etc.)
Source to Source

Levels of
Abstraction

Altera/Xilinx
toolchains

Bitstream

Derived from Deming Chen’s slide (UIUC).

FPGA Programming: Levels of Abstraction

FPGA Programming Techniques

● Use FPGAs as accelerators through (vendor-)optimized libraries

● Use of FPGAs through overlay architectures (pre-compiled custom processors)

● Use of FPGAs through high-level synthesis (e.g. via OpenMP)

● Use of FPGAs through programming in Verilog/VHDL (the FPGA “assembly language”)

● Lowest Risk
● Lowest User Difficulty

● Highest Risk
● Highest User Difficulty

Beware of Compile Time...

● Compiling a full design for a large FPGA (synthesis + place & route) can take many hours!
● Tile-based designs can help, but can still take tens of minutes!
● Overlay architectures (pre-compiled custom processors and on-chip networks) can help...

Is kernel really
Important in

this application?

Traditional compilation
for optimized

overlay architecture.

Use high-level synthesis
to generate custom hardware.

Overlay (iDEA)

https://www2.warwick.ac.uk/fac/sci/eng/staff/saf/publications/fpt2012-cheah.pdf

● A very-small CPU.
● Runs near peak clock rate of the block RAM / DSP block!
● Makes use of dynamic configuration of the DSP block.

Overlay (DeCO)

https://www2.warwick.ac.uk/fac/sci/eng/staff/saf/publications/fccm2016-jain.pdf

● Also spatial computing, but with much coarser resources.
● Place & Route is much faster!
● Performance is very good.

Each of these is a small soft CPU.

A Toolchain using HLS in Practice?

Compiler
(C/C++/Fortran)

Executable

Extract parallel
regions and compile

for the host in the
usual way

High-level
Synthesis

Place and Route

If placement
and routing takes
hours, we can't do

it this way!

A Toolchain using HLS in Practice?

Compiler
(C/C++/Fortran)

Executable

Extract parallel
regions and compile

for the host in the
usual way

High-level
Synthesis

Place and Route

Some kind
of token

For FPGAs, Parallelism is Essential

(CPU/GPU)(FPGA) 90nm
90nm65nm

http://rssi.ncsa.illinois.edu/proceedings/academic/Williams.pdf

(2008)

http://fire.pppl.gov/FESAC_AdvComput_Binkley_041014.pdf

ALCF Systems

https://www.alcf.anl.gov/files/alcfscibro2015.pdf

https://www.alcf.anl.gov/files/alcfscibro2015.pdf

Current Large-Scale Scientific Computing

http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/201604/2016-0404-ascac-01.pdf

http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20150324/20150324_ASCAC_02a_No_Backups.pdf

http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20150324/20150324_ASCAC_02a_No_Backups.pdf

How do we express parallelism?

http://llvm-hpc2-workshop.github.io/slides/Tian.pdf

How do we express parallelism - MPI+X?

http://llvm-hpc2-workshop.github.io/slides/Tian.pdf

OpenMP Evolving Toward Accelerators

http://llvm-hpc2-workshop.github.io/slides/Tian.pdf

New in OpenMP 4

OpenMP Accelerator Support – An Example (SAXPY)

http://llvm-hpc2-workshop.github.io/slides/Wong.pdf

OpenMP Accelerator Support – An Example (SAXPY)

http://llvm-hpc2-workshop.github.io/slides/Wong.pdf

Memory transfer
if necessary.

Traditional CPU-targeted
OpenMP might

only need this directive!

HPC-relevant Parallelism is Coming to C++17!

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4071.htm

using namespace std::execution::parallel;
int a[] = {0,1};
for_each(par, std::begin(a), std::end(a), [&](int i) {
 do_something(i);
});

void f(float* a, float*b) {
 ...
 for_each(par_unseq, begin, end, [&](int i)
 {
 a[i] = b[i] + c;
 });
}

The “par_unseq” execution policy
allows for vectorization as well.

Almost as concise
as OpenMP, but in many

ways more powerful!

HPC-relevant Parallelism is Coming to C++17!

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4071.htm

Clang/LLVM

Where do we stand now?

Clang
(OpenMP 4 support nearly done)

Intel, IBM, and others finishing target offload support

LLVM

Polly
(Polyhedral optimizations)

SPIR-V
(Prototypes available,
but only for LLVM 3.6)

Vendor tools not
yet ready

C
C backend not upstream.

There is a relatively-recent
version on github.

Vendor HLS / OpenCL tools

Generate VHDL/Verilog directly?

Current FPGA + CPU System

http://www.panoradio-sdr.de/sdr-implementation/fpga-software-design/

Xilinx Zynq 7020 has
two ARM Cortex A9

cores.

53,200 LUTs
560 KB SRAM
220 DSP slices

http://www.socforhpc.org/wp-content/uploads/2015/06/SBorkar-SoC-WS-DAC-June-7-2015-v1.pptx

Interconnect Energy

Interconnect Structures

Buses over short distance

Shared busShared bus

1 to 10 fJ/bit
0 to 5mm
Limited scalability

Multi-ported MemoryMulti-ported Memory

Shared memory

10 to 100 fJ/bit
1 to 5mm
Limited scalability

X-BarX-Bar

Cross Bar Switch

0.1 to 1pJ/bit
2 to 10mm
Moderate scalability

1 to 3pJ/bit
>5 mm, scalable

Packet Switched Network

CPU and GPU Trends

https://www.hpcwire.com/2016/08/23/2016-important-year-hpc-two-decades/

KNL KNL

CPU vs. FGPA Efficiency

http://authors.library.caltech.edu/1629/1/DEHcomputer00.pdf

CPU and FPGA achieve maximum algorithmic
efficiency at polar opposite sides of the parameter
space!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

