
Towards OS kernel acceleration in heterogeneous systems

Alexander Kroh
University of NSW

akroh@cse.unsw.edu.au

Oliver Diessel
University of NSW

odiessel@cse.unsw.edu.au

ABSTRACT
While Moore’s law continues to hold true, limits on the elec-
trical distance between CPU core components have forced
the maximum operating frequency of the CPU core to pla-
teau. CPU vendors have introduced acceleration features to
compensate for this frequency limit; however, these accelera-
tion features are limited in their design because they cannot
be tuned to target a specific high-level software system ar-
chitecture. In this paper we evaluate the potential for an op-
erating system kernel to be accelerated in the programmable
logic part of a heterogeneous system. We consider acceler-
ating the scheduler of the seL4 micro-kernel as a case study
for feasibility. Lastly, we evaluate the proposed hardware-
software co-design on commercial off-the-shelf hardware and
identify architectural limitations of the approach.

Categories and Subject Descriptors
C.1.3 [PROCESSOR ARCHITECTURES]: Other Ar-
chitecture Styles—Heterogeneous (hybrid) systems;
D.4.1 [OPERATING SYSTEMS]: Process Management;
D.4.8 [OPERATING SYSTEMS]: Performance

Keywords
Operating System Performance, Reconfigurable Computing.
Hardware Acceleration, Hardware Software Co-design

1. INTRODUCTION
In this paper, we explore the benefits and architectural limi-
tations of provisioning a general purpose processor with pro-
grammable logic as a key accelerator for the operating sys-
tem (OS). The focus of this acceleration is on the core of
the system, the operating system kernel. While kernel oper-
ations are infrequent and short in nature, they are the most
critical components of the system. Real-time (RT) systems,
in particular, depend on the kernel for system reliability and
schedulability. In an RT system, the Worst Case Execution
Time (WCET) must be taken into consideration to ensure
that critical tasks are completed in a timely manner. Fail-

ure to do so can lead to mission failure, personal injury or
loss of life. The WCET is much larger than the average case
execution time and computational resources will generally
be over provisioned in such a system in order to ensure that
it will operate safely in the unlikely event that the WCET
is observed [4].

An example of such a system is an automotive airbag control
unit. The controller must ensure that the airbag is inflated
only after a collision, but well before injury can occur. In or-
der to provide such a high guarantee on safety, a dedicated
electronic control unit is deployed to ensure tight bounds
on the WCET. The control unit remains idle until a colli-
sion is detected and, with no other software tasks execut-
ing on the CPU, it can act immediately on data received
from the impact sensor. If a tight bound on the WCET
can be assured in the presence of other software tasks, such
as ABS breaking, the airbag deployment function could be
integrated with other subsystems of the automobile. With
less electronic control units (ECUs) present, the overall cost
and complexity of the system is reduced. If hardware accel-
eration can bring the WCET closer to the average execution
time, a tight bound on execution time can be assured for
this purpose.

Hardware acceleration features are already provided by most
CPU cores. These features include hardware page table
walkers for virtual memory, branch prediction and specu-
lative loading, out of order execution, and direct Java byte-
code execution [2]. While these generic features are use-
ful, they provide only fine-grained acceleration mechanisms
that cannot leverage knowledge of the high-level architec-
ture from the complete, and potentially large, computational
problem. The focus of acceleration for this paper is on soft-
ware subsystems such as the kernel scheduler. By acceler-
ating these coarse-grained features, we aim to have a larger
impact on system performance.

The operating policies of high-level software subsystems are
chosen at design time and are specific to the intended ap-
plication [14]. For example, Linux allows the user to select
between three different scheduling policies for each process
[5]. Two of these policies are specific to real-time processes
while the third policy is dedicated to traditional processes.
The Linux -rt patchset further improves the real-time capa-
bilities of the Linux scheduler in order to tune the system
for real-time applications [8]. It is not practical to introduce
a fixed implementation for each application so we will rely



on programmable logic to provide the hardware platform for
acceleration. The software developer can then choose from
a range of hardware acceleration strategies that each imple-
ment a specific policy [13].

In order to compete with a high performance CPU with ded-
icated caches, a low-latency communication channel between
CPU and FPGA is ideal. However, performance improve-
ments may still be obtained with a high-latency communi-
cation channel if the hardware provides enough acceleration,
or even if the acceleration feature reduces the cache footprint
of the kernel. Such a feature would significantly reduce the
WCET of the kernel by reducing the variance in execution
time that arises from an unknown cache state. An opera-
tion that normally occupies a large number of cache lines
can be offloaded to programmable logic, which can access
RAM directly and in parallel with CPU execution.

This paper is organised as follows. Section 2 provides an
overview of related work in the field. Section 3 provides a
detailed architectural description of the proposed design for
a hardware-accelerated operating system kernel. An evalu-
ation of the proposed system is presented in Section 4. Sec-
tion 5 outlines directions for future work before conclusions
are drawn in Section 6.

2. RELATED WORK
Research in the area is primarily focused on accelerating
an RTOS through programmable logic in order to reduce
the WCET and system latency. Mooney et al. present a
framework for real-time operating system construction in
a hardware-software co-design [15]. The systems engineer is
able to choose from a set of features that are provided in soft-
ware and hardware implementation libraries. Hardware ac-
celeration features include deadlock detection and dynamic
memory management systems. Each of these have corre-
sponding implementations in software such that the level
and type of acceleration can be configured by the engineer.

Andrews et al describe how hardware acceleration can im-
prove the performance of a number of operating system fea-
tures [1]. The focus is again on real-time systems, where
latency is a fundamental design constraint. The authors pro-
pose that a dedicated hardware task be deployed to manage
hardware interrupt signals. In a traditional system, hard-
ware interrupts are delivered immediately, regardless of the
priority and criticality of the current thread of execution.
The response to such an event is to simply mark the as-
sociated handler thread as runnable such that it may be
scheduled at a later time. The proposed solution avoids un-
necessary interruption of the current thread of execution by
postponing the delivery of the interrupt until a time when
the associated interrupt handler can and should be sched-
uled. This mechanism can also be extended to improve the
efficiency of software synchronisation primitives. When a
thread has completed the execution of a critical region in
which mutual exclusion is required, the operating system is
invoked to determine if any waiting thread should be sched-
uled. Hardware support can be used to avoid an interac-
tion with the OS by allowing the hardware to interrupt the
current thread of execution only if a rescheduling event is
required.

Other contributions have focused directly on accelerating
the RTOS scheduler. Gupta et al. evaluate the performance
of three key scheduler acceleration policies [9]. First, they
evaluate an unmodified scheduler which is to be used as a
baseline for comparison. Next, they evaluate the use of a
dedicated scheduler that executes on an independent and
otherwise idle core. Finally, they evaluate a scheduler that
is implemented in dedicated hardware. The CPU cycles re-
quired for a scheduling event were reduced from 185,937 cy-
cles in both software schemes down to 142 cycles when the
hardware scheduler was used.

Kuacharoen et al. identify a limitation that the provided
RTOS scheduling policies are not flexible enough for real-
world systems. The authors develop a system which sup-
ports the reconfiguration of the hardware scheduler to a va-
riety of scheduling policies at run time [13]. The authors
evaluate their system in a simulation environment and re-
port the cost of modifying the list of runnable threads within
the scheduler to be just one or two cycles, the cost of execut-
ing the instruction which triggers the change. Alternatively,
Dodiu et al. propose an ASIC implementation of the sched-
uler where the user may select from a fixed set of policies
[7].

More ambitious work involves the implementation of the
RTOS completely within hardware [16, 17]. Ong et al im-
plement an RTOS in programmable logic to support appli-
cation software running on a NIOS soft-core processor [17].
The evaluation of this system shows that a hardware imple-
mentation of an RTOS can lead to 83.5% improvement in
interrupt latency when compared to a system which runs on
the NIOS soft-core processor alone. This improvement must
be considered to be an upper bound because a performance
improvement of the baseline system should be expected if the
soft-core NIOS processor is replaced by a dedicated ASIC
processor.

Thus far, related work has been limited to two broad system
architectures. Most solutions propose that the FPGA fabric
be provided with low-latency direct access to the CPU regis-
ter file. These systems are evaluated in simulation because of
the theoretical nature of the hardware architecture involved
or are only applicable when a low performance soft-core pro-
cessor is used. Alternatively, the proposed systems are pro-
vided with access to a high-latency off-chip FPGA. These
systems amortize communication latency with parallel CPU
execution. This architecture is becoming more popular as
both Xilinx and Altera have begun to integrate high perfor-
mance ARM application processors onto the same die as the
FPGA. Dahlstrom et al. utilise this emerging technology to
support the ARM CPU with a hardware implementation of
the operating system scheduler [6]. However, the motivation
for that work is not to improve system performance or to re-
duce latency, instead, the authors seek to improve operating
system security. The authors propose that key operating
system functions be migrated to hardware in order to ob-
scure a malicious application’s view of global system state.
While the work is orthogonal to that which is presented in
this paper, the system architecture is closely related.

Our work differs from previous work on hardware acceler-
ated operating system subsystems because the evaluation of



our system is not conducted by simulation on theoretical
hardware. Instead, our system is constructed and evaluated
on commercial off-the-shelf hardware. The chosen hardware
is the Xilinx Zynq R©-7000 All Programmable System on
Chip, which provides both a high-performance ARM proces-
sor and programmable logic on a single die. The operating
system in our design executes on the high performance ARM
processor rather than on a low performance soft processor.
To our knowledge, this is the first “real” test of the potential
to accelerate a high performance OS kernel executing in a
commercial heterogeneous environment.

3. SYSTEM ARCHITECTURE
The seL4 micro-kernel [12] has been chosen as the OS ker-
nel for acceleration. seL4 has a sound WCET analysis and
there is movement to extend the kernel for RT applications
[4]. seL4 is considered to be a micro-kernel because device
drivers and other services are implemented as user-space ap-
plications rather than being provided directly within the ker-
nel. A key advantage of this approach is that there exists
only a minimum amount of software that must be trusted
to ensure the correct operation of the system. Drivers,
servers and applications all execute in a low-privilege op-
erating mode of the CPU.

The chosen subsystem for acceleration is the kernel sched-
uler. Although the scheduler is not a long running operation,
the performance of the scheduler is critical to system latency
in terms of interrupt request (IRQ) delivery and efficient
communication between client-server application software.
Once the system has been initialised, the kernel provides
3 key functions, all of which result in an invocation to the
kernel scheduler.

1. IRQ delivery. When an IRQ exception is received by
the kernel, the kernel identifies a registered notification
object, raises a flag within this object and unblocks
any thread that was waiting on this notification. If
the unblocked thread is of a higher priority than the
active thread, the active thread must be inserted back
into the scheduling queue and replaced by the waiting
thread.

2. Preemption IRQ. When the preemption IRQ arrives,
the current thread must be inserted back into the schedul-
ing queue and a new thread is chosen and activated.

3. Inter-Process Communication (IPC). When a thread
sends an IPC to another thread, the sender becomes
blocked and the receiving thread is inserted back into
the scheduling queue. The scheduler is then invoked
to choose a new thread to be executed.

The communication latency between the CPU and the pro-
grammable logic is a key concern in the design of our hardware-
software co-design. We must make sure that the cost of
accessing the programmable logic does not exceed the per-
formance improvement that a hardware implementation can
provide. This is particularly true in our case because micro-
kernel operations are designed to be short in nature.

seL4 provides a fixed-priority preemptive scheduler such that
a thread will never execute while a runnable thread of higher

Figure 1: Software architecture of legacy scheduler.

priority exists in the system. It has been tuned for low
latency IPC – we therefore expect it to be challenging to
gain a benefit from hardware acceleration.

3.1 Software architecture
The set of runnable threads in the seL4 micro-kernel is im-
plemented as a doubly-linked list with one list for each of
the 256 priority levels. The next and previous pointers of
this list are maintained as part of the Thread Control Block
(TCB) of each thread. A thread is appended to the end of
its associated list when it has exhausted its allocated exe-
cution time interval or when it transitions from the blocked
to the runnable state. If the thread has been preempted,
perhaps because a higher priority thread has become un-
blocked and is now runnable, the remaining execution time
of the thread is recorded and the thread is added back to
the beginning of its associated list. The kernel maintains a
set of head and tail pointers for each priority in global state.
When the kernel scheduler is invoked, it walks this global
list of runnable threads, known as the ksReadyQueues, from
the highest priority (255) to the lowest priority (0) until it
finds a non-empty list of runnable threads. If a non-empty
list of runnable threads is found, the scheduler will remove
a thread from the head of this list and mark it as the active
thread. If there exists no runnable thread in the system, an
implicit idle thread will be scheduled until an external IRQ
causes a waiting thread to become runnable. The kernel
scheduler data structure is illustrated in Figure 1.

The seL4 kernel implements a fastpath, a hand-optimised
path for key operating system calls. A key feature of the
fastpath is to allow IPC to higher or equal priority receivers
to complete without invoking the scheduler. An IPC is a
blocking call such that the thread that performs the IPC
does not re-enter the ksReadyQueues. Instead, this thread
is blocked waiting for a reply. Because the kernel imple-
ments a fixed-priority preemptive scheduler, we know that
there does not exist a runnable thread with a higher prior-
ity than the sender. If the receiver is blocked waiting for
an IPC and is of a higher or equal priority to the sender,
we know that the receiver will be the new highest priority
runnable thread in the system. For this reason, the receiver



can immediately become the new active thread without in-
voking the scheduler. In this way, IPC to a higher or equal
priority thread need not invoke the scheduler function of the
kernel.

Since the commencement of this work, the software architec-
ture of the kernel scheduler has been further optimised by
supplementing the design with a two-level bitfield lookup.
Each bit in the second level lookup word corresponds to
one of 32 priorities. If the bit is set, the associated priority
contains at least one runnable thread. If the bit is clear,
there are no runnable threads for the priority group. In the
same way, the first-level bitfield reflects the presence of a
runnable thread in each group of 32 priorities. The sched-
uler uses the Count Leading Zeros CLZ instruction on the
first level bitfield and maps the result to the appropriate
second level bitfield. The scheduler repeats this process on
the second level bitfield to find the highest priority which
has a runnable thread. The bitfields are adjusted when any
thread is transitioned to the runnable state, or when the last
thread at a particular priority leaves the runnable state.

3.2 Hardware architecture
The Avnet Zedboard is the chosen platform for system devel-
opment. The Zedboard is a low-cost development platform
that features the Xilinx Zynq R©-7000 All Programmable Sys-
tem on Chip. The Zynq provides a dual ARM Cortex-A9 ap-
plication processor and on-chip programmable logic. Com-
munication between the ARM cores and the programmable
logic is achieved through a range of ARM AXI communica-
tion buses [3].

The hardware design must provide the same features as the
software design for compatibility. The hardware scheduler
must allow a thread to be appended to both the head and
tail of a ksReadyQueue and allow a thread to be removed
from the head. Additionally, the hardware architecture must
provide a level of acceleration which cannot be obtained in
software.

The hardware architecture provides acceleration by allowing
software to manipulate the head or tail of a ksReadyQueue
in a single transaction to the AXI bus. This can be achieved
because a transaction to an AXI slave peripheral conveys
three core pieces of information. The transaction provides
the data, a context for the transaction through the provided
address, and additionally serves as a signal that a reaction
to the provided stimulus is required. While the software im-
plementation of the ksReadyQueues requires that software
maintain a doubly-linked list of threads for each priority, a
hardware implementation relieves this burden of list mainte-
nance from software. It allows the software to add a thread
to the head or tail of a specific priority by initiating a single
write transaction. This transaction can contain a reference
to the TCB of the thread as data and encode the priority
and other manipulation parameters in the provided address.
Similarly, software can remove a thread from a specific pri-
ority by initiating a single read transaction in which the
desired priority is encoded in the provided address and a
reference to the removed TCB can be returned as the data
portion of the transaction. In either case, the underlying
TCB data can still be read or written from the low-latency
cache or from main memory. Finally, a single read trans-

Figure 2: Hardware architecture of hardware sched-
uler.

action can be issued to both identify and remove a thread
from the highest priority, non-empty ksReadyQueue. This
can be done be encoding the parameters of this request in
the address of the AXI bus transaction. The performance
of locating the next thread to activate during a scheduling
event can then be further improved by providing an O(1)
lookup implementation in hardware.

The required hardware architecture is that of a priority
queue. While there exists a lot of research on priority queue
implementations [10, 11], the behaviour of insertions with
equal priority are generally not well defined. Since priority
queue hardware design and implementation is not the focus
of this research, we used a trivial implementation to explore
our ideas.

The hardware architecture, shown in Figure 2, follows closely
that of the software architecture. The ksReadyQueues are
replaced by FIFOs, where FIFO data represents a reference
to the TCB of a thread in main memory. The head and tail
of the FIFO can be swapped at any time by asserting the
H signal. This signal allows a thread to be added to either
the head or the tail of the FIFO. Write enable (WE) and
read enable (RE) signals are provided to control the addi-
tion (push) or removal (pop) of a FIFO data item. If neither
WE nor RE are asserted, a read operation will return the
appropriate data from a FIFO without the side effect of item
removal. Software is able to explicitly select the FIFO that
is to be operated on by using the SEL signal. This allows
software to select which FIFO a thread should be added to
or removed from. Each FIFO additionally provides an E sig-
nal which reflects whether or not the corresponding FIFO is
empty. Each E signal is routed to a 256-bit asynchronous
priority encoder. When the state of any E signal changes,
the priority encoder output will be updated to reflect this
change before the next rising edge of the subsystem clock.
It is this priority encoder that allows the highest priority
runnable thread to be identified and removed from the list
in a single operation. With a P signal asserted, the SEL
signal is ignored and the highest priority non-empty FIFO



is selected by the output of the priority encoder.

Each FIFO signal is mapped to one or more bits of the ad-
dress that is provided by software for the AXI bus trans-
action. Bits 0 and 1 of the address are reserved for 32 bit
word alignment. The H signal is decoded from bit 2 of the
requested address. By using this bit, we are consistent with
the interleaved head and tail pointer layout of the software
ksReadyQueues. Bits 3 to 10 represent the SEL signal and
allows the software to specify a scheduling queue priority
for the transaction. Bit 11 is used as the P signal. When
this bit is asserted, bits 3 to 10 are ignored and the value
at the output of the priority encoder is used in their place.
Finally bit 12 can be used to mask the signals of RE and
WE. This feature prevents the AXI transaction from having
the side effect of modifying the content of the FIFOs and
is useful for debugging. A read transaction in this case will
return a reference to the TCB that is at the head of the list
of runnable threads at the given priority without removing
it from the list. A write operation will have no affect.

The priority queue described above was connected to a Gen-
eral Purpose (GP) AXI3 master port on the Zedboard plat-
form through a protocol adapter. This protocol adapter
serves only to translate between the complex AXI com-
munication protocol and the trivial RE and WE proto-
col required by the FIFOs. Each transaction to the hard-
ware scheduler is 32 bits in total size. For this reason,
there is no benefit in supporting high bandwidth AXI burst
mode transfers [3]. The hardware implementation of the
ksReadyQueues is driven directly by the AXI clock. The
maximum operating frequency of the implemented system
is 100MHz.

4. EVALUATION
The kernel scheduler can be invoked in a controlled way by
performing an IPC from one thread to a thread of lower
priority. IPC of other priorities are handled by the fast-
path and do not invoke the scheduler. An IPC benchmark-
ing framework, known as sel4bench was used to benchmark
the number of CPU execution cycles required to perform an
IPC from a thread of the highest priority to threads of var-
ious lower priorities. When the fastpath is avoided and the
scheduler is invoked, the priority of the sending thread has
no impact on scheduler execution or performance.

We define the IPC execution cycles as the number of CPU
cycles required for the sending thread to complete the IPC.
This metric does not include the CPU cycles consumed by
the receiving thread. The IPC that is used for the bench-
mark involves no data payload delivery and is made to a
thread that resides in the same address space (a page ta-
ble and Address Space ID switch are not performed). The
benchmark was performed with a hot cache by using 16
cache warming iterations before performing 50 measurement
iterations. Unless otherwise specified, the hardware sched-
uler AXI clock was configured to be 100MHz and the CPU
operates at 666MHz.

The benchmark was run with various scheduling methods.
The SW scheduler is the legacy scheduler described in Sec-
tion 3.1. Described in the same section, the PB scheduler
is the software extension to the legacy scheduler which pro-

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 1350

 1400

 1
6
0

 1
7
0

 1
8
0

 1
9
0

 2
0
0

 2
1
0

 2
2
0

 2
3
0

 2
4
0

 2
5
0

C
P

U
 e

x
e
c
u
ti
o
n
 c

y
c
le

s
 @

 6
6
6
 M

H
z

IPC receiver thread priority

IPC execution cycles against receiver thread priority

SW scheduler
HW scheduler
PB scheduler

Figure 3: IPC execution cycles versus receiver
thread priority.

vides O(1) lookup of the highest priority runnable thread
using a bitmap. The HW scheduler uses the hardware ac-
celeration features described in Section 3.2 to improve IPC
performance. Receiver priorities were tested in the range of
250 to 0, however, no change in trends were observed beyond
priority 220 so some measurements have been excluded for
the purpose of clarity. The results of this benchmark are
presented in Figure 3.

We can see that the SW scheduler performance degrades
linearly as the receiver thread priority decreases. This is
because the scheduler traverses the ksReadyQueues from
highest priority to lowest priority until it finds a runnable
thread. The lower the priority of the receiver, the more en-
tries the scheduler must examine before it finds the waiting
receiver. This behaviour also increases the cache footprint of
the scheduler. In the case of a receiver thread of priority 0,
the scheduler reads from 256 queue heads. Because head and
tail pointers are interleaved, this will result in 512 words (2
KB) being loaded into the cache. Another way to look at this
is that the scheduling behaviour will result in 2 KB of data
being evicted from the cache in the worst case. This evicted
data may be data that is frequently used by an applica-
tion; system performance may therefore be further degraded
because this data must now be reloaded from high-latency
main memory when the application is next scheduled.

The PB scheduler addresses this issue by extending the SW
scheduler to include a hierarchical bitmap representation of
the non-empty ksReadyQueues. This optimisation leads to
an O(1) lookup complexity as can be seen by the results
in Figure 3. From the results we also see that the legacy
scheduler actually outperforms both the PB scheduler and
the HW scheduler when a very high priority (250) receiver
thread is targeted. This condition provides the best case



performance for the legacy scheduler because the iterative
search need only examine a few priority levels before the
highest priority runnable thread is located. The perfor-
mance degradation in the PB scheduler reflects the addi-
tional operations required in the traversal and maintenance
of the bitmap. The PB scheduler requires 3 additional reads
to locate the highest priority thread. It must first read the
domain bitmap which is not used in our configuration. Next
it must read from each of the 2 remaining levels of the
bitmap hierarchy. Once the thread has been identified, it
will be marked as active and removed from the scheduling
queue. Because this thread is the only runnable thread in
the system, the bitmap scheduler must additionally mark
the ksReadyQueue as empty in the second level, mark the
priority group as empty in the first level and finally mark the
domain as empty at the top level. For the sake of abstrac-
tion, the scheduler can not simply write 0 to these words,
rather, it must perform the correct bit operation to clear
only the relevant bit at each level. The result is that the
bitmap scheduler must perform another 3 additional reads
and 3 additional writes to update the bitmap, however, it is
likely that these 6 memory accesses will operate on memory
in the cache rather than suffering a penalty from loading
data from main memory a second time.

Both the legacy scheduler and the PB scheduler require the
manipulation of a doubly-linked list in order to remove a
thread from the ksReadyQueues. The hardware scheduler,
on the other hand, requires only one read operation to both
identify and remove the highest priority thread from the
ksReadyQueues, yet the performance curve shows similar re-
sults to that of the bitmap scheduler. The reason for this is
the additional time required to access the off-core accelera-
tion hardware.

Figure 3 shows an anomaly when the priority of the IPC
receiver is 240. This feature was investigated by increasing
the resolution of the benchmark as shown in Figure 4. The
figure shows that the anomaly is reproducible and has a peak
when the IPC receiver thread is at a priority of 240. The
cause of this anomaly is currently still under investigation.

The sel4bench benchmark was also run with various AXI bus
clock periods in order to find the relationship between the
hardware access latency and HW scheduler performance. In
this case, we examine only that benchmark which provides
the best case performance of the legacy scheduler. This al-
lows us to determine the required AXI bus clock frequency
to achieve improved performance in all cases. Recall that
IPC between two threads of the same priority is handled by
the fastpath and hence that the software scheduler would not
be invoked in this case. The best case performance of the
legacy scheduler occurs when the scheduler need only exam-
ine the ksReadyQueue for priority 255 and 254 before it finds
a runnable thread. For this reason, the chosen benchmark is
an IPC from a thread of priority 255 to a thread of priority
254. The results obtained are presented in Figure 5.

The results present two distinct slopes as shown by the grey
lines in Figure 5. The change in slope occurs between an AXI
clock period of 45ns (22MHz) and 35ns (29MHz). By taking
the slope of these curves and dividing by the CPU frequency,
we can find the effective overhead of the AXI transaction,

 1000

 1020

 1040

 1060

 1080

 1100

 1120

 1140

 2
3
0

 2
3
5

 2
4
0

 2
4
5

 2
5
0

C
P

U
 e

x
e
c
u
ti
o
n
 c

y
c
le

s
 @

 6
6
6
 M

H
z

IPC receiver thread priority

IPC execution cycles against receiver thread priority

SW scheduler
HW scheduler
PB scheduler

Figure 4: IPC execution cycles versus receiver
thread priorities with focus on priority 240.

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 10 20 30 40 50 60 70 80 90 100

C
P

U
 e

x
e
c
u
ti
o
n
 c

y
c
le

s
 @

 6
6
6
 M

H
z

FPGA AXI clock period (ns)

IPC execution cycles against FPGA clock preriod

SW scheduler
HW scheduler

Figure 5: IPC execution cycles versus FPGA AXI
clock period for an IPC from priority 255 to priority
254.



in terms of AXI clock cycles, for the HW scheduler. Below
22MHz, the AXI transaction is the bottleneck of system per-
formance. The cost of accessing the hardware in this case is
15 AXI clock cycles. Above 29MHz, CPU execution begins
to influence the performance curve and the AXI transaction
decreases to 6.5 AXI clock cycles.

If we assume that the observed trend continues, we find
that the number of execution cycles required for an IPC
approaches 1020 as the clock period approaches 0. This
suggests that, although we come close, the GP AXI-based
HW scheduler solution cannot outperform the software im-
plementation of the scheduler in all cases. If the application
developer designs the system using only threads of a high
priority, a GP AXI based hardware accelerated scheduler
will reduce system performance.

5. FUTURE WORK
In our evaluation, we show that the acceleration of the seL4
kernel scheduler in hardware can improve the IPC perfor-
mance of the system under most (but not all) operating
conditions. However, problems were encountered when eval-
uating the performance of the bitmap scheduler. The imple-
mentation of the bitmap scheduler had to be back-ported to
the version of the kernel on which the hardware scheduler
was built. This was because the legacy scheduler were ob-
served to suffer from a decrease in performance and also an
increase in variance, and the hardware scheduler was ob-
served to outperform the legacy scheduler under all operat-
ing conditions. The increase in variance suggests that the
issue is related to nondeterministic acceleration features of
the CPU. For example, the position of key data structures
in memory may have trivially changed and led to a non-ideal
cache layout. With this new layout, the cache footprint may
have increased and forced the kernel to access high-latency
main memory more frequently. One avenue for future work
is the investigation into the cause of this degradation in per-
formance to evaluate the sensitivity of performance to trivial
changes in software source code. We may find that the ro-
bustness of custom hardware accelerator performance may
outweigh the development and maintenance effort involved
in software optimisations that exploit the acceleration fea-
tures of the CPU.

A second outcome of our evaluation is a better understand-
ing of the limitations of the chosen GP AXI port for inter-
facing between the CPU and programmable logic. Although
this method allows the CPU to modify the scheduling queue
with the execution of a single instruction, the cost of this ac-
cess is sufficient for an optimised software solution to yield
similar results. The Accelerator Coherency Port (ACP) pro-
vides cache-coherent access to memory such that the CPU
could collect results from a hardware acceleration task di-
rectly from the cache. The Zedboard provides an ACP slave
port but it does not provide an ACP master port. Unfortu-
natey, this means that we cannot signal to hardware that it
is required to perform some function in the same way that
was possible with a GP AXI slave port. A second avenue
for future work is to investigate better low-latency signalling
mechanisms between CPU and programmable logic.

Additionally, the ability to access the cache directly via
the ACP port provides an opportunity for the use of cache

warming to reduce variation in execution time. When the
kernel is invoked, the accelerator could walk key areas of
memory to ensure that they reside in the cache before they
are required by the software system. This feature is already
provided on the Zynq AP Soc by the PL310 cache controller
[18], however, this feature operates on speculative cache line
fills that are heuristically determined by observed memory
access patterns. With insight into the operation and mem-
ory layout of a software system, a custom cache warmer
could more accurately predict memory access patterns and
more effectively ensure that key data is cache-resident before
the memory is requested.

6. CONCLUSION
In this paper we presented and evaluated an approach to op-
erating system software acceleration in programmable logic.
This technique is only applicable to heterogeneous systems
that provide programmable logic because the system must
be flexible enough to support the implementation of custom
policies of operation to suit a wide range of target applica-
tions.

We examined the seL4 kernel scheduler as a candidate for
acceleration and found that the execution time of an IPC
can be improved in the majority of cases. For cases where
execution time is not improved, we examined the potential
for improvement and found that a GP AXI acceleration pe-
ripheral cannot outperform the software solution in all cases.
This is due to the latency of hardware access while a soft-
ware solution has the benefit of operating on a low-latency
cache.

We examined the performance results of a software sched-
uler extension that optimises performance with an improved
O(1) algorithm and observed a similar performance curve to
that of the hardware accelerated scheduler. These results
came as a surprise because the hardware scheduler requires
only one load instruction to identify and remove the highest
runnable thread from the scheduler while the software imple-
mentation requires a total of 6 read operations and 3 write
operations for the maintenance of scheduler data structures.

We found that performance penalties scale linearly with pe-
ripheral clock period, however, CPU acceleration features
are able to reduce this latency from about 15 AXI clock cy-
cles to 6.5 AXI clock cycles when the clock frequency of the
bus is above 29MHz.

From the results presented in this paper, we conclude that
the future of hardware acceleration of an operating system
kernel depends heavily on the choice of communication be-
tween the CPU core and the programmable logic. The GP
AXI slave interface is not suitable for applications such as a
kernel scheduler, however, it may be more suited to longer
running kernel operations such as resource management. We
have identified alternative communication approaches that
may improve results for the kernel scheduler for future work.

7. REFERENCES
[1] D. Andrews, D. Niehaus, R. Jidin, M. Finley,

W. Peck, M. Frisbie, J. Ortiz, E. Komp, and
P. Ashenden. Programming models for hybrid



FPGA-CPU computational components: A missing
link. Micro, IEEE, 24(4):42–53, July 2004.

[2] ARM. ARMv7-A Architecture Reference Manual DDI
0406C.b, 2005.

[3] ARM. AMBA R©AXITMand ACETMProtocol
Specification IHI 0022D (ID102711), 2011.

[4] B. Blackham, Y. Shi, S. Chattopadhyay,
A. Roychoudhury, and G. Heiser. Timing analysis of a
protected operating system kernel. In Real-Time
Systems Symposium (RTSS), 2011 IEEE 32nd, pages
339–348, Nov 2011.

[5] D. Bovet and M. Cesati. Understanding The Linux
Kernel. Oreilly & Associates Inc, 2005.

[6] J. Dahlstrom and S. Taylor. Migrating an OS
scheduler into tightly coupled FPGA logic to increase
attacker workload. In Military Communications
Conference, MILCOM 2013 - 2013 IEEE, pages
986–991, Nov 2013.

[7] E. Dodiu and V. Gaitan. Custom designed CPU
architecture based on a hardware scheduler and
independent pipeline registers – Concept and theory of
operation. In Electro/Information Technology (EIT),
2012 IEEE International Conference on, pages 1–5,
May 2012.

[8] A. Garg. Real-time linux kernel scheduler. Linux J.,
2009(184), Aug. 2009.

[9] N. Gupta, S. Mandal, J. Malave, A. Mandal, and
R. Mahapatra. A hardware scheduler for real time
multiprocessor system on chip. In VLSI Design, 2010.
VLSID ’10. 23rd International Conference on, pages
264–269, Jan 2010.

[10] M. Huang, K. Lim, and J. Cong. A scalable,
high-performance customized priority queue. In Field
Programmable Logic and Applications (FPL), 2014
24th International Conference on, pages 1–4, Sept
2014.

[11] A. Ioannou and M. Katevenis. Pipelined heap
(priority queue) management for advanced scheduling
in high-speed networks. Networking, IEEE/ACM
Transactions on, 15(2):450–461, April 2007.

[12] G. Klein, J. Andronick, K. Elphinstone, T. Murray,
T. Sewell, R. Kolanski, and G. Heiser. Comprehensive
formal verification of an OS microkernel. ACM
Transactions on Computer Systems, 32(1):2:1–2:70,
feb 2014.

[13] P. Kuacharoen, M. A. Shalan, and V. J. M. III. A
configurable hardware scheduler for real-time systems.
In In Proceedings of the International Conference on
Engineering of Reconfigurable Systems and
Algorithms, pages 96–101. CSREA Press, 2003.

[14] J. Lelli, D. Faggioli, T. Cucinotta, and G. Lipari. An
experimental comparison of different real-time
schedulers on multicore systems. J. Syst. Softw.,
85(10):2405–2416, Oct. 2012.

[15] V. Mooney and D. Blough. A hardware-software
real-time operating system framework for SoCs.
Design Test of Computers, IEEE, 19(6):44–51, Nov
2002.

[16] A. C. Nácul, F. Regazzoni, and M. Lajolo. Hardware
scheduling support in SMP architectures. In
Proceedings of the Conference on Design, Automation
and Test in Europe, DATE ’07, pages 642–647, San

Jose, CA, USA, 2007. EDA Consortium.

[17] S. E. Ong, S. C. Lee, N. Ali, and F. Hussin. SEOS:
Hardware implementation of real-time operating
system for adaptability. In Computing and Networking
(CANDAR), 2013 First International Symposium on,
pages 612–616, Dec 2013.

[18] Xilinx. Zynq-7000 All Programmable SoC Technical
Reference Manual UG585 (v1.9.1), 2014.


