Enabling Design Automation for Data Analytics

Vito Giovanni Castellana,

Marco Minutoli, Antonino Tumeo
High Performance Computing - PNNL

{vitoGiovann_i.castellana, marco.minutoli,
antonino.tumeo}@pnnl.gov

Data Analytics applications, such as graph databases, of-
ten employ pointer or linked list-based data structures that,
although convenient to represents dynamically changing re-
lationships among the data elements, induce an irregular be-
havior. These data structures, in fact, allows spawning many
concurrent activities, but present many unpredictable, fine-
grained, data accesses, and require many synchronization
operations. Partitioning the datasets without generating
load imbalance is also very difficult. Conventional general-
purpose architectures are optimized for locality and reduced
access latency, and do not cope well with these workloads,
making application-specific accelerators (implemented, for
example, on Field Programmable Gate Arrays - FPGAs)
an appealing solution. However, conventional High-Level
Synthesis (HLS) approaches, which provide a way to re-
duce the effort of designing custom accelerators by auto-
matically translating program descriptions in high-level lan-
guages such as C to specifications in hardware description
languages (Verilog or VHDL), are not yet well optimized for
these types of workloads. In fact, conventional HLS flows
traditionally target compute intensive workloads (i.e., dig-
ital signal processing) that mainly expose instruction level
parallelism, and can be easily partitioned across replicated
functional units. They also usually assume a simple memory
system focusing more at reducing, rather than tolerating,
data access latencies.

We have developed a set of novel architectural templates
and HLS methodologies to automatically generate efficient
accelerators for graph methods. To validate our approach,
we have investigated the integration of the approach into
GEMS (Graph Engine for Multithreaded Systems), a graph
database for commodity homogenous clusters based on the
Resource Description Framework (RDF) and the SPARQL
query language. GEMS exploits and optimizes for graph
methods at all layers of its stack, and is able to scale in
size as more nodes are added to system while maintain-
ing constant query throughput. Coupling GEMS with our
HLS approach, we have been able to generate accelerators
for SPARQL queries coming from the Lehigh University
Benchmark (LUBM), a reference benchmarks for Seman-
tic Web Repositories. We have integrated our HLS tem-
plates and methodologies in an openly available High Level
Synthesis tool, Bambu (http://panda.dei.polimi.it). These
include: a Parallel distributed Controller (PC) , a Hierarchi-
cal, multi-ported, Memory Interface (HMI), and a Dynamic
Task Scheduler (DTS). The PC allows generating more effi-
cient designs that exploit coarse grained (task level) paral-
lelism than the typical centralized controllers of conventional
HLS flows based around the Finite State Machine with Dat-
apath (FSMD) model, in terms of performance and area
utilization. This is a key element in accelerating graph al-

Marco Lattuada, Fabrizio Ferrandi
DEIB - Politecnico di Milano
{marco.lattuada,

fabrizio.ferrandi}@polimi.it

gorithms that basically are composed of a varying number
of nested loops, iterating on vertices or edges, where each
iteration could identify a different task. By adopting the
PC, it is easy to coordinate parallel execution of tasks on
an array of replicated accelerators. The HMI provides a
solution to dynamically disambiguate fine-grained memory
accesses to locations of a large, multi-banked memory, while
providing an abstract view of a shared memory to the HLS
flow and the accelerator pool. In cooperation with the PC,
the HMI also enables the support for atomic memory op-
erations. Graph algorithms typically access unpredictable
memory locations with fine-grained transactions (i.e., the
follow pointers), and their implementation is much easier
when considering a shared memory abstraction. Also, they
often are synchronization intensive when parallelized, be-
cause the different tasks may access the same elements con-
currently. Finally, the DTS provides a way to execute new
tasks as soon as one of the multiple accelerators is free: in-
stead of simply using a fork/join model, where all currently
executing tasks on the set of accelerators must terminate be-
fore a new group could be executed, the DTS allow schedul-
ing new tasks as soon as one of the accelerators is free. This
adapt to a variety of graph algorithms where certain tasks
(iterations) may execute for a long time, while other could
terminate early, such as when a graph walk is pruned early
because it reached an uninteresting part of the graph.

We have integrated GEMS with Bambu, synthesized 7
queries from LUBM, and tested the performance of the gen-
erated accelerators using a dataset of 5,309,056 RDF "triples”.
In the table, we compare, in terms of execution latency, a
serial implementation of the architecture (Single Acc.), one
that employs PC and the HMI, and one that also includes
the DTS (Dynamic Scheduler). The parallel architectures
include 4 accelerators and HMIs with 4 ports. With respect
to the serial implementation, the architectures employing
the DTS generally show a speed up close to the theoretical
maximum. In many cases, the DTS also provides significant
speed ups against the PC designs. The DTS also maximizes
utilization of the available memory channels. With the DTS,
3 out of 4 of the memory ports are utilized for more than
75% of the time.

. Parallel Dynamic Speedup
Single Acc. Controller | Scheduler Single A Parallel
Cycles # Cycles | # Cycles mgle ACC | Controller
Q1 [1,082,526,974 | 1,001,581,548 | 287,527,463 3.76 3.48
Q2 7,359,732 2,801,694 2,672,295 2.75 1.05
Q3 308,586,247 98,163,298 | 95,154,310 3.24 1.03
Q4 63,825 42,279 19,890 3.21 2.13
Q5 33,322 13,400 8,992 3.71 1.49
Q6 682,949 629,671 199,749 3.42 3.15
Q7 85,341,784 35,511,299 | 24,430,557 3.49 1.45
We believe that our results demonstrate the applicability

of HLS to data analytics, providing a way for productively
using custom accelerators in this area.

