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I. INTRODUCTION

The use of Field-Programmable Gate Arrays (FPGAs)
in heterogenous high-performance compute architectures en-
ables the exploration of alternative computing models. FP-
GAs can be tailored to accelerate applications with custom
architectures aiming at reducing control overhead and power
consumption with respect to Graphics Processing Units
(GPUs) and Central Processing Units (CPUs). Effectively,
compared with standard accelerators, FPGAs have the advan-
tage of flexibility, enabling better application-centric designs.

One direction in which this flexibility can be invested is
the memory system. In traditional accelerators, the memory
system only supports limited parallelism by using distributed
memories. However, it is the task of the application program-
mer and/or the compiler to (re-)group the memory accesses
such that the bandwidth is maximized. In this paper, we argue
that it is time to investigate the performance impact of smart
parallel memory systems, able to adapt themselves to the
memory access pattern of the application.

II. BACKGROUND

A Polymorphic Register File (PRF) is a parameterizable
register file, which can be logically reorganized by the pro-
grammer or the runtime system to support multiple register
dimensions and sizes simultaneously [3], [4]. The PRF can
be used as a parallel scratchpad, to store data structures that
need high speed access. The PRF optimizes the memory
throughput for a set of predefined memory access patterns.
When implemented in reconfigurable technology, PRFs allow
additional runtime customization of capacity, throughput,
number of read/write ports, and supported access patterns.

For the PRF implementation, we consider p X ¢ memory
modules and five parallel access schemes [3]. Each scheme
supports dense, conflict-free access to p- ¢ elements arranged
in one or more of the following access patterns: rows,
columns, rectangles, diagonals, and secondary diagonals.

In this work, we employ the PRF as a parallel memory
that supports a mix of the five access schemes mentioned
above. Therefore, by analyzing the stream of accesses from
the application to the memory system, and decomposing it
into combinations of PRF patterns, we effectively enable
parallel memory accesses.

III. IMPLEMENTATION AND PRELIMINARY RESULTS
This paper focuses on the Design Space Exploration (DSE)
for custom parallel memories based on the PRF idea. Specif-

ically, we investigate how to determine the best organization
of the parallel memory for a given application, using memory
throughput and efficiency as optimization criteria.

For DSE we assume a PRF configured with A/ memories
and a set of access schemes, S, and we explore the optimal
sequence of PRF parallel accesses that covers the application
memory accesses. For this exploration, we need two stages:
generation and selection. More specifically, assuming a 2D
region of memory, R, that covers all application access
patterns, the access generator produces all possible PRF
parallel accesses of M elements. The selection stage chooses,
from all these accesses, the sequence of parallel accesses
of length M that optimally cover the parallel access of the
application. Covering a given parallel access with a set of
smaller parallel accesses, like the ones obtained by the access
generator, is a particular instance of the set covering problem.
Therefore, we use an ILP solver to minimize the canonical
formulation of such a problem [5]:

minimize Z X481, Z zs > 1, Vee Uz, € {0,1}, VS € C.
SecC S:e€s

In our case, the universe U contains all the elements accessed
by the application, the coverage C' is the minimum set of
parallel accesses that covers the universe, S is an access
produced by the simulator, and z; is a binary codification of
S being part of the solution.

For evaluation, we used the access pattern of the kmeans
algorithm (one of the 13 computational dwarfs[1]), as ex-
tracted from the Rodinia implementation of the algorithm[2].
As the original pattern was too regular for our purposes
(row-based only), we have degenerated it into 4 new pat-
terns: a “chess” pattern (stride 2 regular access), a “dense”
pattern (read 2, skip 1), a ”sparse” pattern (read 1, skip
2), and a “random” pattern (read 1, skip random). Our
results demonstrate that: (1) there is significant speedup to be
obtained using parallel memories for all these patterns, and
(2) the trade-off between efficiency, speed-up, and size of the
memory system can determine the best application-centric
organization of a parallel memory system. We support these
claims with Fig. 1 and 2 included in the Appendix !.

Due  to space  limitations, we cannot include a more
in-depth  analysis. More graphs and data are available at
https://github.com/giuliostramondo/prf-simulator.



IV. SUMMARY

In this work we investigate the idea of using the PRF [3]
as a smart parallel memory system, to enable less-than-
regular patterns be served by a parallel memory. Our focus
is on the design space exploration for the organization of
such an application-centric parallel memory, and our goal
is to maximize speed-up and/or efficiency. Our preliminary
results show interesting trade-offs between speed-up and
efficiency, and ultimately indicate the best design points for
this organization. We are currently working on a prototype
implementation, using the Maxeler toolchain, on which we
can validate the proposed designs. Results from this step will
be included in the full version of the paper.

APPENDIX

Due to space limitations, we only include two figures
to support our preliminary results in this section. Figure
1 shows the advantage of using a parallel memory over
a sequential one. This graph shows the speedup obtained
for all our test cases and different PRF access schemes. R
stands for parallel row accesses, RD for a combination of
row and diagonal accesses, and RE for rectangular accesses.
The speedup metric used in this work is defined as:

Sequential Accesses

Speedup =
peeaup Parallel Accesses

Figure 2 shows how efficient is the usage of all the
memory computed over the same test cases; we claim that
this metric is correlated with the power consumption of the
entire memory system. The efficiency metric used in this
work is defined as:

Ef ficiency = Sequential Accesses

FElementsAccessedinParallel

. These results prove that parallel memory systems deliver
performance even for sparse accesses, but choosing the right
configuration for the memory system can have a high impact
on efficiency.
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Fig. 1. Speed-up of the parallel memory system for different access
patterns. Note that the number of accesses differs for the different
access patterns: “full” has the most accesses, while “random” has
the least. Also note that the R-, RD-, RE- refer to the PRF schemes.
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Fig. 2. Efficiency of the parallel memory system for different access
patterns. note that the R-, RD-, RE- refer to the PRF schemes.



