
The Waverun Programming Model for FPGAs

Abhi D.R. and Ron Sass
Reconfigurable Computing Systems Laboratory

University of North Carolina at Charlotte
{adevalap,rsass}@uncc.edu

1. INTRODUCTION
High-Performance, Heterogeneous platforms, such as those

based on FPGA and newer devices (Intel Phi), use their
specialized cores to improve the speed, power, and energy
efficiency of applications. However, this comes with a sig-
nificant expense to programmability and efficient utilization
of off-chip memory bandwidth. This paper describes a pro-
gramming model that allows a programmer to write a single
program that seamlessly executes across a diverse collec-
tion of cores with very different execution models and per-
formance metrics. The runtime system is responsible for
scheduling tasks and assigning them to the variety of cores.
A memory controller is implemented in the FPGA logic. It
uses named memory segments for communication and is de-
signed to hide memory latency and reduce unnecessary data
movement. (The runtime and memory subsystems are crit-
ical to the proposed programming model but are described
elsewhere [1, 4].)

Specifically, the Waverun programming model is designed
for a popular parallel programming design pattern called the
“wavefront” pattern [2, 3, 5]. This pattern arises in many
dense matrix and dynamic programming algorithms.1 The
organizing principle in the Wavefront pattern is to describe
the computation in a k-ary, n-dimensional iteration space
of computations where each iteration operates on a slice or
block of the matrices.

2. HARDWARE PLATFORM
To understand the programming model, a high-level sum-

mary of the target system is needed. The computational
cores consist of, at minimum, two types of processor cores.
The “green” cores are small, energy-efficient, and possibly
highly specialized. They operate exclusively out of banked/-
multiplexed scratchpad memories and on “bare metal” (no
OS). The “white” processor cores are large, fast, and have
a traditional cache hierarchy with virtual memory. These
cores are optimized for speed. An on-chip network allows

1Other design patterns such as divide-and-conquer were ex-
plored by [1].

H2RC’16, November 14, 2016, Salt Lake City, UT.

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

many simultaneous core-to-core and core-to-memory trans-
fers. The memory controller “owns” the off-chip memory
channels and decides when and where to transfer memory
segments based on their names. Tasks do not begin until all
of the requested memory is available in local memory and
run to completion before another task is scheduled.

3. PROGRAMMING MODEL
In the Wavefront design pattern, the programmer creates

tasks and a top-level series of if-then-else statements for
each task that determines where the task is located in the it-
eration space. For some algorithms, the first row of tasks are
different from the first column which is different an interior
point. In the proposed model, this top-level structure is re-
placed with a list of functions (customized for the algorithm
and based on its location) where each function becomes a
specialized task.

When using MPI, for example, the programmer is also re-
sponsible for identifying the task’s neighbors based on a rank
and communicator so that the tasks can exchange data. In
the proposed model, the uniform naming system for memory
segments allows the memory controller to match producers
and consumers. Hence, the programmer writes every task as
a set of input-compute-output functions and then relies on
the runtime to schedule and manage the parallelism while
the memory subsystem handles communication and consis-
tency across the various heterogeneous cores.

The API consists of six calls to the runtime. The pro-
grammer provides a getFunc which returns a function list
(and, of course, the functions in the list). Inside of each task
match and post request input and produce output memory
segments. Finally, a main function calls prime to inject the
initial memory segments (inputs to the application) into the
memory subsystem, schedule to start the runtime system,
and gather to pull the resulting memory segments together
(to produce application’s output).

4. RESULTS
The proposed system has been implemented in software

and hardware. The purely software system was used to ex-
plore the feasibility of a range of algorithms including (i)
Matrix Multiplication (ii) LU Decomposition (iii) QR De-
composition (iv) Cholesky Decomposition. The hardware
system is a Xilinx Zync XC706 with two “white cores” (the
ARM processors) and twenty“green”cores. The multiplexed
scratchpads, on-chip network, runtime, and memory subsys-
tems have been verified independently but the full end-to-
end system has yet to be integrated.

10.1145/1235

5. REFERENCES
[1] B. Huang, R. Sass, N. DeBardeleben, and S. Blanchard.

Harnessing unreliable cores in heterogeneous
architecture: The PyDac programming model and
runtime. In 2014 Dependable Systems and Networks
(DSN), pages 744–749, June 2014.

[2] Intel Inc. Design patterns.
https://www.threadingbuildingblocks.org/docs/help/
hh goto.htm?index.htm#tbb userguide/Design
Patterns/Design Patterns.html Accessed September 23,
2016.

[3] E.-G. Kim and M. Snir. Wavefront pattern.
http://snir.cs.illinois.edu/patterns/wavefront.pdf.
Accessed September 23, 2016.

[4] Y. Rajasekhar. Revisiting the memory hierarchy in the
many-core era: Computation is cheap, bandwidth is
everything. PhD thesis, University of North Carolina at
Charlotte, 2014.

[5] J. Reinders. Intel Threading Building Blocks. O’Reilly
& Associates, Inc., Sebastopol, CA, USA, first edition,
2007.

APPENDIX
Figure 1 shows the obligatory matrix-matrix multiply kernel
using the proposed programming model.

https://www.threadingbuildingblocks.org/docs/help/hh_goto.htm?index.htm#tbb_userguide/Design_Patterns/Design_Patterns.html
https://www.threadingbuildingblocks.org/docs/help/hh_goto.htm?index.htm#tbb_userguide/Design_Patterns/Design_Patterns.html
https://www.threadingbuildingblocks.org/docs/help/hh_goto.htm?index.htm#tbb_userguide/Design_Patterns/Design_Patterns.html
http://snir.cs.illinois.edu/patterns/wavefront.pdf

1 class dgemm(waverun):#Class inherits runtime
2 def __init__(self ,A,B):
3 self.A=A #Input matrix
4 self.B=B #Input Matrix
5 self.Func ={} #List of functions for scheduler
6 def Mul(self ,data1 ,data2 ,citer): #Computation
7 immd=0
8 if(citer !=0):
9 immd= self.match(’immd’,citer -1)

10 result=immd+data1*data2 #Computation
11 #Post all the results
12 self.post(data1 ,’vert’,citer)
13 self.post(data2 ,’horz’,citer)
14 self.post(result ,’immd’,citer)
15 self.post(self.match(’immd’,citer),’M’)
16 return
17 def Corner(self ,citer): #(0,0) iterspace
18 #Gather all the necessary data
19 data1=self.match(’data1’,citer)
20 data2=self.match(’data2’,citer)
21 self.Mul(data1 ,data2 ,citer) #Call computation
22 return
23 def Xedge(self ,citer): #(*,0) itersapce
24 data1=self.match(’data1’,citer)
25 data2=self.match(’horz’,citer ,pos[0]-1,pos [1])
26 self.Mul(data1 ,data2 ,citer)
27 return
28 def Yedge(self ,citer): #(0,*) iterspace
29 data1= self.match(’vert’,citer ,pos[0],pos[1]-1)
30 data2= self.match(’data2’,citer)
31 self.Mul(data1 ,data2 ,citer)
32 return
33 def Interior(self ,citer): (*,*) iterspace
34 data1=self.match(’vert’,citer ,pos[0],pos[1]-1)
35 data2=self.match(’horz’,citer ,pos[0]-1,pos [1])
36 self.Mul(data1 ,data2 ,citer)
37 return
38 def getFunc(self): #Method listing all functions
39 Func={’00’:self.Corner ,’$0’:self.Xedge ,’0$’:
40 self.Yedge ,’$$’:self.Interior ,’*0’:self.Xedge ,
41 ’0*’:self.Yedge ,’$*’:self.Interior ,
42 ’*$’:self.Interior ,’**’:self.Interior}
43 return Func
44 #Function input to application
45 def prime(self):
46 l=-1
47 for i in range (1,self.A.shape [0]+1):
48 k=0
49 l+=1
50 for j in range (1,self.B.shape [0]+1):
51 self.post(self.A[i-1][j-1],’data2’,k,1,i)
52 self.post(self.B[i-1][j-1],’data1’,l,j,1)
53 self.post(self.A.shape[0],’maxi’,’’,i,j)
54 k+=1
55 if __name__ ==’__main__ ’:
56 myapp=dgemm(Amat ,Bmat) #Create an app object
57 wave.schedule(myapp ,(row ,column),row) #Call runtime
58 wave.gather(’M’) #Gather results

Figure 1: Matrix Multiplication

	Introduction
	Hardware Platform
	Programming Model
	Results
	References

