P4-to-FPGA: High Performance Reconfigurable Networking

Petr Kastovsky
Netcope Technologies, a.s.
U Vodarny 2, 616 00
Brno, Czech Republic

kastovsky@netcope.com

CCS Concepts

eHardware — Hardware description languages and
compilation;

Keywords
P4; FPGA; High Level Synthesis

1. ABSTRACT

OpenFlow [1], as the most popular embodiment of Soft-
ware Define Networking, provides a way to network data-
plane configuration at runtime. The OpenFlow specification
strictly defines a set of supported protocols and actions for
further processing of incoming traffic (i.e, switches are still
mostly fixed). However, modern requirements on network-
ing hardware have a dynamic character and administrators
of high-end networks want to react to new protocols, secu-
rity threats, novel approaches in traffic engineering, and so
on. This isn’t feasible with static network hardware and
leads to the need to replace the hardware more often than
desired.

P4: Programming Protocol Independent Packet Proces-
sors [2], is one step ahead and evades the limitation of fixed
networking devices. P4 provides a way to describe a cus-
tom packet processing chain that involves parsing, match-
ing and assembling modified packets. This additional step
of abstraction allows for even more decoupling of data plane
and control plane, possibly enabling more options in virtu-
alization of networking resources. The language is target
independent and can be mapped to CPUs, FPGAs, NPUs.
FPGAs are aligned with the ideas of P4 because of their
structural programmability and massively parallel nature.

Our work introduces an algorithm that maps P4 to a gen-
eral architecture of FPGA-based networking device. The ar-
chitecture consists of three building blocks - Parser, Match+
Action pipeline and Deparser. Parser transforms each in-
coming packet to the form of protocol headers which are
passed to the Match+Action pipeline. Match+Action pipe-
line implements the required decision-making functionality

H2RC2016 Heterogeneous High-performance Reconfigurable Computing,
Salt Lake City, UT, USA

ACM ISBN 123-4567-24-567/08/06.
DOL: 10.475,/123_4

Pavel Benacek, Viktor Pus
CESNET a.l.e.
Zikova 4, 160 00
Prague, Czech Republic
benacek,pus@cesnet.cz

like IP lookup or ACLs, and also modifies the protocol head-
ers, if necessary. The Match+Action tables are populated in
runtime, similar to OpenFlow. Finally, the Deparser trans-
forms the set of possibly modified protocol headers back to
the form of network packet. The whole device (and its API)
is automatically generated from P4 source code and the net-
work administrators don’t need to write any HDL code. Sev-
eral parameters, such as data width and pipeline depth, can
be used to tune the generated circuit throughput, latency
and area.

60000

50000 [~

40000 -

30000 [

Slice Logic [-]

20000 [

10000 [~

= IPV4 Filter
= IPv4 +1PV6 Filter
— Full Filter
i

0 i i i i i
0 50 100 150 200 250 300 350
Throughput [Gbps]

Figure 1: FPGA resources for different P4 pro-
grams.

Fig. 1 shows FPGA resources and throughput of gen-
erated devices for different parameters on Virtex 7 FPGA.
Resources are expressed in the form of Slice Logic which is
the sum of required LUTs and registers. Three use cases
(or P4 programs) are shown. The [Pvj Filter is a simple
engine where the filtering process is based on source [Pv4
address. The IPvj+IPv6 Filter extends the previous with
IPv6 protocol support. Finally, Full Filter further extends
the previous with the ability to filter or distribute the traf-
fic into separate VLAN/MPLS networks based on source
IPv4/IPv6 address.

2. REFERENCES

[1] Open Networking Foundation. Open Flow.
https://www.opennetworking.org/sdn-
resources/openflow.

[2] P4 Language Consortium. P4. http://p4.org/.



