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EXTENDED ABSTRACT 

In recent decades, HPC advancement has relied upon 

incremental improvements in commodity off the shelf components 

combined with large-scale integration. Looking forward, many 

practical challenges (e.g., power and memory cost, reliability) have 

necessitated a fundamentally different approach to HPC 

architectures and application development. Achieving exascale will 

require co-design, where application developers work closely with 

domain scientists and system architects to iteratively perform 

design-space exploration (DSE) to optimize algorithms on proposed 

systems [1]. Modeling and simulation of application behavior on 

target architectures is a key tool used in the co-design process. 

Recent trends in HPC system modeling and simulation suggest 

discrete-event simulation (DES) coupled with a multiscale approach 

to the modeling of the system and application behaviors may 

provide a good balance between model speed and accuracy [2, 4]. 

Although a multiscale approach enables faster simulation than 

traditional cycle-accurate approaches, exascale simulation with 

existing tools could take minutes, hours, or even days to complete a 

single simulation. These lengthy simulations place very practical 

limits on DSE and Uncertainty Quantification (UQ) efforts that 

often require thousands, or even millions of independent 

simulations. To address this issue, we propose FPGA-pipelined 

DES, which focuses not necessarily on improved performance for a 

single simulation, but instead on increased simulation throughput. 

By focusing on throughput, we unlock the potential for huge 

performance gains when the problem under study calls for numerous 

independent simulations (e.g., DSE, Monte Carlo simulation).  

In our approach, we designed a custom compiler to convert the 

MPI parallel application and architecture specification used as input 

to existing simulation tools (Figure 1(a)) to a data-flow graph (DFG) 

representation (Figure 1(b)). Graph vertices represent each unique 

discrete event (e.g., matrix multiply, MPI send, barrier) and edges 

their input/output dependencies. The compiler utilizes several graph 

optimization techniques to manipulate the DFG before ultimately 

mapping it to an FPGA pipeline (Figure 1(c)). Assuming sufficient 

resources, the compiler simply maps each vertex operation of the 

DFG to independent FPGA resources. By adding pipeline registers 

between events with dependencies in the DFG, a single simulation 

has a latency equivalent to the DFG’s critical path. More 

importantly, successive simulations start/complete once every cycle. 

However, if required resources exceed a single FPGA (a near 

certainty for exascale simulation) some degree of resource sharing 
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Figure 1. Example translation from (a) MPI-like simulation specification to (b) example data-flow graph and resulting (c) FPGA pipeline 



and/or circuit partitioning across multiple FPGAs is required. There 

exist many approaches to this problem (the focus of current and 

future research) and the challenge becomes how to apply them to 

automatically generate Pareto-optimal circuits for any simulation. 

We have developed a resource-sharing strategy that attempts to 

“collapse” the essentially 2D DFG (threads by events per thread) 

into a 1D pipe with two major scaling advantages: (1) resources 

scale sublinearly with the number of threads (with a factor of 

“threads” cost in simulation throughput), and (2) pipelines scale as a 

single, unidirectional pipe that can be partitioned predictably across 

any number of connected FPGAs with only minimal overhead. 

Table 1 presents performance data for the two approaches while 

highlighting the advantages and disadvantages of each. The no-

sharing approach clearly has superior performance in terms of 

simulation throughput and latency, but consumes far more resources 

and is ultimately far less scalable. Comparing lines 1-9 with lines 

10-16 & 17-23, resources scale linearly with timesteps (TS) for both 

approaches, but the sharing approach allows for many more TS due 

to its much lower base utilization. Additionally, the sharing 

approach's resource utilization scales sublinearly with the number of 

threads (1, 10, & 17) allowing for simulations far larger than 

previously possible with the no-sharing approach on a single FPGA 

(e.g., simulated configurations up to 2,147,483,648 ranks). Although 

the sharing approach appears to suffer a significant drop in 

performance when considering simulation throughput (inverse 

proportionality to ranks), if we instead consider event throughput we 

see direct proportionality to logic utilization (LU%) almost 

independent of the number of ranks; simulation throughput 

decreases as the amount of work per simulation increases (increased 

events per simulation as number of ranks increase), but the amount 

of work completed each clock cycle remains constant and depends 

upon how much event hardware is instantiated. This ultimately 

means that although simulation throughput will continue to decrease 

with increased ranks, event throughput will remain relatively 

constant dependent on LU. 

Overall, the proposed approach provides simulation/event 

throughput that is many orders-of-magnitude faster than the BE-SST 

software simulator [3] (speedup column shows at least 6 orders), 

however, this gain in throughput comes at a cost. One notable 

limitation of the FPGA-pipelined approach is a sacrifice in analysis 

capabilities largely due to limited I/O bandwidth (e.g., BE-SST can 

log all intermediate event data for postmortem analysis while the 

pipelined approach is limited to a handful of “monitored” events that 

can be logged without causing pipeline stalls). We also note that there 

are several potential application behaviors that the FPGA may not be 

able to efficiently handle at the same level of granularity as software 

(e.g., dynamically modifying control flow based on event timing). 

One possible solution is to model the application at a higher level of 

abstraction such that the behaviors are no longer present. For our 

envisioned use case, these limitations are not prohibitive because a 

designer can use our approach to rapidly prune a huge design space 

into a small set of promising candidates that can then be explored in 

more depth using existing techniques. 
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Table 1.  Performance of sharing (right) & no-sharing (left) pipelines for CMT-Bone-BE* with varied MPI ranks and 

simulation timesteps (TS) on a single Stratix V S5GSMD8K1F40C2. Performance based on average circuit speed of 335 MHz 

for sharing & 300 MHz for no-sharing pipelines. BE-SST [3] run on single Intel i7 core at 2.6 GHz. 

 
Ranks TS 

Num. of 

Events 
% LU 

Latency 

(cycles) 

Hardware 

MSPS† 

Hardware 

GEPS‡ 

BE-SST 

KEPS‡ 

Hardware 

Speedup 

1. 32 1 1,344 15 / 2 64 / 278 300 / 10.5 403 / 14.1 4.4 92x106 / 3x106 

2. 32 2 2,688 31 / 3 118 / 512 300 / 10.5 806 / 28.2 7.8 103x106 / 4x106 

3. 32 3 4,032 46 / 4 172 / 746 300 / 10.5 1,210 / 42.3 10.6 114x106 / 4x106 

4. 32 4 5,376 61 / 6 226 / 980 300 / 10.5 1,613 / 56.4 12.9 125x106 / 4x106 

5. 32 5 6,720 76 / 7 280 / 1,214 300 / 10.5 2,016 / 70.6 14.8 136x106 / 5x106 

6. 32 6 8,064 92 / 9 334 / 1,488 300 / 10.5 2,419 / 84.7 16.5 147x106 / 5x106 

7. 32 8 10,752 – / 12 – / 1,916 – / 10.5 – / 113 19.1 – / 6x106 

8. 32 16 21,504 – / 24 – / 3,788 – / 10.5 – / 226 24.2 – / 9x106 

9. 32 32 43,008 – / 44 – / 7,532 – / 10.5 – / 452 28.9 – / 16x106 

10. 64 1 2,880 32 / 2 65 / 394 300 / 5.23 864 / 15.1 7.7 112x106 / 2x106 

11. 64 2 5,760 65 / 4 119 / 712 300 / 5.23 1,728 / 30.1 12.6 137x106 / 2x106 

12. 64 3 8,640 99 / 5 173 / 1,030 300 / 5.23 2,592 / 45.2 16.2 160x106 / 3x106 

13. 64 4 11,520 – / 7 – / 1,348 – / 5.23 – / 60.2 17.9 – / 3x106 

14. 64 8 23,040 – / 14 – / 2,620 – / 5.23 – / 121 23.2 – / 5x106 

15. 64 16 46,080 – / 29 – / 5,164 – / 5.23 – / 241 26.9 – / 9x106 

16. 64 32 92,160 – / 46 – / 10,252 – / 5.23 – / 482 29.1 – / 17x106 

17. 128 1 5,952 66 / 2 66 / 458 300 / 2.62 1,786 / 15.6 10.8 165x106 / 1x106 

18. 128 2 11,904 – / 4 – / 776 – / 2.62 – / 31.2 14.9 – / 2x106 

19. 128 3 17,856 – / 5 – / 1,094 – / 2.62 – / 46.8 17.1 – / 3x106 

20. 128 4 23,808 – / 7 – / 1,412 – / 2.62 – / 62.4 18.4 – / 3x106 

21. 128 8 47,616 – / 15 – / 2,684 – / 2.62 – / 125 20.8 – / 6x106 

22. 128 16 95,232 – / 30 – / 5,228 – / 2.62 – / 250 22.3 – / 11x106 

23. 128 32 190,464 – / 47 – / 10,316 – / 2.62 – / 499 22.8 – / 22x106 

*proxy app for CMT-Nek code under development at Florida’s PSAAPII CCMT, †Mega-Simulations-Per-Second, 
‡Giga/Kila-Events-Per-Second, ‘–’ indicates configuration unable to fit on a single FPGA 


