
Automatic Generation of 100 Gbps Packet Parsers from P4
Description

Pavel Benáček, Viktor Puš
CESNET, a. l. e.

Zikova 4,160 00 Prague
Czech Republic

benacek,pus@cesnet.cz

Hana Kubátová
Faculty of Information Technology

Czech Technical University in Prague
Thakurova 9,16000 Prague 6

hana.kubatova@fit.cvut.cz

ABSTRACT
Software Defined Networking and OpenFlow offer an ele-
gant way to decouple network control plane from data plane.
This decoupling has led to great innovation in the control
plane, yet the data plane changes come at much slower pace,
mainly due to the hard-wired implementation of network
switches. The P4 language aims to overcome this obstacle
by providing a description of a customized packet processing
functionality for configurable switches. That enables a new
generation of possibly heterogeneous networking hardware
that can be run-time tailored for the needs of particular ap-
plications from various domains, such as HPC.

In this paper we contribute to the idea of P4 by present-
ing design, analysis and experimental results of our packet
parser generator. The generator converts a parse graph de-
scription of P4 to a synthetizable VHDL code suitable for
FPGA implementation. Our results show that the generated
circuit is able to parse 100Gbps traffic with fairly complex
protocol structure at line rate on a Xilinx Virtex-7 FPGA.
The approach can be used not only in switches, but also
in other appliances, such as application accelerators and
smart NICs. We compare the generated output to a hand-
written parser to show that the price for configurability is
only slightly larger and slower circuit.

Categories and Subject Descriptors
C.2.3 [Computer Systems Organization]: Special-purpose
and Application-based Systems—Microprocessor/microcomputer
applications; B.6.3 [Hardware]: Logic Design—Design Aids

General Terms
High-Level Synthesis, FPGA, P4, SDN, OpenFlow

1. INTRODUCTION
OpenFlow [5], as the most popular embodiment of the ideas
of Software Defined Networking, provides a way to fill the
match tables of switches at runtime. The OpenFlow speci-

fication defines exactly which protocols must be supported
by the switches to support all matching features. At the
same time, it is not possible to change that set of protocols
– switches’ packet parsers are fixed. (Or at least they appear
so to the OpenFlow controller.)

P4: Programming Protocol-independent Packet Processors
[2, 6] is one step ahead and evades the limitation of fixed pro-
tocol set. It defines a way to configure the packet parsing
functionality of switches at runtime. It is envisioned that
a P4-capable switch translates this platform-independent
parser description into a representation that fits the ac-
tual hardware resources of the switch. Such representation
may include a code for a general or specialized processor, an
FPGA firmware, an advanced ASIC configuration or other
computational platforms.

Since P4 is a visionary and relatively new concept, there are
no commercially available switches supporting it at the time
of writing this paper (August 2015). We contribute towards
the vision of P4 by designing and evaluating a generator of
high-speed packet parser suitable for FPGAs. The gener-
ator’s output is a synthetizable VHDL code that performs
packet parsing as defined by the P4 program. Its inter-
nal structure is inspired by that of a parser hand-written
by a skilled HDL programmer and therefore there is only a
small difference in chip area and frequency. Parser’s data
width and number of internal pipeline stages are config-
urable parameters, so that the parser can be tuned for par-
ticular throughput, area and latency requirements. Since
we envision that P4 may span applications besides network
switches, we believe that our work can be used in other ap-
pliances, such as application accelerators, smart NICs and
various network security devices.

The rest of the paper is organized as follows: Section 2
presents other papers related to our work. Section 3 pro-
vides more details about the P4 language aspects that are
relevant for this work. Section 4 describes the design of the
generator as well as the structure of parsers it generates.
Section 5 provides results of our generator and compares
them to a hand-written parser. Finally, section 6 draws
conclusions from the results.

2. RELATED WORK
NetPDL [11] is an XML-based language for packet header
description. Its capabilities are similar to header formats
and packet parser description in P4. Similarly, Attig and



Brebner in [1] present the PP language, which serves for the
description of packet headers and parse graphs. They also
demonstrate a compiler from PP to FPGA representation.

Both approaches lack description of the packet processing
functionality that follows after packet parsing. In order to
allow seamless continuation of our work in that direction,
and due to recent good reception of P4 in the SDN commu-
nity, we have chosen P4 as our starting point.

Gibb et al. in [4] present a detailed design of fixed and con-
figurable packet parsers for ASICs. Reconfigurable Match
Tables (RMT) [3] provide a design of a complete packet pro-
cessing functionality similar to P4, including packet parsing.
The design of packet parser in RMT is rather simple and re-
lies heavily on associative memories.

Both of these works assume ASICs as the target implemen-
tation platform. Our work aims at exploiting the on-field
structural programmability of FPGAs, avoiding overheads
of general-purpose architecture.

The P4 Language Consortium provides some basic tools
which can be used in 3rd party projects. Source codes of
these tools are publicly available under open source license.
The main project is P4-HLIR [8] which is the front end of
the P4 compiler, creating Python object model of the P4
program. It becomes useful for other projects because one
can easily continue with implementation of compiler’s back
end from this object representation. P4C-BEHAVIORAL
[9] and P4C-GRAPHS [7] are examples of back ends for two
different targets - C language in case of P4C-BEHAVIORAL

3. THE P4 LANGUAGE
P4: Programming Protocol-independent Packet Processors
[2, 6] is a high-level, platform-agnostic language. It repre-
sents a recent contribution to the broader idea of SDN and
the SDN ecosystem. Its main purpose is to provide a way
to define packet processing functionality of network devices,
paying attention to reconfigurability in the field, protocol
independence and target (platform) independence. Using
relatively simple syntax, P4 allows to define five basic as-
pects of packet processing:

• Header Formats describe protocol headers recog-
nized by the device.

• Packet Parser describes the (conceptual) state ma-
chine used to traverse packet headers from start to end,
extracting field values as it goes.

• Table Specification defines how the extracted header
fields are matched in possibly multiple lookup tables
(e.g. exact match, prefix match, range search).

• Action Specification defines compound actions that
may be executed for packets.

• Control Program puts all of the above together,
defining the control flow mainly among the tables.

For our work, the first two aspects of P4 are relevant. Header
format description may look like this:

header ethernet {

fields {

dst_addr : 48; // width in bits

src_addr : 48;

ethertype : 16;

}

}

The description simply lists fields of the packet header and
their width in bits. Previous example shows the situation
with static header where the header length is the sum of
lengths of all fields. This can’t be done for protocols with
variable header length. P4 solves this situation by the header
length definition in form of an expression which uses fields
from the protocol header declaration to compute the header
length. Header format description with variable length may
look like this:

header_type ipv6_ext_t {

fields {

nextHdr : 8;

totalLen : 8;

frag : 12;

padding : 3;

fragLast : 1;

}

length : (totalLen + 1) * 8;

max_length : 1024; // Bytes

}

Packet parser description constructs a parse graph using the
header format description, for example:

header ethernet eth;

parser ethernet {

extract(eth);

switch(eth.ethertype) {

case 0x8100: vlan;

case 0x9100: vlan;

case 0x800: ipv4;

case 0xA100 mask 0xF100 : myProto;

}

}

The provided example consists of the switch and extract
statement. The extract statement instructs the P4 parser
to examine input packets and look for data defined in the
header. Parsed data is then used in the switch statement
to determine the next state (protocol) to process. There
are also situations when we don’t want to use the whole
value from the protocol field. The P4 language solves this
with the mask statement which is used in the case state-
ment together with mask value. In our example, the mask
statement instructs the P4 parser to take the ethertype field,
perform logical and operation between the value and mask
and compare the result to 0xA100.

4. PARSER GENERATOR DESIGN



This section introduces the basic architecture (Section 4.1)
of our firmware parser called HFE M2 [10] and a transfor-
mation algorithm (Section 4.2) from a P4 description to the
VHDL architecture of HFEM2. Section 4.3 describes how to
infer special parameters of HFE M2 architecture which allow
us to optimize consumed resources of FPGA chip. Finally,
section 4.4 analyzes time complexity of the transformation
algorithm.

4.1 Overview of HFE M2
The main idea of automatic generation of 100Gbps parser
comes from the architecture of HFE M2. The architecture
consists of two main block types - protocol analyzers and
pipelines. Protocol analyzers are the heart of the whole ap-
proach. A generic interface is used for connection between
the protocol analyzers. There is an optional pipeline block
between each two protocol analyzers. The pipeline blocks
can be individually enabled/disabled at compile time to tune
the final frequency, latency and chip area. Protocol ana-
lyzers and pipeline blocks are connected to the processing
chain which represents the protocol stack of incoming net-
work packet. An example of the HFE M2 processing chain
is shown in Fig. 1.

P
I
P
E
.

0

P
I
P
E
.

1

Ethernet

Analyzer

IP 

Analyzer

Ethernet Frame

Eth IP TCP

Input

Eth IP

TCP/UDP

Analyzer

TCP

P
I
P
E
.
 
2

P
I
P
E
.
 
3

Figure 1: HFE M2 architecture

Protocol analyzer uses Generic Protocol Parser Interface
(GPPI) for connection between modules. This interface pro-
vides the input information necessary to parse a single pro-
tocol header. That is: (1) current packet data being trans-
ferred at the data bus, (2) current header offset within the
packet and (3) expected protocol to parse. GPPI output
information includes (4) extracted packet header field val-
ues, plus the information needed to parse the next protocol
header: (5) next header offset and (6) type of the next pro-
tocol header. More details about the GPPI can be found
in [10]. Brief architecture of each protocol analyzer block is
shown in Fig. 2.

Protocol Analyzer architecture contains four basic block types:
(1) Data Extractors, (2) Next Protocol Decoder, (3) Length
Generator and (4) Adder. Data Extractors are used to ex-
tract packet data from a given offset. Data Extractors are
configured with two parameters - Extract Length and Ex-
tract Offset. The first parameter defines the number of ex-
tracted bytes from packet data. The offset of data within
the packet is computed as the sum of current header offset (a
value from GPPI interface) and the Extract Offset param-

Protocol Analyzer

(4) Extracted Data
(1) Input Data

(2) Input Offset

(3) Inp�� �rotocol

(6) Ou�p�� �rotocol

(5) Output Offset

Data

Extractor

Data

Extractor

Data

Extractor

+

Next 

�rotocol

Decoder

Length Gen.

Figure 2: Protocol Analyzer Architecture

eter. Note that Data Extractor blocks contain multiplexers
which allow to extract data from any byte position. These
multiplexers can be configured with some additional opti-
mization parameters which have an influence on consumed
resources. We describe these parameters in Sec. 4.3.

Next Protocol Decoder is used to compute the next expected
protocol. Its structure is fully dependent on the protocol
header format. Generally, it is a function converting some
extracted packet header bytes into an internal number rep-
resenting the protocol type.

Length Generator block is used to compute the length of cur-
rent protocol header, so that it can be added to the Input
Offset signal to obtain the Output Offset signal, which repre-
sents the start offset of the next protocol header. The added
offset value can be a constant or a result of an equation (see
the header format specification in previous section).

From the perspective of parser generation, we can identify
three basic types of blocks in the Protocol Analyzer struc-
ture (see Fig. 2): (1) Static (green color), (2) Configured
(grey color), (3) Fully protocol-specific (blue color). The
static block is used in every Protocol Analyzer without any
change. The protocol analyzer architecture contains only
one static block, which is the adder. This block is used to
compute the next protocol offset from current Input Offset
and Length Generator output. The second group of blocks is
general enough for usage in all protocol analyzers, only with
different parameters settings. The architecture contains sev-
eral Data Extractor blocks which can be instantiated and
configured regarding to Header Format specification. There
are two blocks marked blue. These blocks are entirely pro-
tocol specific, so that every protocol analyzer needs custom
implementation of them. That means that Protocol Decoder
and Offset Generator must be uniquely created for each pro-
tocol analyzer from P4 Header Description.

This architecture of Protocol Analyzer is general enough for
processing of most protocols. For this target block struc-
ture, we can generate, configure and connect all described
blocks in automatic way from a P4 program. Details of this
transformation process are discussed in the next section.

4.2 Transformation from P4 to HFE M2
Transformation algorithm is one of the key problems ad-
dressed in this paper. As we note in Sec. 4.1, HFE M2
architecture consists of protocol analyzers and pipeline mod-
ules which are connected to processing chain. The transfor-
mation from P4 to HFE M2 can be divided into two basic



problems - (1) Generating the protocol analyzers and (2)
Generating the processing chain. Inputs of the transforma-
tion process are Header Format and Parser Graph Repre-
sentation.

We define the Parser Graph Representation (PGR) as an ori-
ented graph which is generated from the P4 Packet Parser
description. Each node (or state) represents one packet
header and each transition represents the next parsed pro-
tocol header. Each transition is taken based on the parsed
data. Condition of a transition is inferred from the P4
Packet Parser description. Loop edge represents situation
when we want to support more protocols of the same type
in protocol stack (like VLAN or MPLS stacking, for exam-
ple). Each non-finite state contains additional transition
to the Unknown state. This state is not described in P4
program but it is required by the parser. It represents the
situation when no value matches the actual set of transition
conditions (e.g. we cannot continue in the parsing of next
protocol header). Each PGR node also contains a pointer
to Header Format specification which is needed during gen-
eration of individual Protocol Analyzers. The PGR repre-
sentation is built from a P4 Packer Parser description using
the depth-first search (DFS) algorithm. We introduce more
details about this structure in the following text. An exam-
ple of this generated representation is in Fig. 3. The figure
doesn’t show transition conditions in order to keep it well
arranged.

Eth 

 0

VLAN 

 1

IPv6 

 2

IPv4 

 2

Unknown

Unknown

TCP 

 3

UDP 

 3

ICMPv6 

 3

Unknown

ICMP 

 3

Unknown

Figure 3: Parser Graph Representation; supports
2xVLAN, IPv4, IPv6, TCP, UDP, ICMP, ICMPv6

As we note in Sec. 4.1, Protocol Analyzer consists of four
basic types of blocks. We now describe how each Protocol
Analyzer block is generated.

The Length Generator block is derived directly from P4
Header Description. It can be either a constant in case of
constant length header, or a (usually simple) formula in case
of variable length header.

The Next Protocol Decoder is also generated from the P4
Packet Parser description. Each transition from the parser
state is described in the P4 switch statement by the tuple
(value, next state). Therefore we can implement Protocol
Decoder by a multiplexer which selects the next protocol
based on currently parsed values. The protocol headers that
follow currently parsed header are found in PGR.

Extracted Data of Packet Analyzer can be inferred from the

Header Format specification because we know the structure
of protocol fields in the parsed protocol. Therefore, we can
extract protocol fields from extracted data using the list of
protocol fields and their sizes.

Adder is a static block common to all Protocol Analyzers.

Finally, Data Extractor blocks are parameterizable units
which can be used in all Protocol Analyzers without any
change, only by setting the parameters to match the target
protocol. When generating the Next Protocol Decoder and
Length Generator blocks and Extracted Data outputs, Data
Extractors are instantiated and parametrized as needed. Both
Extract Length and Extract Offset parameters are directly
derived from the P4 description.

Generation of the processing chain uses PGR as an input.
The key problem is to identify a place for insertion of each
protocol analyzer in the processing chain. This chain of
protocol analyzers represents processed protocol stack as we
describe in Sec. 4.1. Our task is to identify the longest paths
to each node in a PGR. Length of the longest path from
root to a node represents position in the processing chain.
If we have several nodes on a same level, we connect protocol
analyzers in series. The longest paths in PGR is found using
the Alg. 1. The algorithm recursively traverses and identifies
node levels in inspected PGR. The result of this algorithm
is shown in Fig. 3 where each node contains a number which
represents the length of the longest path from root (e.g. the
latest possible use of a protocol header in a packet).

Finally, we introduce a brief Alg. 2 which is used for gener-
ation of complete HFE M2 architecture from a P4 descrip-
tion. We have implemented this complete transformation
algorithm in Python language with usage of P4-HLIR [8]
project.

The result of Alg. 2 can be seen in Fig. 4 which represents the
processing chain generated from the PGR in Fig. 3. Fig. 4
doesn’t contain any pipeline modules for brevity, but the
real hardware implementation contains pipeline module be-
tween each protocol analyzer. The figure also shows ex-
panded VLAN modules because our input PGR supports
two VLAN headers. This figure also shows the situation
when two or more different nodes are situated on the same
level. Such nodes are connected in series and their relative
position doesn’t matter. The only rule is to keep them to-
gether (e.g. connect modules which belong to the same level
in series).

Figure 4: Generated processing chain; pipeline mod-
ules are omitted for brevity

4.3 Optimizations



Algorithm 1: Recursive algorithm for identification of node
levels

Function FindNodeLevels(node, curr level)
Data: node = actual node to process
Data: curr level = actual level of the node
Result: Node with updated maximal level
begin

if node.fresh == False then
return;

end

/* Mark the node as not fresh and update the

level */

node.fresh = False;
act level = node.get level();
if act level < curr level then

node.set level(curr level);
end

/* For all fresh successors, update the

level and call the same function */

node successors = node.get next states();
for next node in node successors do

/* Don’t call the node if the longest

path already exists */

if next node.get level() - node.get level() < 1
then

FindNodeLevels(next node,curr level+1);
end

end

/* Mark the node as not visited */

node.fresh = True;
return;

end

The original HFE M2 parser supports two optimizations
which save significant amount of chip resources. Therefore,
we have decided to support some of these optimizations in
our generator as well.

The first optimization is related to protocol analyzers’s GPPI
interface. The key idea is to optimize width of the offset
bus which is used for signalization of protocol header start
(Input Offset and Output Offset signals). The reason for
this is that protocol stack is being analyzed in a sequential
manner within the packet. Therefore, the width of offset
bus can increase in a sequential manner too. This parame-
ter is inferred from maximal protocol header lengths during
translation. The bus width on each level is computed as a bi-
nary logarithm of the sum of all preceding protocol header
lengths. Narrower offset bus leads to smaller modules for
computation of next header offset and other values and thus
saves chip resources.

The second optimization is related to data extraction which
is performed by multiplexers within Data Extractor blocks.
Generally, each Data Extractor is able to extract data from
any byte position in the packet bus data word. The multi-
plexer is controlled by current data bus offset and the offset
of the desired field within the header. However, given the
fact that the packet header may start only at certain posi-
tions on the data bus, current offset can contain only values

Algorithm 2: Brief transformation algorithm from P4 to
HFE M2

Procedure TransformationToHFEM2(prog)
Data: prog = P4 Program
Result: VHDL code of the HFE M2 architecture
begin

/* 1) Identify the Parser Graph

Representation */

parser graph =
GetParserGraphRepresentation(prog);

/* 2) Mark all nodes as Fresh. After that,

traverse through the graph and identify

level of each node */

MarkFresh(parser graph);
FindNodeLevels(parser graph.root,0 );

/* 3) Generate Protocol Analyzers and

processing chain */

GenerateProcessingPipeline(parser graph);

end

with the corresponding resolution. This resolution is com-
puted from Header Format and Packet Parser description.
Using these two specifications, we identify a list of all possi-
ble starting positions of each analyzed header in the process-
ing chain. This knowledge is built from a protocol header
length and relations between protocol headers by simulation
of data transfer on data bus. Computed lists are used for
identification of required multiplexer’s parameters. By mak-
ing Data Extractors less generic, we simplify the structure
of each extraction multiplexer and save a significant amount
of chip resources. An example of this optimization is shown
in Fig. 5.

...0 1 62 63

Input data word: 64 Bytes

6

(a) (b)

0 ... 56 ...8

3

64 Possible Extract Positions 8 Possible Extract Positions

Input data word: 64 Bytes

...

Figure 5: Example of data extraction multiplexer:
full (a), optimized (b)

There is also a place for optimizations of P4 program which
cannot be automatically generated. Instead, it is required
to optimize the program during design time. The generator
can then benefit from more efficient input, which results in
better design in terms of latency and consumed resources.
In this text, we introduce one such optimization of P4 pro-
gram which leads to less protocol analyzer blocks being gen-
erated. The basic idea is to merge protocol headers that are
compatible in term of protocol header fields. As an exam-
ple, we want to extract source and destination ports of TCP
and UDP protocol. Therefore, we create a new fake protocol
header which describes export of interesting fields. We don’t
have to be worried about incomplete protocol header speci-
fication because our replaced protocol headers are leaves of
PGR (see Fig. 3), so that there is no further processing after
this merged header. We define the new protocol header like
this:



header tcp_udp_t {

fields {

src_port : 16; // width in bits

dst_port : 16;

}

}

4.4 Time complexity
Time complexity of the proposed transformation Alg. 2 con-
sists of following components:

1. GetParserGraphRepresentation’s time complexity is
equal to O(V + E) (DFS algorithm), where V is the
number of nodes and E is the number of edges. Our
transformation algorithm requires PGR with no cycles
(loop edges are ignored because they means a protocol
repetition). In general, maximal number of edges in
acyclic graph is equal to n

2
∗ (n − 1) where n is the

number of protocol analyzers (e.g. nodes of our graph).
Total time complexity of DFS is O(n+ n

2
∗ (n− 1)) ∼

O(n2)

2. FindLongestPaths’s time complexity is equal to O(n2)
(DFS algorithm), where n is the number of protocol
analyzers

3. MarkFresh’s time complexity is equal to O(n), where
n is a number of protocols (e.g. nodes of PGR)

4. GenerateProcessingPipeline’s time complexity is equal
to O(n) because we are generating a processing chain
with n protocol analyzers

Total time complexity of the transformation isO(n2)+O(n2)+
O(n) +O(n) = O(2 ∗ n2) +O(2 ∗ n) ∼ O(n2).

5. RESULTS
We have generated parsers supporting the following protocol
stack: Ethernet, up to two VLAN headers, up to two MPLS
headers, IPv4 or IPv6 (with up to two extension headers),
TCP or UDP, ICMP or ICMPv6. The parser is able to
extract the classical quintuple: (IP addresses, protocol, port
numbers).

We have tested properties of generated parsers with two dif-
ferent protocol stacks:

• full - Ethernet, 2×VLAN, 2×MPLS, IPv4/IPv6 (with
2×extension headers), TCP/UDP, ICMP/ICMPv6

• simple L2 - Ethernet, IPv4/IPv6 (with 2×extension
headers), TCP/UDP, ICMP/ICMPv6

For each mentioned protocol stack, we compare the man-
ually optimized HFE M2 parser and the generated parser
with all optimizations enabled. All tested designs implement
parsing engines without any additional logic like outputs FI-
FOs for parsed data etc. We use the Slice LUTs as a metric
of resource utilization because this parameter is typically
the most limited resource of FPGA.

We provide results after synthesis for the Xilinx Virtex-7
XCVH580T FPGA using Xilinx Vivado 2015.1 design tool.
All designs were synthesized with different settings of the
data width and the number of pipeline stages. These set-
tings, together with the resulting frequency, latency and re-
source usage, generate the large space of possible solutions
for each P4 program. These solutions were searched for
Pareto set which allows us to pick the best-fitting solution
for an application.

In each hand optimized design testcase, we use two dif-
ferent data widths: 256 and 512 bits. For each data width,
every possible placement of pipelines was tested: 29 possi-
ble combinations in the case of the full protocol stack and
25 combinations in the case of simple L2 protocol stack.
(Because there are 9 and 5 configurable pipeline stages, re-
spectively, in those parsers.)

In each generated parser testcase, we use two different data
widths: 256 and 512 bits. For each simple L2 parser, every
possible placement of pipelines was tested: 210 possible com-
binations. In the case of full parser, there are 214 possible
solutions. We have randomly selected 20% of all possible
solutions. This approach allows us to briefly inspect prop-
erties of generated processing chain in a reasonable compile
time.

Opt. Data
Width

Pipes
Latency
[ns]

Thr.
[Gbps]

Slice
LUT [-]

O0 512 7 39.8 102.7 25335
O1 512 14 75.3 101.9 21477
O2 512 8 46.1 100.0 10103
O3 512 9 44.5 115.8 14270
O4 512 7 40.7 100.7 8314

Table 1: Comparison of different optimization meth-
ods

For each test case, we provide two graphs: the first graph
shows the relation between throughput and FPGA resources.
The second graph shows the relation between throughput
and latency of the tested parser. Finally, we provide two
more graphs with Pareto sets: one showing Pareto sets op-
timized for throughput and chip area without any regard to
latency, and second optimized for throughput and latency
without any regard to FPGA resources. We also introduce
results for optimizations which are described in Sec. 4.3 be-
cause they have an influence on latency and used resources.
We define the following notation:

• No optimizations (O0) - no optimizations are used

• Offset optimization (O1) - optimization of the off-
set width

• Offset + multiplexer optimization (O2) - offset
and multiplexer optimizations

• Optimized P4 program (O3) - O0 version with
effectively written P4 program

• All optimizations (O4) - all proposed optimizations
are used



Resource utilization and latency for parsers generated with
different optimizations are shown in Tab. 1. The table shows
the influence of proposed optimizations on similar hardware
configurations with throughput around 100Gbps. For all of
the following results we use O2 optimization, since O3 and
O4 include modifications to the original P4 program, which
we consider highly non-standard scenario.

0 50 100 150
0

2000

4000

6000

8000

10000

12000

Throughput [Gbps]

S
lic

e
 L

U
T
 [
-]

hand,512 Bits

hand,256 Bits

P4,O2,256 Bits

P4,O2,512 Bits

Figure 6: The FPGA resource utilization for differ-
ent settings of the simple L2 parser

0 50 100 150
0

20

40

60

80

100

Throughput [Gbps]

L
a
te

n
c
y
 [
n
s
]

hand,512 Bits

hand,256 Bits

P4,O2,512 Bits

P4,O2,256 Bits

Figure 7: The latency for different settings of the
simple L2 parser

Fig. 6 shows throughput and FPGA resources and Fig. 7
shows throughput and latency for simple L2 protocol stack.
Each point in both figures represents one tested solution
for hand optimized and P4 based HFE M2 parsers. Fig. 8
shows throughput and FPGA resources and Fig. 9 shows
throughput and latency for full protocol stack.

For comparison of the achieved Pareto set results for differ-
ent protocol stacks, we provide graphs in Fig. 10 (through-
put and FPGA resources) and Fig. 11 (throughput and la-
tency). The Pareto sets show the best achievable solutions
for our parsers. From these figures, we can see that sup-
ported protocol stack can significantly change parameters of
the parser in terms of FPGA resources and latency. We can
also see that P4 based parsers are approximately two times
worse in terms of both latency and consumed resources. The
average price (in LUTs per Gbps) of hand-optimized parsers

0 50 100 150
0

2000

4000

6000

8000

10000

12000

14000

Throughput [Gbps]

S
lic

e
 L

U
T
 [
-]

hand,512 Bits

hand,256 Bits

P4,O2,512 Bits

P4,O2,256 Bits

Figure 8: The FPGA resource utilization for differ-
ent settings of the full parser

0 50 100 150
0

50

100

150

Throughput [Gbps]

L
a
te

n
c
y
 [
n
s
]

hand,512 Bits

hand,256 Bits

P4,O2,512 Bits

P4,O2,256 Bits

Figure 9: The latency for different settings of the
full parser

from the Pareto set are 41 and 62 for the simple L2 and full
variants respectively, while the generated parsers cost 81 and
109 LUTs/Gbps. This is because manually created parsers
include some even more advanced optimizations, which are
highly protocol-specific and could not be included in our
generator for the sake of universality. We assume that the
difference between P4-generated parsers (with O2 optimiza-
tion) and hand optimized parsers is small enough to justify
the flexibility of P4 in many cases.

From presented results, we can infer following important
conclusions:

1. We are able to generate parsers with equal functional-
ity in shorter time.

2. Generated parsers aren’t significantly worse than hand
optimized versions created by a professional with many
years of experience in HDL coding.

6. CONCLUSION
Each networking device needs to parse incoming data in or-
der to perform subsequent actions. This paper presents the



0 50 100 150
0

2000

4000

6000

8000

10000

12000

14000

Throughput [Gbps]

S
lic

e
 L

U
T
 [
-]

hand,pareto,simple L2

P4,O2,pareto,simple L2

hand,pareto,full

P4,O2,pareto,full

Figure 10: Comparison of the FPGA resource uti-
lization versus throughput Pareto sets for the tested
protocol stacks

0 50 100 150
0

10

20

30

40

50

60

70

T�roug�put [Gbps]

L
�

te

n

c
y
 [

n

s
]

�a�d,pareto,simple ��

P4,O2,pareto,simple ��

�a�d,pareto,full

P4,O2,pareto,full

Figure 11: Comparison of the latency versus
throughput Pareto sets for the tested protocol stacks

transformation tool from P4 language to a highly config-
urable packet parser for FPGA, which achieves throughput
above 100Gbps and is usable in a variety of application. We
present the details of the transformation algorithm which di-
rectly generates HDL code from a given P4 description.

One can see from the presented results that we can gener-
ate a parser from P4 description with throughput, latency
and chip area parameters similar to a hand optimized so-
lution. This parser can be generated from a P4 program
without any knowledge of hardware description language.
That makes this approach more feasible for networking ex-
perts without deep knowledge of FPGA programming. The
second advantage is related to the time of development. By
using our P4-to-VHDL generator, the development time of a
networking device can be shortened significantly. Once the
high-level P4 description is ready, it takes only a couple of
seconds to generate a VHDL parser. Moreover, the advan-
tage of a growing P4 ecosystem is that additional tools are
available. For example, one can first generate a C program
from P4, perform software conformance test, and only then
easily switch to hardware, having part of the system already
tested and verified.

The full version of generated parser consumes only 2.78%
of the Xilinx Virtex-7 XCVH580T FPGA Slice LUTs to
achieve throughput of 100Gbps (in the case of O2 optimiza-
tion). This result leaves most of the FPGA resources free
for other functions of a target application. Moreover, we can
reach even smaller resource consumption in the case of O4
optimization. However, this optimization requires modifica-
tions to the original P4 program, which we consider rather
extreme, non-standard approach.

Acknowledgment
This research has been partially supported by the “CES-
NET Large Infrastructure” project no. LM2010005 funded
by the Ministry of Education, Youth and Sports of the Czech
Republic, the grant SGS15/122/OHK3/1T/18, the project
TH01010229 funded by TACR and by the European Union
in the context of the “BEBA” project (Grant Agreement:
644122).

7. REFERENCES
[1] M. Attig and G. Brebner. 400 gb/s programmable

packet parsing on a single fpga. In In Proceedings of
the 2011 ACMJIEEE Seventh Symposium on
Architectures for Networking and Communications
Systems, ANCS ’11, pages 12–23. IEEE Computer
Society, 2011.

[2] P. Bosshart, D. Daly, G. Gibb, M. Izzard,
N. McKeown, J. Rexford, C. Schlesinger, D. Talayco,
A. Vahdat, G. Varghese, and D. Walker. P4:
Programming protocol-independent packet processors.
SIGCOMM Comput. Commun. Rev., 44(3):87–95,
July 2014.

[3] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese,
N. McKeown, M. Izzard, F. Mujica, and M. Horowitz.
Forwarding metamorphosis: Fast programmable
match-action processing in hardware for sdn. In
Proceedings of the ACM SIGCOMM 2013 Conference
on SIGCOMM, SIGCOMM ’13, pages 99–110, New
York, NY, USA, 2013. ACM.

[4] G. Gibb, G. Varghese, M. Horowitz, and
N. McKeown. Design principles for packet parsers. In
Architectures for Networking and Communications
Systems (ANCS), 2013 ACM/IEEE Symposium on,
pages 13–24, Oct 2013.

[5] Open Networking Foundation. Open Flow.
https://www.opennetworking.org/sdn-
resources/openflow.

[6] P4 Language Consortium. P4. http://p4.org/.

[7] P4 Language Consortium. P4-GRAPHS.
https://github.com/p4lang/p4c-graphs.

[8] P4 Language Consortium. P4-HLIR.
https://github.com/p4lang/p4-hlir.

[9] P4 Language Consortium. P4C-BEHAVIORAL.
https://github.com/p4lang/p4c-behavioral.

[10] V. Pus, L. Kekely, and J. Korenek. Low-latency
modular packet header parser for fpga. In Proceedings
of the Eighth ACM/IEEE Symposium on Architectures
for Networking and Communications Systems, ANCS
’12, pages 77–78, New York, NY, USA, 2012. ACM.

[11] F. Risso and M. Baldi. Netpdl: An extensible
xml-based language for packet header description.
Comput. Netw., 50(5):688–706, Apr. 2006.


