
Garbled Circuits for Preserving Privacy in the Datacenter

Xin Fang
Dept of Electrical and
Computer Engineering
Northeastern University

Boston, MA, USA
fang.xi@husky.neu.edu

Stratis Ioannidis
Dept of Electrical and
Computer Engineering
Northeastern University

Boston, MA, USA
ioannidis@ece.neu.edu

Miriam Leeser
Dept of Electrical and
Computer Engineering
Northeastern University

Boston, MA, USA
mel@coe.neu.edu

ABSTRACT
Garbled Circuits (GC) are a flexible way to support Secure
Function Evaluation, and thus preserve the privacy of user
data. We believe that GC is well suited to acceleration using
FPGAs in the datacenter. In this paper we present some
preliminary results.

1. INTRODUCTION
Privacy is an increasing concern as more of our trans-

actions become digital and data is shared with others. The
field of Secure Function Evaluation (SFE) addresses the prob-
lem of evaluating functions without being able to determine
the original values of the function’s inputs. Popular tech-
niques for secure function evaluation include garbled circuits
(GC), originally introduced by Yao [3]. In general, SFE is
much more computationally intensive than function evalu-
ation in the clear, and for this reason has not been widely
adopted. Recently, implementations of GC have appeared,
but these are orders of magnitude slower than simple func-
tion evaluation. We believe that SFE can be substantially
accelerated by FPGAs in the datacenter, making these tech-
niques usable and more widely adopted.

In this paper we consider two parties holding private data,
who wish to know the outcome of a function without reveal-
ing the raw data on which the function is evaluated. This
can easily be extended to several parties with private data
and one evaluator who computes the function. We make the
following assumptions: 1) All parties know the function to
be evaluated and wish to share the result, but individuals do
not wish to reveal their raw data. 2) We assume an honest
but curious trust model where all parties agree to follow the
protocol, but are free to try to infer as much information
as possible within these constraints. In addition, we take
advantage of oblivious transfer which allows parties to share
data without revealing that data. The canonical example
of garbled circuits is known as the millionaire’s problem:
two millionaires wish to know which of them is worth more
without exchanging their actual worth. This is the type of
problem that GC is intended to solve. More relevant prob-
lems in today’s society might be to determine the average
blood pressure of a group of individuals without any of them
revealing their medical records.

2. FPGA OVERLAY ARCHITECTURE
GC allows many types of problems to be solved provided

they can be represented as a Boolean circuit, which encom-
passes a very large range of functions. Recent techniques for

garbling make the evaluation more efficient, by representing
such a circuit as a network or AND gates and XOR gates,
where garbling of the XOR gates is considered free. Inputs
to a circuit are first encrypted, resulting in an 80 bit value.
Thus free XOR gates garble 80 bits. AND gates consist of
four encryption cores. For our implementation, we use SHA-
1 cores working on 80 bit inputs; this encryption is strong
enough within the context of GC. We make use of an open
source SHA-1 core [1] and use 512 bits of input and 80 cycles
to evaluate an AND.

The design of GC is well suited to a coarse grained over-
lay architecture where a sea of garbled AND gates is im-
plemented on the FPGA along with XORs. Note that a
problem such as matrix multiplication may require tens of
thousands of garbled AND gates. An overlay architecture al-
lows us to rapidly reuse the garbled gates for different AND
gates in the same layer of a GC, different layers, or different
applications, without requiring recompilation of the FPGA
implementation. On the garbling side, a problem is first
translated to a Boolean circuit, then assigned to layers of
gates for evaluation. The CPU transfers inputs as well as
an assignment of gates to realizations in the overlay. Output
of the FPGA consists of encrypted values to represent each
AND gate that are transferred to the evaluator.

3. PRELIMINARY RESULTS
Our goal is to run GC on the Novo-G cluster in Florida.

Our current implementation targets a Gidel board with a
Stratix V FPGA, one of the boards on the Novo-G cluster.
For a range of small examples, including millionaire, ham-
ming distance and sorting (among others) we are seeing 2 to
3 orders of magnitude improvement in run time over a se-
quential implementation using ObliVM [2]. We use ObliVM
both to generate the garbled circuit structure and to validate
our results. In the future, we plan to extend our implemen-
tation to larger examples as well as multiple nodes in the
cluster.

4. REFERENCES
[1] J. Strömbergson. SHA1.

https://github.com/secworks/sha1.

[2] X. S. Wang, C. Liu, K. Nayak, Y. Huang, and E. Shi.
ObliVM: A programming framework for secure
computation. IEEE Symposium on Security and
Privacy (S & P), 2015.

[3] A. Yao. How to generate and exchange secrets. In
Foundations of Computer Science, pages 162–167, 1986.


