A C++ Library for Rapid Exploration of Binary Neural
Networks on Reconfigurable Logic

Yaman Umuroglu*f, Nicholas J. Fraser™, Giulio Gambardella®, Michaela Blott®

“Xilinx Research Labs; fNorwegian University of Science and Technology; *University of Sydney

ABSTRACT

Convolutional neural networks (CNNs) with floating point
parameters have been successfully applied to a wide range of
computer vision tasks. It is desirable to use CNNs in both
embedded applications, which typically require fast response
time, low power and lean memory requirements, as well as
in datacenter deployments that seek high performance and
power efficiency. However, these requirements clash with the
characteristics of today’s CNNs, which may contain millions
of floating-point parameters and require billions of operations
to recognize one image. The resulting cost of floating point
computation and the need to read many parameters from off-
chip memory translate into severe limitations to deployment.
Many different types of hardware architectures are being har-
nessed to address the requirements. For example, GPUs offer
high floating point performance, but are limited in power
efficiency. Field programmable gate arrays (FPGAs) typi-
cally deliver lower performance on floating point data types,
but can provide much higher computational capacity and
power efficiency using reduced precision arithmetic. Recent
studies have shown [1, 2, 3] that neural networks can classify
accurately even under extreme quantization, using one-bit
values to represent parameters and perform arithmetic, mak-
ing them suitable for energy-efficient image classification on
FPGAs. Nonetheless, FPGA deployment has been histori-
cally considered a time-consuming task. Recent advances in
High-Level Synthesis (HLS) show how development times can
be reduced significantly in numerous application domains.
We explore how to leverage Vivado HLS to build a library
and toolflow that generates binary neural network inference
accelerators, both for peak and user-defined performance
requirements. The library targets the most common CNN
layers (convolutional, fully connected and max pooling) to
allow the user to implement the desired neural network. To
permit customized implementation while taking advantage
of compile-time optimizations, we adopted templated C+-+
functions, allowing the user to specify both the neural net-
work topology (e.g., number of neurons and synapses) and
implementation (e.g., number of compute resources onto
which neurons are time-multiplexed).

Figure 1 shows an excerpt from the definition of the Matrix—
Vector—Threshold Unit (MVTU), which is used as a library
function for building convolutional and fully connected layers.
The customized values of folding factors (e.g. the for loops
nm and sf) are evaluated at synthesis time depending on
the layer parameters, while the processing elements (PEs)
working in parallel are instantiated by the inner for loop with
the UNROLL pragma. Each processing element performs a

for (unsigned int pe = 0; pe < PECount; pett) {
#pragma HLS UNROLL

weightMem[pe] [rm * synapseFold + sf];
~(weight inElem);
vidth

ap_uint<PECount> outElem = 0;
ed i 0; pe < PECount; pe+s) {

ount [pe] > thresMem(pe] [nm] 2 1 : 0;
// clear the accumulator

Figure 1: Excerpt from MVTU definition in Vivado HLS.

binarized dot product (bitwise XNOR and popcount) and
activation by comparing the results with a threshold. Figure 2

void DoCompute (ap_uint<64> * in, ap_uint<64> * out) {
#pragma HLS DATAFLOW
stream<ap_uint<64> > memInStrm("memInStm");
stream<ap_uint<64> > InStrm("InStm");

stream<ap_uint<64> > memOutStrm("memOutStrm") ;
" , i Instrm) ;
StreamingMatrixVector<LO_SIMD, LO_PE, 16, LO_MW, LO_MH, LO_WMEM, LO_TMEM>

(Instrm, inter0, weightMem0, thresMem0);

. g MW, L1_MH, L1_WMEM, L1_TMEM>
interl, weightMeml, thresMeml);

ingMatrixVector<L2_SIMD, L2_PE, 16, L2_MW, L2_MH, L2_WMEM, L2_TMEM>

er2, weightMem2, thresMem2) ;

or<L3_SIMD, L3_PE, 16, L3_Mi, L3_MH, L3_WMEM, L3 TMEM>
(inter2, outstream, weightMem3, thresMem3);

Stream2Mem<64, outBytesPadded>(memoutStm, out);
}

Figure 2: Combining layers to form a BNN implementation.

shows the definition of a fully connected neural network with
input layer and 3 hidden layers. To build a binarized neural
network, each layer is instantiated with the desired number
of processing elements, and connected into the network via
on-chip streaming channels. We also built a model based on
characterizations of each library component, which computes
the necessary parameters to achieve the desired design target
in terms of resources, classification performance and latency.
The first prototype from the implementation of a 3-layer
fully connected network for inference on the MNIST dataset
is able to reach a peak frame rate of 12.3 million FPS with
0.31ps latency with ~30% of hardware resources on a ZC7045
SoC, while 12 k FPS can be achieved with 2 % of resources
on the same device by scaling down the parallelism.

1. REFERENCES

[1] M. Courbariaux and Y. Bengio. Binarynet: Training deep neural
networks with weights and activations constrained to +1 or -1.
CoRR, abs/1602.02830, 2016.

[2] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi.
XNOR-Net: Imagenet classification using binary convolutional
neural networks. In ECCYV, 2016.

[3] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou.
DoReFa-Net: Training low bitwidth convolutional neural
networks with low bitwidth gradients. CoRR, abs/1606.06160,
2016.

