
The Waverun Programming Model for FPGA-Based Heterogeneous Architectures
 Abhi D.R. and Ron Sass
{adevalap,rsass}@uncc.edu

 Reconfigurable Computing Systems Lab: http://www.rcs.uncc.edu

Motivation

Runtime

ResultsExamples

FPGA Heterogeneous Architecture 

Future Work

Background
Pydac previously 
implemented:
♦Divide and conquer
♦ Proven to be efficient for 
certain algorithms

♦ Provides simple user interface
Schedule and Gather methods to schedule the 

task and gather the result
♦ One program for different types of cores
♦ Manages memory keys 

Programmer responsibility:
♦ Simple object-oriented interface to runtime
♦ Provide function based on the index
♦ Block of input data via Python method

Hardware memory subsystem is tested for transaction bandwidth of 
range 20k-40k. The runtime efficiently uses the system by generating 
keys of similar range.

♦ Developing graph related algorithms for waverun
♦ Testing the runtime with the heterogeneous 
hardware

The Waverun Programming 

model for FPGAs

c

Computation:

The PyDAC runtime for a FPGA-based heterogeneous 
architecture demonstrated that algorithms using the Divide-
and-Conquer design pattern can balance multiple --- 
sometimes conflicting --- system goals.

Can the same success be extended to another class of 
applications that use, for example, the Wavefront design 
pattern?

To test this, we left the hardware unchanged and investigated 
four well-known wavefront algorithms: LU decomposition, 
QR decomposition, Cholesky decomposition and matrix-
matrix multiplication.

Success is defined as:
♦ A simple application/runtime interface
♦ Efficient use of the memory subsystem
(The hardware does not change so power and resilience are 
not impacted by these tests.)

B. Huang, R. Sass, N. Debardeleben and S. Blanchard, 
"Harnessing Unreliable Cores in Heterogeneous Architecture: 
The PyDac Programming Model and Runtime," 2014 44th 
Annual IEEE/IFIP International Conference on Dependable 
Systems and Networks, Atlanta, GA, 2014, pp. 744-749.

♦ Match and Post method for memory access
♦ Object store and no linear array of memory
Currently implemented in software but part of heterogeneous hardware

Design Patterns
Intel TBB (Parallel 
patterns)
♦ Divide and Conquer
♦ Wavefront
♦ Agglomeration
♦ Elementwise
♦ Reduction

Results of matrix multiplication with blocking

A simple application/runtime interface with two user 
methods is implemented 

User application using the runtime interface

c

♦Cholesky, LU, QR, and Matrix multiplication 
algorithms were implemented using “wavefront” 
design pattern
♦Cholesky, LU, and QR works well with point-point 
computation
♦ But proves inefficient with blocking 

Key Question:


	Slide 1

