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ABSTRACT
We propose a tool-flow methodology that can be applied to
analyze and track the performance of OpenCL applications
on heterogeneous platforms. Using a case study on a dat-
acenter representative workload, we evaluate our tool flow
on three distinct heterogeneous platforms and demonstrate
how it can be employed more widely to provide insight and
track attainable performance of OpenCL applications. Our
methodology is motivated by the need for a common set of
metrics that can characterize the performance and power ef-
ficiency of OpenCL applications on the increasingly diverse
range of emerging heterogeneous platforms now relevant to
both HPC and the datacenter market.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques

General Terms
Measurement

Keywords
Roofline, OpenCL

1. INTRODUCTION
At a time when Von Neumann architectures are suffering
from rising power densities and when it is now generally ac-
cepted that leveraging multi-core CPUs alone is no longer
a power-efficient approach to supercomputer and datacen-
ter design, extreme-scale computing communities are turn-
ing to platforms with increasing heterogeneity as a solution
to power constraints. Such heterogeneous platforms are
typically composed of traditional multi-core CPU proces-
sors combined with many-core accelerators or co-processors,
which typically offer higher performance per Watt than con-
ventional CPUs for highly parallel workloads. Currently,
the two most widely exploited many-core platforms in the
Top500 list of supercomputers [22] are general purpose graph-
ics processing units (GPGPUs) and the Intel Xeon Phi Many
Integrated Core (MIC) co-processor. At the same time, web

service and social media companies, with huge demands to
solve problems in speech recognition, image search and natu-
ral language processing are determining that, for many such
workloads, FPGA-based solutions scale far more efficiently
than CPUs while also reducing power [18].

In this paper, we have been particularly stimulated by the
recent widening of OpenCL support to include energy ef-
ficient FPGA-based platforms [24, 5]. Such platforms are
becoming increasingly relevant to certain types of HPC-like
workload in the datacenter [18], and may increase in rele-
vance to the HPC community as we face into the challenging
demands placed on energy efficient exascale computing by
2020. We have also been motivated by the increasing avail-
ability of OpenCL supported tools as well as the growing
momentum building behind the Standard Portable Inter-
mediate Representation (SPIR) language for parallel com-
puting by the Khronos Group, which enables the creation
and distribution of device-independent binaries within the
OpenCL stack [12]. With these initiatives and challenges in
mind, we propose here a common set of high-level OpenCL-
centric figures of merit, along with a tool-flow methodology
that leverages the well-known roofline model [23] for com-
paring performance and power across a wide range of het-
erogeneous platforms, and which extends its reach to more
novel FPGA-based platforms for the first time. Also, we do
not consider the host system in our tool-flow but only mea-
sure and compare the performance of the accelerators. The
main contributions of this paper are:
• A proposed common set of performance-related met-

rics relevant to OpenCL applications and platforms in
section 3

• A proposed semi-automated OpenCL-centric tool flow
methodology for measuring and comparing performance
and power in section 4

• An initial evaluation of the proposed methodology us-
ing a non-conventional workload in section 5

2. MOTIVATION
Comparing a diverse set of OpenCL supported platforms
on a common set of metrics is a non-trivial problem which
comes with the challenges of dealing with different instruc-
tion set architectures (ISAs), memory hierarchies, cache mod-
els and hardware counters as well as the availability (or lack)
of common profiling tools. The widening of OpenCL sup-
ported platforms to those based on reconfigurable logic or
FPGAs increases this challenge even more so. Furthermore,
benchmarking a device based on a single OpenCL kernel has



its limitations, as optimizations performed on one platform
may or may not lead to optimal performance on a different
platform. An example of this would be GPUs which perform
well with OpenCL kernels that exploit data parallelism. If
the same kernel were to be optimized to target task paral-
lelism it might not achieve optimal performance. In such
a scenario not only does it incorrectly show that a particu-
lar accelerator performs poorly, it also gives an inaccurate
impression of the application’s compatibility for the specific
hardware.

In posing the question as to what is a fair comparison across
architectures and OpenCL kernel designs, we feel that the
best starting point is the well established roofline model
[23]. The roofline model combines the application’s per-
formance and the device’s capability in a single diagram.
This is achieved by plotting the performance of executed
code against its operational intensity. It also includes two
platform-specific performance ceilings: the accelerator’s peak
performance and a ceiling derived from its memory band-
width. The model can thus differentiate between applica-
tions and optimizations that are memory or compute-bound
on the given architecture. Moreover, we can determine if
we have achieved the peak performance or if further opti-
mizations can be performed as well as possibly obtaining
insight into the suitability of an accelerator for the given
application.

While it has already been shown that rigorous application
of the roofline model can aid in tracking attainable perfor-
mance on a given device [16, 4], the approach has to date
been quite limited in the diversity of platforms that it has
been employed on. Therefore, we propose to employ and
extend roofline models to OpenCL kernels and accelerators,
including FPGA-based platforms for the first time. In sec-
tion 3 we define a set of OpenCL-centric metrics that is used
later in our semi-automated tool flow methodology.

3. PRELIMINARIES
Inspired by the methodologies found in [16] and [4], we first
set out to clearly define a set of metrics that can be applied
to the wide range of hardware platforms that we initially
consider as part of this work. These metrics form the basis of
quantifying several measurements that we perform and later
use in our methodology. The fundamental metrics defined in
this section are those which can be measured directly from
an experiment using a specific tool. The derived metrics are
obtained from these using mathematical formulations taken
from the roofline model.

3.1 Fundamental Metrics
In the rest of this paper, we use the traditional terminology
in the field of heterogeneous computing. By CPU, processor
or “host” system, we generally mean a CPU-based comput-
ing system, such as an x86 Xeon processor. By accelerator or
coprocessor, we mean a manycore“device” in the form factor
of a PCIe card. Also by global memory we mean the DRAM
memory on the PCIe card and local memory corresponds to
the on-chip memory of the coprocessor.

Device Memory Bandwidth (B) : denotes the memory
bandwidth between the global memory and local memory
on an OpenCL device as specified in the datasheet of the

device. Device Peak Memory Bandwidth (B̂) considers
only the peak bandwidth that can be achieved by a bench-
mark kernel that performs operations similar to that of the
evaluated application. For example, if the application per-
forms integer operations, a benchmark that closely reflects
these operations is used. Both of these metrics are measured
in ‘Bytes/Second’ (number of bytes per second).

OpenCL Kernel Operations (W): is defined as the num-
ber of operations performed by a given OpenCL kernel and
can refer to any type of“meaningful”operation, such as com-
parisons or integer arithmetic (as is the case for our initial
application described in section 5). Such operations explic-
itly exclude operations related to data movement such as
read/write or branching, etc. For the purposes of our case
study investigation, W will count the number of compute-
relative integer operations, including additions, multiplica-
tions, etc. It should be emphasised that by operations here
we mean mathematical operations, so for example, one SSE
addition of 2 vectors of 4 single integer values will count as 4
operations. While W is a property of the chosen algorithm
and does not depend on the platform, there is recognition
that some platforms have hardware support for non-trivial
operations. In such cases, we may consider such operations
in their“base”form as implemented in software; in the future
we may calculate specialized W values for specific instruc-
tion sets. The unit of measure for W is ‘OPS’ (number of
operations), which can be either float or integer based. In
the case of OpenCL-based applications, we propose that the
value of W can be determined in two ways: theoretically
with static code analysis or through measurement with the
use of the OCLgrind, an open source SPIR interpreter and
device simulator [17] in our tool flow.

OpenCL Kernel Global Memory Traffic Size (Q): is
the number of bytes of memory traffic between the global
(off-chip) memory on the device and the on-chip memory
on the device incurred by executing a given application. It
is measured in ‘Bytes’ (number of bytes). The value of Q
depends on the properties of both the application and the
platform, such as the details of the on-chip memory hierar-
chy and can only be estimated asymptotically in most cases
with exact values determined from measurements. If all data
fits in on-chip memory on the device Q is typically equal to
the number of compulsory misses. For larger sizes of data,
there will also be traffic associated with data that has been
evicted from cache and potential conflict misses, but these
numbers cannot be determined analytically. In our tool flow
we use a combination of memory access instructions from
OCLgrind and a data traffic analyzer of a particular plat-
form to determine this number. The data traffic analyzer
consists of platform specific tools such as Intel VTune [19],
NVIDIA profiler [14] and Xilinx SDAccel [24].

OpenCL Kernel Execution Time (T ): The execution
time for a given OpenCL kernel measured in ‘Seconds’, is
the duration the kernel runs on a specific device. We do not
take into account the time taken for loading or storing the
data from the host. We use the OpenCL events profiling
API to obtain this information from the runtime.

OpenCL Kernel Power Consumption (P): Modern ac-
celerator devices expose power consumption data through



vendor specific libraries [15, 10, 21]. We leverage these li-
braries to construct a power profiling tool which executes
our target applications. For the lifetime of the target, the
profiler records power consumption of the given device. By
taking a high resolution timestamp before and after the
OpenCL kernel execution, we can extract the power at-
tributed to the kernel. Since the aforemenetioned libraries
have a very low temporal resolution, we only consider the
Peak Power consumption in ‘Watt’ of a kernel for our
measurements. Similarly to Accelerator Peak Memory
Bandwidth (B̂) we also define an Accelerator Peak Pow-

er Consumption (P̂) metric that is measured based on the
same benchmark that determines the peak memory band-
width, so as to avoid the differences in the power consump-
tion values defined in the datasheet compared to the more
realistic peak power consumption of the device.

3.2 Derived Metrics
Operational Intensity (I): is the ratio of OpenCL Ker-
nel Operations (W) to the OpenCL Kernel Global Mem-
ory Traffic Size (Q) for a given application measured in
‘OPS/Bytes’.

I =W/Q (1)

Energy (E): The energy consumed by an OpenCL kernel
is determined as the product of the execution time (T ) and
the peak power (P) consumed by the kernel. The unit of
measurement for this metric is ‘Joule’.

E = T × P (2)

Performance (F): The performance of an OpenCL ker-
nel is determined as the ratio of (W) to execution time (T )
and is measured in ‘OPS/Second’. Performance in a typi-
cal roofline model accounts for the entire system’s behavior.
However, so as to allow for the comparison of a diverse range
of OpenCL supported accelerators with a similar experimen-
tal setup, we do not consider any influence from the host
system in our measurements. Our objective is to compare
and evaluate the OpenCL kernels and devices only. There-
fore, measurements that are based on the host system are
beyond the scope of this paper.

F =W/T (3)

Performance Per Watt (R): The performance per Watt
of an OpenCL kernel is determined as the ratio of perfor-
mance (F) to the peak power (P) consumed by the kernel
in a second and is measured in ‘OPS/Second/Watt’.

R = F/P (4)

Performance per Watt is a well established parameter for
comparing the energy efficiency of compute systems [8] and
in this paper we propose that we can quite easily comple-
ment the traditional roofline methodology, which has typi-
cally been used to characterise performance in time to also
characterise performance per Watt with very few changes to
the existing model. In doing so, we note that Choi et al. [4]
have put forward a more rigorous model for characterizing
and comparing the energy efficiency of applications on het-
erogeneous platforms using the roofline methodology, where
they define an energy-balance analogue to the time-balance
basis of the roofline model. In future work we plan to bridge
our methodology with Choi et al.’s energy roofline approach
to obtain more precise energy-balance comparisons.

For a given metric we can refer to operations on different
data types by subscript notations. In this paper we use ‘i’
for integers and ‘f ’ for floating point data types. It should
be noted that this approach can be extended to work with
other types of operation, therefore making it flexible enough
to apply to any kind of OpenCL kernel. We note that in
some cases we need to use a benchmark or datasheet to
determine its peak value as in eq.6.

A ∈ {W, I,F ,R}
Ai refers to integer OPS
Af refers to floating point OPS

(5)

M∈ {B,P, E ,F ,R}
M̂ refers to benchmark value
M refers specification value

(6)

4. METHODOLOGY
The main thrust of our paper is to propose a semi-automated
OpenCL-centric tool flow methodology for measuring and
comparing performance and power of OpenCL applications
running on a range of distinct heterogeneous platforms as
well as to propose a slight extension to the roofline method-
ology to characterize and track the performance per Watt of
an application on a given device. The steps involved in our
proposed tool flow can be classified into two stages: (1) to
obtain the various device metrics and determine correspond-
ing roofline plots, (2) to measure the metrics of the OpenCL
kernel on the device as listed in section 3 and to obtain the
derived metrics using the defined formulation in section 3
and combine these with the roofline plot to complete the
analysis.

Stage 1: Device Analysis
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Figure 1: Semi-Automated Tool Flow Design
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Figure 2: Steps involved in the tool flow

4.1 Stage 1: Device Analysis
As described in fig.1 the first stage is to obtain the device
metrics using benchmarks with operations that are relevant
to the evaluated OpenCL kernel. Below, we list the basic
steps of stage 1 of the proposed methodology:



1. In stage 1, the tool flow starts by measuring peak per-
formance and memory bandwidth of the device using
the preset benchmarks providing measurements for F̂f ,

F̂i, B̂ and P̂ for a given device.

2. Assuming a chosen range of operational intensities
(Imin, Imax), the tool flow subsequently determines
the performance roofline for this range of operational
intensities using eq.7.

3. Similarly stage 1 calculates the performance per Watt
roofline using eq.8, which converts peak operations to
peak operations per Watt.

min(x× B̂, F̂) ∀ x ∈ (Imin, Imax) (7)

min((x× B̂)/P̂), F̂/P̂) ∀ x ∈ (Imin, Imax) (8)

4.2 Stage 2: OpenCL Kernel Analysis
The OpenCL kernel analysis represents stage 2 of the tool
flow and measures the attainable performance of the OpenCL
kernel on a given device. When combined with the device
metrics output from stage 1 of the methodology, the out-
put from stage 2 can be used to characterize whether the
OpenCL kernel is bound by device memory or device com-
pute performance. Moreover, the outputs of stage 1 and
stage 2 can be overlayed on a so-called roofline plot to pro-
vide a powerful visual indication as to whether the OpenCL
kernel can be optimised further to achieve the optimal at-
tainable performance on the device. Below, we list the basic
steps of stage 2 of the proposed methodology:

1. The OpenCL kernel is compiled and the generated in-
termediate SPIR code is profiled through OCLgrind
[17] and the tool calculates (W) for the kernel as well
as the memory accesses of the kernel. The memory
access information is provided to the data traffic ana-
lyzer.

2. In the next step the data traffic analyzer uses platform
profile tools to obtain (Q) for the kernel.

3. The tool flow then executes the kernel and calculates
its runtime (T ).

4. The tool flow relies on high resolution time stamps
used during execution and platform specific tools to
calculate the kernel’s peak power consumption (P).

5. Using eq.1 the tool flow obtains the operational inten-
sity (I) of the kernel, which forms the vertical opera-
tional intensity of the kernel on the roofline plot.

6. Using eq.3 and 4 the tool flow obtains the peak per-
formance and performance per Watt of the kernel.

7. Finally, eq.2 is used to calculate the energy consumed
by the kernel for a given accelerator.

A complete flow of all the steps involved in the two stages of
the proposed tool flow methodology is shown in fig.2, where
it can be seen that the metrics are obtained at the compila-
tion and execution phases of the given OpenCL application.
In pursuing the experimental measurements as outlined in
the stage 1 and stage 2, we are once again inspired by the
work in [16]. In particular, we note that measuring the value
of Q can be challenging, even when the relevant hardware

counters are available on a given device. In the case that
such measurements are simply not feasible (or even war-
ranted), we will work within a range of operational intensi-
ties on the horizontal axis bounded by so-called operational
intensity “walls”, which we can be calculated using static
code analysis together with knowledge of the capacity of
on-chip memory of the device. Typically, we will assume a
“cold” data cache unless stated otherwise and for the case
study described later we only consider traffic from and to
global memory on the device and not between host mem-
ory and device memory. On the latter point, we propose
that the methodology as laid out here, can be extended to
include data traffic between other data channels, such as
network interfaces and PCIe links, which will be included
as part of follow up investigations. It should be also be em-
phasized that we focus our study on OpenCL-based applica-
tions exclusively, which implicitly factors in the limitations
of the range of OpenCL compilers and runtimes (e.g., respec-
tive OpenCL software development environments from Intel,
NVIDIA and Xilinx) that we use as part of this project.

5. CASE STUDY
In order to evaluate the proposed tool flow, we have cho-
sen to first focus on various OpenCL implementations of
the Bob Jenkins lookup3 hash function [11], which features
in well known datacenter workloads [2]. The pseudo-code
for a sequential implementation of the Bob Jenkins func-
tion is shown in fig.1. The function processes variable sized
keys iteratively in 96bit chunks and each chunk is split into
three 32bit numbers, which are added to a set of state vari-
ables. Before the next chunk is read, these state variables
are mixed using addition, subtraction and XOR operations.
Beyond the interest in the lookup3 function for datacenter
applications and its relative simplicity, one reason we have
focused on this function is due to the interest in evaluat-
ing the proposed method on non-floating point applications,
which have not featured heavily as part of roofline analysis
to date. The second reason is due to the limited amount
of data reuse that the algorithm can avail of, which allows
us to make several simplifying assumptions regarding the
OpenCL Kernel Global Memory Traffic Size, Q on each de-
vice throughout our analysis.

5.1 Evaluation
In applying the tool flow to OpenCL kernel implementations
of the lookup3 function, we have have been motivated by the
heterogeneous systems currently found in the Top500[22] list
as well as the growing interest in exploiting FPGAs in hy-
perscale datacenters [18]. In particular, in this paper, we
assess the tool flow on the Intel Xeon Phi 5110P coproces-
sor, the NVIDIA Tesla K20c and the Xilinx Virtex 7 FPGA-
based Alpha Data ADM-PCIE-7V3, which is now supported
by the Xilinx SDAccel Development Environment which in-
cludes support for OpenCL [24].

Beginning with stage 1 as in fig.1, the tool flow carries out an
analysis of each device using adapted versions of the SHOC
L0 [6], LINPACK [7] and STREAM[13] benchmarks to ob-

tain values for F̂f , F̂f , B̂, P̂ which are reported for each
device in table 1. Using these values the roofline diagrams
for performance and performance per Watt are presented in
figs.3 and 4 respectively.



Device

Theoretical Peak Measured Peak

Ff Fi B P F̂f F̂i B̂ P̂
(×109OPS/Second) (×109Bytes/Second) (Watt) (x109OPS/Second) (×109Bytes/Second) (Watt)

Tesla K20 3524 587 208 225 2903 585 143 225

Phi 5110P 1988 1988 320 245 1189 946 119 245

ADM 7V3 738 8880 21 25 200§ 3032‡ 8.5† 25

Table 1: Device analysis summary of the platforms investigate in this report.
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Figure 3: Performance roofline comparison for all devices. Dashed
lines represent floating point operations. Solid lines represent

integer operations.
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Figure 4: Performance per Watt comparison for all devices. Dashed
lines represent floating point operations. Solid lines represent

integer operations.

ALGORITHM 1: Bob Jenkins lookup3 hash function

key ← Input string to hash
length ← Length of input string
init ← Initialization value of the hash
hash → Returns the hash value

begin
a, b, c ← Initialize based on length and init
index ← Index of the key
while length > 12 do // mixing

a += key[ index + 0 ]
b += key[ index + 1 ]
c += key[ index + 2 ]
Mix ( a, b, c )
length −= 12
index −= 3

end

/* Mix the remainder in a, b, c */

/* and return the hash */

return MixRemainder ( a, b, c, key, length )

end

Following stage 1, the next stage of the tool flow involves the
analysis of an unoptimised “out-of-the box” OpenCL imple-
mentation of the lookup3 function (closely aligning with the
pseudo-code in alg.1), in this case making use of OCLGrind,
an open source SPIR interpreter and device simulator, which
can be used to count the SPIR instructions of an OpenCL
kernel. The output of OCLGrind when applied to the out-
of-the-box OpenCL implementation of the lookup3 function
is shown in fig.5. By counting all of the relevant oper-
ations (in this case “add,xor,sub,shl,lshr,or, getele-

mentptr,icmp,mul,and,div”) selected by the user the value
of W can be easily determined and in this case we find

Instructions executed for kernel ’hash’:

242,802,730 - add

175,687,220 - phi

166,657,332 - xor

158,268,724 - sub

158,268,724 - shl

158,268,724 - lshr

158,268,724 - or

100,506,735 - getelementptr

83,568,763 - load global (334,275,052 bytes)

66,951,596 - br

33,556,176 - icmp

25,165,824 - mul

16,777,216 - zext

14,559,207 - and

8,388,608 - udiv

8,388,608 - trunc

8,388,608 - switch

8,388,608 - select

8,388,608 - ret

8,388,608 - store global (33,554,432 bytes)

8,388,608 - call get_global_id()

Figure 5: OCLGrind output on the lookup3 kernel with
8 million random keys of size 0 – 60 bytes

that W = 1224 Million OPS. As mentioned previously, the
lookup3 function avails of no data-reuse, so that there is a
one-time fetch-and-process of each key from global memory
to on-chip memory, representing a best-case scenario of one
compulsory miss per key, which considerably simplifies our
analysis and which strongly suggests that we can also make
use of OCLGrind to obtain a value for the Q, here. In this
case OCLGrind calculates a value of Q = 367 Million bytes
which aligns exactly with our own static code analysis car-
ried out by hand. With these values, the tool flow calculates
a value of I = 3.33 OPS/byte based on eq.1 for the out-of-
the-box OpenCL implementation of the lookup3 function,
which provides enough information to overlay an operational
intensity wall on the roofline plot for each device, represent-
ing an upper bound on attainable performance on each de-
vice for this particular kernel and also indicating whether
the kernel is compute or memory bound on a given device.

As part of subsequent repeatable steps, optimized imple-
mentations of the OpenCL lookup3 kernel for each device
is analyzed using the tool flow where values of T and P
are obtained for each optimized implementation on each de-
vice and are plotted as horizontal lines on the roofline plots,
clearly indicating the difference between achieved and at-
tainable performance on the given device. In sections 5.1.1,
5.1.2, 5.1.3, we provide a brief overview of of how we have
applied the full tool flow to analyze target-specific optimiza-
tions of the lookup3 kernel on each of our three devices. It
should be emphasized at this point, that the focus of this
paper is purely on how the overall tool flow might be ap-
plied to analyze OpenCL applications across a diverse range
of heterogeneous devices and is not focused on achieving op-
timal performance on a given device.

†ADM 7V3 bandwidth is estimated assuming 40% access efficiency
for random access to DDR3 DRAM
§ADM 7V3 peak floating point performance is measured using an
inhouse FPGA microbenchmark
‡ADM 7V3 peak integer performance is estimated using, 70% of
(#LUTS/20) *200Mhz(operating frequency of the FPGA), which is
0.7*(433200/20)*200 = 3032.4 OPS/s. Remaining LUTs comprise in-
frastructure surrounding kernel.



5.1.1 Intel Xeon Phi 5110P
The first device we apply the tool flow to is the Intel Xeon
Phi 5110P coprocessor, which is a symmetric multiprocessor
in the form factor of a PCI express device. The 5110P co-
processor features 60 cores clocked at 1.053 GHz, supporting
64-bit x86 instructions. Due to the low-clock frequency of
each core, in order to achieve best performance, the devel-
oper needs to make effective use of the 512bit wide vector
processing units per core on the device. In figs.6 and 7, we
see the first of our roofline plots for performance and perfor-
mance per Watt respectively, as produced by our proposed
tool flow, which shows the roofline of the Xeon Phi 5110P
for integer-based operations, as well as the overlayed verti-
cal operational intensity wall for the out-of-the-box OpenCL
implementation of the lookup3 function. Fig.6 strongly in-
dicates that an optimal implementation of the function is
memory bound on the Xeon Phi. Subsequent to paralleliz-
ing the function over OpenCL work groups, which in this
case map closely to available hardware threads on the Xeon
Phi, as well as carrying out optimizations on array access
patterns to reduce indirect referencing, we achieve a perfor-
mance of 66.70×109 OPS/second, shown by the red line in
fig.6 and a performance per Watt of 0.38×109 OPS/secon-
d/Watt, shown in 7. Already, at this stage, fig.6 clearly
indicates that there is a substantial gap between the perfor-
mance we achieve with our optimized implementation and
the attainable performance suggested by the operational in-
tensity wall. While the roofline approach is somewhat inad-
equate in determining the reasons for this performance gap,
there are indications that performance could be improved
by more effective use of the vector processing units on the
Xeon Phi, which we make limited use of due to the inherent
feedback loop and branch divergence found in the lookup3
function. However, we admit that this does require further
analysis, which is currently beyond the scope of this paper.

0.25

1

4

16

64

256

1024

4096

0.25 1 4 16 64 256 1024 4096

Intel Xeon Phi 5110P

F
(×

1
0
9
O
P
S
/
S
ec
on

d
)

Operational Intensity (I) (OPS/Byte)

Figure 6: Performance Roofline – Intel Xeon Phi 5110P
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Figure 7: Performance Per Watt Roofline – Intel Xeon Phi 5110P

5.1.2 Nvidia Tesla K20
The second device we apply the tool flow to is the NVIDIA
Tesla K20c, which is a general purpose GPU in the form
factor of a PCI express device and is based on the Kepler
GK110 core. There are 192 cores in each Streaming Multi-
processor (SMX) processing engine. The K20 actually con-
tains 15 SMX engines, although only 13 are available. This
gives a total of 2,496 available cores, with two operations
per clock cycle, running at a base frequency of 706 MHz. In
regard to integer operations, each SMX of the Kepler archi-
tecture supports only 32 operations per clock cycle for 32-bit
multiply and multiply-and-add operation. Once again, the
overlayed vertical operational intensity wall for the out-of-
the-box OpenCL implementation of the lookup3 function in-
dicates that the an optimal implementation of the function
is memory bound on the Tesla K20. Again, subsequent to
parallelising the function over OpenCL work groups, which
in this case map closely to the SMXs on the device, as well
as carrying out optimizations to improve memory coalesc-
ing, we achieve a performance of 126.42×109 OPS/second,
shown by the horizontal line in fig.8 and a performance per
Watt of 1.18×109 OPS/second/Watt, indicated by the hor-
izontal line in fig.9. Again, a suggested explanation for the
performance gap on this device could possibly be the branch
divergence found in the lookup3 function, which will impede
performance on the GPU, but this requires deeper analysis.
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Figure 8: Performance Roofline – Nvidia Tesla K20
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Figure 9: Performance Per Watt Roofline – Nvidia Tesla K20

5.1.3 Alpha Data ADM-PCIE-7V3
The final device we apply the tool flow to is the the Alpha
Data ADM-PCIE-7V3, a high performance reconfigurable
half-length, low profile x8 PCIe form factor board based on
the Xilinx Virtex-7 V7690T FPGA . For our analysis of theo-
retical peak throughput, we assume that 1 SP floating point
instruction takes 2 DSPs, 150 LUTs and clocks at 410 MHz.
The V7690T has 3600 DSPs and 433,200 LUTs thereby offer-
ing theoretical peak floating throughput of 738 GFLOPS/s.
For 32bit integer operations, we assume that 1 operation
occupies roughly 20 LUTs and clocks at 410 MHz which is



extrapolated from in house benchmarks∗, offering a theoret-
ical peak integer throughput of 8880 GOPS/s. For integer
throughput, we assume that the available region of the de-
vice for acceleration is 70% of the overall LUT resources, and
then apply the 20 LUT per integer operation assumption as
above. We averaged in our experiments 20 LUTs per opera-
tion, in future work we intend to expand this by generating
application specific rooflines that provide a more accurate
estimate. In regards to frequency, the current version of
SDAccel clocks the accelerator region at 200 MHz, resulting
in a more realistic value of attainable peak integer through-
put of 3032 GOPS/s. In this case the overlayed vertical
operational intensity wall for the out-of-the-box OpenCL
implementation of the lookup3 function indicates that an
optimal implementation of the function is memory bound.
On the FPGA, we performed optimizations that included
pipelining and double buffering to significantly improve per-
formance relative to the out-of-the-box implementation. We
achieve a performance of 18.11×109 OPS/second, shown by
the horizontal line in fig.10 and a performance per Watt
of 1.02×109 OPS/second/Watt, indicated by the horizontal
line in fig.11. Fig.10 shows that we are achieving close to
attainable performance on this device, indicating that fur-
ther performance improvement can only come as a result of
improvements in available memory bandwidth of the device.
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Figure 10: Performance Roofline – AlphaData 7V3
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Figure 11: Performance Per Watt Roofline – AlphaData 7V3

5.1.4 Energy Consumption Comparison
Since performance and performance per Watt can be ex-
pressed as a factor of operational intensity, we were able
to represent them using roofline models. However, energy
consumption of a device is a crucial metric of a kernel. To
represent this we present a graph shown in fig.12 that gives
us the absolute energy consumption of the device for the
evaluated optimized implementations as described in sec-
tions 5.1.1,5.1.2 and 5.1.3 from using eq.2 and T and P for
each device. In the future we would like to extend the work
∗Contact Xilinx for more information

by Choi et al. [4] to apply it devices such as the FPGAs as
well.
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6. RELATED WORK
Choi et al. [4] describe an energy based roofline model that
provides insight into relationship between time, energy and
power for an algorithm. They show the balance gap between
the traditional time-balance and their energy-balance and
how it can be used to determine peak energy efficiency of
the algorithm. Our methodology proposes a tool flow design
that can semi-automatically measure and compare different
devices using roofline models. We also propose performance
per Watt extension to roofline model for comparing power
consumption of different devices. In the future we would
like to include Choi et al.’s energy roofline into our tool flow
design to provide a more comprehensive anaylsis.

The Spiral Project[16] provides a methodology on how ex-
perimental values can be measured and applied on other-
wise theoretical roofline models. In our tool flow design we
leverage the roofline model to compare a range of diverse
hardware architectures. Also, we provide techniques on how
integer computations and various other measurments can be
obtained on a range of OpenCL accelerators and compared
using roofline model.

Long established benchmark suites such as NASA NAS [1],
LINPACK [7] and STREAM [13] provide performance data
for systems composed of traditional CPU. With the advent
of accelerated computing, several packages have emerged
to evaluate heterogeneous platforms. Amongst them are
Rodinia[3], SHOC[6] and OpenDwarfs[9]. These suites pro-
vide several kernels representing various domains within sci-
entific computing. Kernels are implemented using standard
parallel frameworks such as OpenMP, CUDA and OpenCL.
The targets architectures for which these suites are opti-
mized are multicore and GPU based systems, therefore they
are not suitable for comparing a broader range of devices.
While we use some of these benchmarks in stage 1 of our tool
flow to obtain device metrics, our methodology is targeted
towards comparison of performance and energy efficiency of
an OpenCL application across various devices rather than
benchmarking the accelerator itself.

7. CONCLUSION
In our view, the most interesting outcome of our work is the
viability of a semi-automated tool that can benchmark, mea-
sure and evaluate implementations of an algorithm across
different OpenCL accelerators. Our proposed performance
per Watt extension to roofline models presents insight into
the peak energy efficiency of the device for a given OpenCL
kernel.



We are currently investigating a diverse range of OpenCL
applications that reflect a wide range of operational inten-
sities. By also including figures of merit on productivity
and code complexity, we hope to shed more light on the ad-
vantages and disadvantages of programming models, tools
and hardware platforms in the near future. An example of
such insight already comes from an early stage analysis of an
out-of-the-box OpenCL implementation of the bioinformat-
ics Smith-Waterman algorithm[20] with our tool flow, we see
that such an integer-based kernel with a high operational
intensity (I=75) would perform best on the FPGA-based
Alpha Data platform investigated in this paper as is clearly
evident from the roofline plot comparison of devices in fig.3.

In providing experimental results on otherwise theoretical
roofline models, there are several challenges. In this pa-
per we have proposed some techniques involved in obtaining
“OpenCL Kernel Operations” and “OpenCL Kernel Global
Memory Traffic Size”for obtaining operational intensity. How-
ever, obtaining accurate energy measurements proved to be
a challenge. As future work we are developing a fine-grained
measurement facility at ICHEC that can accurately pro-
file energy consumption of multiple accelerators with a high
temporal resolution to address this issue.

In spite of these limitations, we hope algorithm designers,
performance engineers, and architects will find the proposed
tool flow an interesting starting point for discussion on pro-
viding a means of understanding bottlenecks and tracking
attainable performance across a wider range of OpenCL sup-
ported heterogeneous platforms.
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