Large Scale Graph Analytics on FPGAs

H2RC 2016
14 November, 2016

Viktor K Prasanna
University of Southern California
fpga.usc.edu
Scratchpad Memory

- Next Gen Processor Architectures
 - NERSC Cori: Intel KNL
 - TaihuLight: Sunway

- Scratchpad
 - No cache hierarchy: User controlled
 - Cori uses KNL with 3D memory
 - TaihuLight uses Sunway with DDR3

- 3D memory
 - Latency ≈ DDR3
 - BW ≈ 4 - 8× DDR3
 - Block size = 4 - 8 × DDR3

- Ideal performance (?)
 - Scratchpad acts as large buffer in the hierarchy
 - Peak BW for any random block access
Edge-centric Paradigm

- Iterative algorithm
- Scatter-gather processing in each iteration
 - Scatter:
 - Edges stream in
 - Updates stream out
 - Gather:
 - Updates stream in
 - Apply updates on vertices

- Advantages
 - No random memory accesses to edges
 - High memory bandwidth utilization

- Many Graph Analytics: Page Rank, BFS, Connected Components, Maximum Independent Set,
Optimizing Edge-Centric Processing on FPGAs (2)

- DRAM
- FPGA
 - On-chip BRAM
 - Pipelines
 - Memory Interface
 - Accelerator Function Unit

High BW on-chip memory
Parallel pipelines
Streaming
Key Issues

• Data layout to feed the pipelines on FPGA
• # of DRAM row activations (hide latencies)
• Memory buffer management
• Minimize (eliminate?) pipeline stalls
• Graph partitioning—overheads, on chip memory, I/O (communication)
Data Layout Optimization for Edge-Centric Graph Processing (1)

- Partition graph data into k partitions
 - Interval: an array to store vertices (and their labels) with contiguous indices
 - All the intervals of different partitions have the same size
 - Shard: an array to store the edges whose source vertices are in the interval
 - Update bin: an array to store the updates whose destination vertices are in the interval

- Goal: Interval of each partition fits in on-chip BRAM
Data Layout Optimization for Edge-Centric Graph Processing (2)

Random Memory Accesses in Scatter Phase

Random memory accesses → DRAM row misses → Non-compulsory row activations → Long access latency → Pipeline stalls

Traversing order

<table>
<thead>
<tr>
<th>Shard\textsubscript{0}</th>
<th>Write updates based on Dest.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Src.</td>
<td>Dest.</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>101</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>105</td>
</tr>
</tbody>
</table>

DRAM

- Update Bin\textsubscript{0} (for Vertex 0~99)
- Update Bin\textsubscript{1} (for Vertex 100~199)

Ω(|E|) row misses → Ω(|E|) Non-compulsory row activations
Data Layout Optimization for Edge-Centric Graph Processing (3)

• Data layout optimization: Sort each edge list in each shard based on destination vertices

Theorem: In the Scatter phase of each iteration, the total number of non-compulsory row misses due to write updates into DRAM for all the partitions is reduced from $O(|E|)$ to $O(k^2)$, where k is the number of partitions.

![Diagram showing data layout optimization and DRAM accesses]

- **Traversing order**
 - **Shard$_0$**
Src.	Dest.
0	10
1	11
0	101
2	105

- **Update Bin$_0$**
 (for Vertex 0~99)

- **Update Bin$_1$**
 (for Vertex 100~199)

Row miss

Row hit
Data Layout Optimization for Edge-Centric Graph Processing (4)

Number of pipeline stalls due to DRAM accesses
(Ex.: PageRank algorithm, 1 iteration)

| Dataset | $|V|$ | $|E|$ | No. of pipeline stall cycles | Total No. of clock cycles |
|-----------------|-------|---------|-------------------------------|---------------------------|
| | | | Optimized | Baseline | Optimized | Baseline |
| Web-NotreDam | 325,729 | 1,497,134 | 30,973 | 682,014 | 931,272 | 1,581,077 |
| Web-Google | 875,713 | 5,105,039 | 120,674 | 8,238,665 | 3,120,756 | 11,346,230 |
| Web-Berkstan | 685,230 | 7,600,595 | 154,473 | 2,218,232 | 4,254,568 | 6,319,223 |
| Wiki-Talk | 2,394,385 | 5,021,410 | 172,041 | 3,242,586 | 3,872,531 | 7,369,423 |

Over **20x** pipeline stall cycles reduction

Row miss in the same bank \rightarrow 9-cycle stall
Row miss across banks \rightarrow 5-cycle stall
Data Layout Optimization for Edge-Centric Graph Processing (5)

Number of non-compulsory row activations due to random accesses (PageRank algorithm, 1 iteration)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>No. of non-compulsory row activations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Optimized</td>
</tr>
<tr>
<td>Web-NotreDam</td>
<td>3,197</td>
</tr>
<tr>
<td>Web-Google</td>
<td>6,324</td>
</tr>
<tr>
<td>Web-Berkstan</td>
<td>7,172</td>
</tr>
<tr>
<td>Wiki-Talk</td>
<td>10,642</td>
</tr>
</tbody>
</table>

Over **25x** row activation reduction
Data Layout Optimization for Edge-Centric Graph Processing (6)

Execution time comparison (FPGA at 200 MHz)
(Ex.: PageRank algorithm, 1 iteration)

- Peak performance: Best achievable performance by assuming pipeline never stalls
- At least **70%** improvement over baseline design
Accelerating Graph Analytics on Heterogeneous Platform (1)

Vertex-centric Paradigm

- Iterative algorithm
- Scatter-gather processing in each iteration
 - Scatter:
 - Active vertices send updates to neighbors through outgoing edges
 - Gather:
 - Apply updates on vertices

- Advantage
 - No redundant edge traversals

- Disadvantages
 - Random memory accesses to edges
 - Low memory bandwidth utilization
Vertex-centric or Edge-centric?

• Similarities
 – Iterative algorithm
 – Scatter-gather processing in each iteration

• Differences
 – Vertex-centric paradigm only traverses the edges of active vertices in an iteration → no redundant edge traversals, but random memory accesses to edges
 – Edge-centric paradigm traverses all the edges in an iteration → streaming accesses to edges, but redundant edge traversals
Accelerating Graph Analytics on Heterogeneous Platform (3)

CPU or FPGA?

Dynamically select between vertex-centric and edge-centric paradigms based on active vertex ratio

- **High** active vertex ratio → a small amount of redundant edge traversals is OK → edge-centric paradigm **FPGA? (pipelined)**
- **Low** active vertex ratio → a small amount of random memory accesses is OK → vertex-centric paradigm **CPU? (memory access)**
Accelerating Graph Analytics on Heterogeneous Platform (4)

Hybrid Data Structure

- Combination of CRS (compressed row storage) and COO (coordinate format) to support both vertex-centric and edge-centric paradigms

Vertex array

<table>
<thead>
<tr>
<th>V_{id}</th>
<th>Pointer</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_0</td>
<td>E_0</td>
</tr>
<tr>
<td>V_1</td>
<td>E_2</td>
</tr>
<tr>
<td>V_2</td>
<td>E_3</td>
</tr>
<tr>
<td>V_3</td>
<td>E_5</td>
</tr>
</tbody>
</table>

Edge array

<table>
<thead>
<tr>
<th>E_{id}</th>
<th>Src.</th>
<th>Dest.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_0</td>
<td>V_0</td>
<td>V_1</td>
</tr>
<tr>
<td>E_1</td>
<td>V_0</td>
<td>V_3</td>
</tr>
<tr>
<td>E_2</td>
<td>V_1</td>
<td>V_3</td>
</tr>
<tr>
<td>E_3</td>
<td>V_2</td>
<td>V_0</td>
</tr>
<tr>
<td>E_4</td>
<td>V_2</td>
<td>V_1</td>
</tr>
<tr>
<td>E_5</td>
<td>V_3</td>
<td>V_2</td>
</tr>
</tbody>
</table>
Accelerating Graph Analytics on Heterogeneous Platform (5)

CPU or FPGA?
- Partition graph to enable efficient CPU-FPGA co-processing
- Process partitions concurrently
 - High active vertex ratio \rightarrow FPGA
 - Low active vertex ratio \rightarrow CPU

Proposition
- active vertex ratio $\geq \frac{BW_{VC}}{BW_{EC}} \rightarrow$ high active vertex ratio
- active vertex ratio $< \frac{BW_{VC}}{BW_{EC}} \rightarrow$ low active vertex ratio
- BW_{VC} (BW_{EC}): sustained memory bandwidth for edge traversals by using vertex-centric (edge-centric) paradigm
 - Statically computed
Accelerating Graph Analytics on Heterogeneous Platform (6)

Hybrid Algorithm

While any partition has active vertices
 For each partition do
 If its active vertex ratio is high then store it into edge-centric-queue
 Else store it into vertex-centric-queue
 End if
 End for
 For each partition in vertex-centric-queue do
 Scatter on CPU
 End for
 For each partition in edge-centric-queue do
 Scatter on FPGA
 End for
 For each partition whose update bin is not empty do
 Gather on CPU
 End for
End while
Accelerating Graph Analytics on Heterogeneous Platform (10)

Scatter Phase

Theorem: The Scatter phase of distinct partitions can be independently executed in parallel with atomic operations using one shared variable per partition.

Gather Phase

Theorem: The Gather phase of distinct partitions can be independently executed in parallel.
Accelerating Graph Analytics on Heterogeneous Platform (11)

• Target platform
 – CPU-FPGA heterogeneous platform with coherent shared-memory (e.g., Intel Xeon processor + Stratix V FPGA)
Accelerating Graph Analytics on Heterogeneous Platform (12)

- Datasets

| Name | $|V|$ | $|E|$ | Graph Type |
|-------|-------|--------|---------------------------------|
| Graph 1 | 3.7 M | 16.5 M | Citation network graph |
| Graph 2 | 4.8 M | 68.9 M | Social network graph |
| Graph 3 | 10 M | 80 M | Synthetic graph |
Accelerating Graph Analytics on Heterogeneous Platform (13)

- Comparison between vertex-centric and edge-centric paradigm on multi-core platform based on the largest dataset (Graph 3)

Algorithm	Vertex-centric		Edge-centric			
	BW_{VC}	BW utilization	Execution time	BW_{EC}	BW utilization	Execution time
BFS	2.08 GB/s	7.3%	0.308 s	20.37 GB/s	71.5%	0.377 s
SSSP	1.38 GB/s	4.8%	2.05 s	10.99 GB/s	38.6%	2.27 s
Accelerating Graph Analytics on Heterogeneous Platform (14)

- Comparison between CPU-only and CPU-FPGA Co-processing

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>BW_{EC}</th>
<th>BW utilization</th>
<th>Execution time</th>
<th>BW_{EC}</th>
<th>BW utilization</th>
<th>Execution time</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td>20.37 GB/s</td>
<td>71.5%</td>
<td>0.377 s</td>
<td>25.34 GB/s</td>
<td>88.9%</td>
<td>0.313 s</td>
<td>1.2x</td>
</tr>
<tr>
<td>SSSP</td>
<td>10.99 GB/s</td>
<td>38.6%</td>
<td>2.27 s</td>
<td>13.57 GB/s</td>
<td>47.6%</td>
<td>1.84 s</td>
<td>1.2x</td>
</tr>
</tbody>
</table>
Accelerating Graph Analytics on Heterogeneous Platform (15)

- Comparison with baseline designs using the largest dataset

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Execution time</th>
<th>Speedup (Best)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vertex-centric only</td>
<td>Edge-centric only</td>
</tr>
<tr>
<td>BFS</td>
<td>0.373 s</td>
<td>0.378 s</td>
</tr>
<tr>
<td>SSSP</td>
<td>2.45 s</td>
<td>2.24 s</td>
</tr>
</tbody>
</table>
Accelerating Graph Analytics on Heterogeneous Platform (16)

- **Comparison with state-of-the-art**

<table>
<thead>
<tr>
<th>Approaches</th>
<th>Platform</th>
<th>Millions of edges traversed per second</th>
<th>Ad-hoc?</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAW ’14</td>
<td>12-core Intel processor + Virtex 5</td>
<td>500</td>
<td>Yes</td>
</tr>
<tr>
<td>FPL ’15</td>
<td>Zynq SoC Z7020</td>
<td>172</td>
<td>Yes</td>
</tr>
<tr>
<td>FPGA ’16</td>
<td>12-core Intel processor + Virtex 5</td>
<td>12</td>
<td>No</td>
</tr>
<tr>
<td>This work</td>
<td>10-core Intel processor + Stratix V</td>
<td>360</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approaches</th>
<th>Platform</th>
<th>Speedup</th>
<th>Ad-hoc?</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSSP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOCS ’16</td>
<td>Virtex 7</td>
<td>1x</td>
<td>Yes</td>
</tr>
<tr>
<td>This work</td>
<td>10-core Intel processor + Stratix V</td>
<td>8x</td>
<td>No</td>
</tr>
</tbody>
</table>
Thanks

fpga.usc.edu
prasanna@usc.edu