
LESS: Loop Nest Execution Strategies for Spatial Architectures
Amalee Wilson

University of Alabama at Birmingham
amalee@uab.edu

Swapna Raj
Intel

swapna.raj@intel.com

Kermin Fleming
Intel

kermin.fleming@intel.com

1 INTRODUCTION
Conventional architectures are challenged to reach exascale power
and performance levels, but if properly utilized, reconfigurable spa-
tial architectures, e.g. FPGAs, can be part of the solution to this issue.
However, such hardware is useful only if they can be programmed
effectively, preferably with minimal overhead for domain experts.
Thus, tools which advise users on how to exploit new architectures
must be made. LESS aims to fill a critical gap in the software devel-
opment process, by using data from other profiling tools to suggest
optimized offloading strategies for existing programs. By automat-
ically analyzing these results, the Loop Nest Execution Strategy
for Spatial Architectures tool (LESS) recommends an optimized
execution strategy, which considers both relative performance to
overall program execution and the performance-area tradeoff of
implementing a loop on the spatial architecture.

2 ALGORITHM
LESS views program execution as a hierarchy of nested loops. Our
approach uses dynamic programming by finding the best offload-
ing strategy for each outer loop nest in the program, recording
this result, and combining these approaches to arrive at an overall
execution strategy for the program. Within the spatial architec-
ture, parallelism is obtained by implementing multiple instances of
loops within the hierarchy, with the assumption that these copies
will execute in parallel. Spatial architectures may also be recon-
figured, allowing loop nests to be separately implemented, which
can potentially increase acceleration. LESS attempts to balance the
resources assigned to each loop, that is the number of loop bodies
implemented, according to the relative importance of the loop, its
implementation cost, and the cost to reconfigure the resource.

When analyzing each outermost loop nest, LESS makes two
decisions: 1. Whether to offload child loops nests independently or
as part of their parents, and 2. How to offload the loops that are
chosen to be accelerated. These choices are made at each level of
nesting to produce an offloading strategy for each loop nest. From
this combination of approaches, a whole-program implementation
is produced, and an estimation of the speedup when using this
strategy is provided to the user. Although the search space for an
optimal implementation is larger, LESS prunes this space with its
dynamic programming inspired approach.

2.1 Offloading Child Loop Nests
When deciding whether to offload child loop nests independently,
LESS finds the best offloading strategy for a whole loop implemen-
tation that includes the parent loop and its child loop nests. After
estimating the performance of this whole loop implementation,
LESS then determines the best offloading strategy for each child
loop nest and estimates the performance of offloading the child

Area

Sp
ee
du

p

Configuration Time n ∗ 101

n ∗ 102 n ∗ 103

n ∗ 104 n ∗ 105

n ∗ 106 n ∗ 107
host

Figure 1: Estimated speedup of the Nekbone workload on
the accelerator vs host, plotted with varied area and config-
uration times.

loops independently. For each of these two strategies, the config-
uration times are taken into account, with the total time spent
on configuration typically higher for the second strategy. LESS
then chooses the best of each of these approaches, with the aim of
minimizing total time spent executing the loop.

2.2 Choosing the Best Offloading Strategy
As mentioned in the previous section, LESS must choose the best
offloading strategy for both the whole loop implementation and the
independent child loop implementations. To do this we begin by
unrolling the loop nest such that the compute fabric is exhausted.
Then the marginal value of each loop is calculated by estimating
the resultant execution time of the loop nest when a copy of loop
is removed from the resource. This difference is then divided by
the estimated area of the loop. Then a copy of the loop with the
smallest marginal value is removed, and the process is repeated
until the loop nest conforms to the area constraint of the resource.
This approach was chosen because it allows a wider exploration of
the space of possibilities of offloading strategies.

3 RESULTS
Preliminary results show that our approach may offer better execu-
tion strategies for loop nests with large child loop nests, which can
benefit from being offloading independently. Figure 1 shows the
relationship between area and speedup, as well as the relationship
between configuration time and speedup. In this graph it is clear
that the cost of total configuration time for this workload, even
with multiple configurations, is offset by the speedup gained by the
approach. In fact, as the cost of configuration grows, it must be-
come relatively high before there is a large decrease in performance.
Some experiments have been conducted on different workloads,
but these will be explored more thoroughly later.


	1 Introduction
	2 Algorithm
	2.1 Offloading Child Loop Nests
	2.2 Choosing the Best Offloading Strategy

	3 Results

