
Microdisk Cavity FDTD Simulation
on FPGA using OpenCL

Tobias Kenter, Christian Plessl

Paderborn Center for Parallel Computing and
Department of Computer Science

Paderborn University

1

Microdisk Cavity

• Microdisk cavity in perfect metallic environment
– Well studied nanophotonic device
– Point-like time-dependent source (optical dipole)
– Known analytic solution (whispering gallery modes)

• Simulations can help to investigate other nanophotonic setups

2

result: energy density
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

vacuum

perfect metal

experimental setup: microdisk cavity

source

Computational Nanophotonics

• Physics: Maxwell's partial differential equations
– Electric field E
– Magnetic field H
– Material constants (electric permittivity ε, magnetic permeability μ)

• Simulation: FDTD stencils
– Stencil for dielectric material in 2D

3

updateE(*ex, *ey, *hz) {
ex[x,y] = ca * ex[x,y] + cb * (hz[x,y] - hz[x,y-1]);
ey[x,y] = ca * ey[x,y] + cb * (hz[x-1,y] - hz[x,y]);

}

updateH(*ex, *ey, *hz) {
hz[x,y] = da * hz[x,y] + db * (ex[x,y+1] – ex[x,y] + ey[x,y] – ey[x+1,y]);

}

FPGA Pipeline for FDTD

• Inside time step
– Regular + parallel update operations
Ø Can form customized loop pipeline on FPGA
– Locality + predictable memory access
Ø Can prefetch and stream data

• E and H are must be updated alternately (leap-frog)
– Reusing local results is key to performance
– Unrolling several time steps increases computational intensity

updateE

updateH

MEM

updateH

updateE

2-fold unrolled, overlap
processing for 2

iterations

updateE

updateH

MEM

overlap updating of
fields for single iteration

updateE

updateH
MEM

update fields
sequentially

4

OpenCL for FPGAs

• OpenCL
– Covers parallelism and awareness of memory locations
– Base of familiar developers (mostly GPU)
– Suitable to generate competitive FDTD design on FPGA?

• OpenCL-based SDAccel tool flow
– OpenCL source-to-source transformation
– Vivado HLS step
– Vivado synthesis place + route
– SDAccel Version 2016.1

• Target system
– ADM-PCIE-7V3 board with Xilinx Virtex-7 XC7VX690T + 2x 8GB DDR3 memory

5

Design Steps

6

1. Wrap main loop into OpenCL kernel
– First FPGA design up and running after few hours
– ~1000x slower than CPU

2. Generate FPGA pipeline for E and H updates
– Burst transfers to local memory
– Compute from local memory
– Pipeline main loop with low initiation interval

3. On the way…
– Separate compute + transfer kernels, coupled through pipes
– Code transformations in compute kernel

4. Unroll as many time steps as resources permit
– Allow data reuse
– Instantiate many individual buffers

OpenCL-based FPGA Design

 Compute Kernel

...

Global
Memory

(DDR3 on
ADM-

PCIE-7V3
board)

Read E_x
Local

Memory
(BRAM)

Burst
trans-
fers

E_y

Pipe

H_z ...

more Pipes

Stage 1
Local Memory

Stage 2
Local Memory

Stage 36

E_yWrite E_x H_z ...
Pipe more Pipes

Burst
trans-
fers

7

Results

• 36 pipeline stages, initiation interval 2
• 140MHz (down from original target 200MHz)

8

 0

 500

 1000

 1500

 2000

 2500

216 218 220 222 224

M
ce

lls
/s

Grid points

SDAccel, ADM-PCIE-7V3, 36 Pipeline Stages
Maxeler, MAX3424A, 15 Pipeline Stages [1]
OpenMP, 2x Xeon E5620, 8 Threads [2]

• Resulting design with OpenCL is very competitive
• Code is adapted to FPGA target and current tool capabilities

– Much lenghty boilerplate may go away with maturing tools and better
understanding of them

– Performance portability not explored (currently design with singe work-item)

Conclusion

9

Thank you!

10

