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ABSTRACT
Heterogeneous High-Performance Computing (HPC) plat-
forms present a significant programming challenge, espe-
cially because the key users of HPC resources are scien-
tists, not parallel programmers. It is our view that com-
piler technology has to evolve to automatically create the
best compiled program variant by transforming a given orig-
inal program. We describe our novel methodology based on
type transformations and cost models, with current focus
on FPGAs. We generate correct-by-construction program
variants from a baseline representation of the kernel in a
functional language like Idris. The variants are evaluated
through our cost model which gives an estimate of perfor-
mance and resource utilization on a specific FPGA device.
The cost-model is built on top of a new intermediate lan-
guage, the TyTra-IR. We use a simple kernel to illustrate
multiple configurations on an FPGA using the semantics of
TyTra-IR. We show preliminary results using a real-world
Successive Over-Relaxation (SOR) kernel. We demonstrate
the generation of program variants in Idris, their represen-
tation in TyTra-IR, their evaluation using our cost-model,
and results of code-generation for a selected variant.

1. INTRODUCTION
High Performance Computing (HPC) platforms are increas-
ingly adopting heterogeneous computing devices like many-
core CPUs and GPUs. FPGAs are increasingly being used
as well, with languages like OpenCL developing to provide
a unified programming framework. Porting legacy scientific
code for good performance still requires considerable effort.

The purpose of the TyTra project is to develop a compiler
that will produce high-performance executables for hetero-
geneous platforms from a single code-base. The work we
present in this paper aims specifically to facilitate the use
of Field-Programmable Gate Arrays (FPGAs). These de-
vices are very promising in terms of energy efficiency, but
the relative difficulty in programming them is a major ob-
stacle to their wider adoption in HPC. High-level program-
ming tools for FPGAs have made a significant contribution
in this respect, but still require considerable human input
in finding the best design point in the design space exposed
by the fine-grained reconfigurability of FPGAs. Our pro-
posed flow (Figure 1) raises the programming abstraction
for FPGAs such that we express the design in a functional
language like Idris [1] or Haskell. This functional abstraction
enables type transformation that reshape the data creating
a new program variant that is correct-by-construction. This

transformation effectively creates a new design variant. A
light-weight cost-model allows evaluation of multiple design
variants, opening the route to a fully automated compiler
that can generate variants, evaluate them, choose the best
option, and generate HDL code for FPGA targets.
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Figure 1: The TyTra design flow. The dotted line
marks stages that are currently automated.

Our exemplar is a real kernel from the scientific computing
domain, the successive over-relaxation (SOR) kernel used in
a weather model [8] through which we illustrate generation
of program variants in Idris, their representation in TyTra-
IR, and evaluation of variants using our cost-model.

2. PROGRAM TRANSFORMATIONS
We aim to demonstrate how a program can be rewritten in
a high-level language that facilitates generation of different,
correct-by-construction instances of that program through
type transformations. Each program instance will have a
different performance related to its degree of parallelism,
and a different cost. Through our cost-model we can select
the best suited instance in a guided optimisation search.



2.1 Exemplar: Successive Over-Relaxation
We consider a SOR kernel, taken from the code for the Large
Eddy Simulator, an experimental weather simulator [8]. The
kernel iteratively solves the Poisson equation for the pres-
sure. The main computation is a stencil over the neighbour-
ing cells (which is inherently parallel), and a reduction to
compute the remaining error (not shown).

We express the algorithm in a functional language (Idris)
using higher order functions to describe array operations.
The baseline implementation will be:

ps = map p_sor pps
p_sor pt = reltmp + p_c
where
(p_i_p1,...,p_c,rhs_c) = pt
reltmp = omega * (cn1 * (

cn2l_x * p_i_p1 + cn2s_x * p_i_m1
+ cn3l_x * p_j_p1 + cn3s_x * p_j_m1
+ cn4l_x * p_k_p1 + cn4s_x * p_k_m1 )
- rhs_c) - p_c

where pps is a function that will take the original input
vectors p, rhs, cn* and return a single new vector of size
im.jm.km, where each elements is a tuple consisting of all
terms required to compute the SOR, including its 6 neigh-
bouring cardinal points. p sor computes the new value for
the pressure for a given input tuple from pps.

Our main purpose is to generate variants by transforming
the type of the functions making up the program and infer-
ring the program transformations from the type transfor-
mation. The details and proofs of the type transformations
are available in [13]. In brief, we reshape the vector in an
order-preserving manner and infer the corresponding pro-
gram that produces the same result. Each reshaped vector
in a variant translates to a different arrangement of streams.
We then use our cost-model to choose the best design.

As an illustration, assume that the type of the 1D-vector is
t and its size im.jm.km, which we can transform into e.g. a
2-D vector with sizes im.jm and km:

pps : Vect (im*jm*km) t --1D vector
ppst: Vect km (Vect im*jm t) --transformed 2D vector

Resulting in a corresponding change in the program:

ps = map p_sor pps --original program

ppst= reshapeTo km pps --reshaping data
pst = map (map p_sor) ppst --new program

where map p sor is an example of partial application. Be-
cause ppst is a vector of vectors, the outer map takes a vec-
tor and applies the function map p sor to this vector. This
transformation results in a reshaping of the original streams
into parallel lanes of streams, implying a configuration of
parallel kernel pipelines in the FPGA.

3. PLATFORM MODEL

The Tytra-FPGA platform model is similar to the platform
model introduced by OpenCL [11], but also informed by our
prior work on the MORA FPGA programming framework
[3], and more nuanced than OpenCL’s to incorporate FPGA-
specific architectural features; Altera-OpenCL takes a sim-
ilar approach [4]. The main departure from the OpenCL
model is the Core block, and the Compute-Cores. Figure 2
is a block diagram of the model.
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Figure 2: The TyTra-FPGA Platform Model. The
compute-unit is the unit of execution for a ker-
nel. The core is the custom datapath unit cre-
ated for a kernel, and may be considered equiva-
lent to a pipeline lane, which may be replicated for
thread-parallelism as shown here. It has logic for
stream-control, and the inner core-compute is a pure
dataflow block dealing exclusively with streams.

4. DESIGN-SPACE ABSTRACTION
The available intrinsic parallelism in a kernel can be ex-
posed by different configurations on an FPGA due to its
fine-grained flexibility. Defining a design-space and a cost
model to evaluate design points on it allows us to have a
structured approach for mapping a kernel to a suitable con-
figuration on the FPGA.

Our design-space abstraction (Figure 3) exposes the key dif-
ferentiating feature of concern – the type and extent of par-
allelism. A C2 configuration is a pipelined implementation
of the kernel on the FPGA, its latency indicated along the x-
axis. The other horizontal axis indicates the degree of paral-
lelism achieved by creating multiple lanes of the pipeline. A
configuration in the xy-plane (C1) will have multiple threads
of execution, each of which will have pipeline parallelism as
well. We expect this to be the preferable route for most
small to medium sized kernels, and this is the focus of our
prototype compiler. Note that we have not explicitly shown



the most fine-grained parallelism, i.e., Instruction-Level Par-
allelism (ILP). The assumption is that it will be exploited
wherever possible in the pipeline, and our back-end compiler
automatically extracts this parallelism. The design-space
also encompasses resource re-use for cases where a kernel
may have too many instructions to fit entirely on the avail-
able FPGA resources as a pipeline. Various configuration
options for such situations are shown along the vertical axis,
but these are outside the scope of our prototype compiler.
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Figure 3: The TyTra-FPGA Design Space Abstrac-
tion

Various parameters will be relevant when making a selection
from the design variants. In the context of HPC, we want to
get the best performance (throughput) while staying within
the FPGA resource and IO-bandwidth constraints. Also
relevant would be accuracy as in FPGAs we can use non-
standard, custom number representations and arithmetic
operations.

5. A NEW INTERMEDIATE LANGUAGE
Our decision to use a new IR is a fundamental part of our
proposed compilation flow. The development of the IR was
guided by some specific requirements that arose out of its
intended scope of use:

1. Should be intrinsically expressive enough to explore
the entire design space of an FPGA (Figure 3), but
with a particular focus on custom pipelines (The C1

plane) because our prime target is HPC applications[12].

2. Should make a convenient target for a front-end com-
piler that would emit IR for each program variant (See
Figure 1).

3. Should be able to express access operations in the en-
tire communication hierarchy of the target device1.

4. Should allow custom number representations to fully
utilize the flexibility of FPGAs.

5. There should be a clear route to code generation of
synthesizeable HDL code from the IR.

1We have omitted the details in this paper, but the TyTra
memory-model extends that of LLVM.

6. A core requirement is to have a light-weight cost-model
for high-level estimates. We should be able to cost each
configuration of interest in the design space.

The above requirements necessitated the development of
a custom intermediate language, as none of the existing
HLS (”C-to-gates”) tools meets all requirements. High-level
FPGA programming languages like OpenCL or MaxJ[10]
are designed to be programmer-friendly. They have coarse-
grained, high-level datapath and control instructions and
syntactic sugar, inappropriate as compiler targets. More-
over, even parallelism friendly high-level languages tend to
be constrained to specific types of parallelism, and exploring
the entire FPGA design-space would either be impossible,
or protracted. The requirements of a lightweight cost-model
also motivated us to work on a new language, which led to
the TyTra-IR (TIR).

The TIR is a strongly and statically typed language, and all
computations are expressed using Static Single Assignments
(SSA). It is largely based on the LLVM-IR because it gives
us a suitable point of departure for designing our language,
where we can re-use the syntax of the LLVM-IR with lit-
tle or no modification, and it will allow to explore LLVM
optimizations to improve the code generation capabilities of
our tool, as e.g. the LegUp [2] tool does. We use LLVM
metadata syntax for describing FPGA-specific architectural
features.

The TIR code for a design has two components:

Manage-IR deals with setting up the streaming data ports
for the kernel. It corresponds to the logic in the core
outside the core-compute (See Figure 2). All Manage-
IR statements are wrapped inside the launch() method.

Compute-IR describes the datapath logic that maps to
the core-compute unit inside the core. It mostly works
with very limited data abstractions, namely, streaming
and scalar ports. All Compute-IR statements are in
the scope of the main() function or other functions
“called” from it.

This division clearly separates the pure dataflow architec-
ture — working with streaming variables and arithmetic
datapath units — from the memory control and peripheral
logic.

6. ILLUSTRATION OF IR USE
We use a trivial example and build various configurations for
it, to demonstrate the expressiveness of the TIR for FPGAs.
The following Fortran loop describes the kernel:

do n = 1,ntot

y(n) = K + ( (a(n)+b(n)) * (c(n)+c(n)) )

end do

Sequential Processing
The baseline configuration, whose abbreviated TIR code is
showed in Figure 4, is simply a sequential processing of all
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     1 ;****** Manage-IR ******
     2 define void launch() {
     3 @mem_a = addrspace(3) <NTOT x ui18>, ...
     4 @strobj_a = addrspace(10), 
     5   !"source" , !"@mem_a", ...
     6 @...[other memory and stream objects]
     7 call @main()         }
     8 ;****** Compute-IR ******
     9 @main.a = addrSpace(12) ui18, 
    10   !"istream", !"CONT", !0, !"strobj_a" 
    11 @...[other ports]
    12 define void @f1 (...args...) seq {
    13   ui18 %1 = add ui18 %a, %b
    14   ui18 %2 = add ui18 %c, %c
    15   ui18 %3 = mul ui18 %1, %2     
    16   ui18 %y = add ui18 %3, @k      }  
    17 define void @main () {
    18   call @f1(...args...) seq }   

Figure 4: TyTra-IR code for a sequential processing
configuration of a simple kernel

the operations in the loop. This corresponds to C4 configu-
ration in Figure 3.

The manage-IR consists of the launch method which sets up
the memory-objects, which are abstractions for any object
that can be the source or destination of streaming data. In
this case, the memory object (line 3) is a local-memory in-
stance, indicated by the argument to addrspace qualifier. By
changing the value of this qualifier, we can create memory-
objects at different levels of the memory-hierarchy. The
stream-objects connect to memory-objects to create streams
of data, as shown in lines 4–5. The creation of streams from
memory is equivalent to reading from an array in a loop, so
the loop over work-items in Fortran disappears in the TIR.
After setting up all stream and memory objects, the main
function is called. Manage-IR code from further examples
has been redacted, but looks very similar to what we have
described here.

The compute-IR sets up the ports (lines 9-11), which are
mapped to a stream-object, creating data streams for the
compute-IR functions. The SSA datapath instructions in
function f1 are configured for sequential execution on the
FPGA, indicated by the keyword seq.

Single Kernel Execution Pipeline
This C2 configuration is a fully pipelined version of the ker-
nel, and the TIR code is shown in Figure 5.
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     1 @main.a = addrSpace(12) ui18, 
     2           !"istream", !"CONT", !0, !"strobj_a" 
     3 @...[other ports]
     4 define void @f1 ( ...args...) pipe {
     5   ui18 %1 = add ui18 %a, %b
     6   ui18 %2 = add ui18 %c, %c 
     7   ui18 %3 = mul ui18 %1, %2     
     8   ui18 %y = add ui18 %3, @k }
     9 define void @main () {
    10   call @f1(...args...) pipe }
    11
    12
Figure 5: TyTra-IR code for a pipelined configura-
tion of a simple kernel.

Note that the available ILP (the two add operations can be
done in parallel) is detected by the compiler and automat-
ically incorporated in the generated pipeline, without any

need to express it in the IR explicitly. See Figure 6 for the
block diagram of this configuration.
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Figure 6: Single Pipeline with ILP (C2 configura-
tion) corresponding to IR code in Figure 5

Multiple Kernel Execution Pipelines
For a lot of kernels that aren’t very complex, there may
be enough resources on an FPGA to instantiate multiple
identical pipeline lanes, i.e. a C1 configuration. The code
in Figure 7 illustrates how this can be specified in TIR. See
Figure 8 for the block diagram of this configuration.code4paperC1.tirl                                                             Page 1

     1 @main.a_01 = ...
     2 @main.a_02 = ...
     3 @...[other ports]
     4 define void @f1 ( ...args...) pipe {...}
     5 define void @f2 (...args...) par {  
     6   call @f1(...args...) pipe
     7   call @f1(...args...) pipe
     8   call @f1(...args...) pipe
     9   call @f1(...args...) pipe }
    10 define void @main () {
    11   call @f2(...args...) par }
    12
    13

Figure 7: TyTra-IR code for replicated pipeline C1
configuration of a simple kernel

Comparing with the previous single-pipeline configuration,
note that we have a new par function f2 calling the same
pipe function four times, indicating replication. Similarly,
there are now four separate ports for each array input, and
there are four separate streaming objects for each of these
ports (not shown), all of which connect to the same memory
object, indicating a multi-port memory.
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Figure 8: Multiple Pipelines Lanes (C1 configura-
tion) corresponding to IR code in Figure 7

Multiple Sequential Processing Elements - Vec-
tor Processing
There is one more useful configuration we can express in
TIR by wrapping multiple calls to a seq function in a par

function. This would represent a vectorized sequential pro-
cessor (C5). We have omitted the IR and figure for this
configuration in this paper.



7. THE TYTRA BACK-END COMPILER
As shown in Figure 1, we have already developed a back-end
compiler that accepts a design-variant in TIR, costs it, and
if needed, generates the HDL code for it. These steps are
shown in more detail in Figure 9.
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instr's, implied offset buffers and counters
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Core-Compute
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Figure 9: The TyTra back-end compiler flow, show-
ing the estimation flow (blue/first three stages) and
code generation flow (yellow). The starting point
for this subset of the entire flow (Figure 1) is TyTra-
IR description representing a particular design vari-
ant, ending in the generation of synthesizeable HDL
which can then be integrated with a HLS framework.

7.1 The Cost-Model
We have designed the TIR specifically to allow generation of
estimates of reasonable accuracy that allow us to judge the
trade-offs of various design variants. The TyTra Back-End
Compiler (TyBEC) can calculate estimates directly from the
IR without any further synthesis. The estimates calculated
by the TyBEC estimator are: the resource utilization for a
specific Altera FPGA device (ALUTs, REGs, Block-RAM,
DSPs), and the throughput estimate for the kernel under
consideration.

7.1.1 Estimating Throughput
We have described a performance measure called the EWGT
(Effective Work-Group Throughput) defined as the number

of times an entire work-group (the loop over entire index-
space/work-items) of a kernel is executed every second. Mea-
suring throughput at this coarse granularity allows us take
into account parameters like dynamic reconfiguration penalty,
and data transfer costs between successive kernel iterations.
Following is the generic expression which applies to the en-
tire design space (i.e. the C0 root configuration), and ex-
pressions for configurations of interest can be derived from
it.

EWGT =
L.DV

NR. {TR + NI .Nto.T. (P + I)}

Where:

EWGT = Effective Workgroup Throughput; L = Num-
ber of identical lanes; DV = Degree of vectorization; NR =
Number of FPGA configurations needed to execute the en-
tire kernel; TR = Time taken to reconfigure FPGA; NI =
Number of equivalent primitive operations per PE; NTO =
Ticks taken by one primitive operation; T = FPGA clock pe-
riod; P = Pipeline depth; I = Total number of work-items.
The expression is currently limited to on-chip memories and
a more sophisticated cost expression incorporating DRAM
access is being developed.

The key novelty here is that through its constrained syntax
at a particular abstraction, the TIR exposes the parame-
ters that make up the expression, and a simple parser can
extract them from the TIR code. If we were to use a higher-
abstraction HLS language as our front-end compiler target,
we would not be able to use such an expression, and a more
thorough and time-consuming synthesis would be required
(as used by e.g. the Maxeler tool flow [9]).

7.1.2 Estimating Utilization of FPGA Resources
Each instruction in the IR can be assigned a cost by ei-
ther using a simple analytical expression or looking up a
cost database for the specific IR instruction and data type.
Both the analytical expressions and the cost-database are
device-specific, which we create after doing a series of sim-
ple synthesis experiments on the device.

Our observation is that the regularity of FPGA fabric allows
some very simple first or second order expressions to be built
up for most instructions based on a few experiments. As
an example, consider the trend-line for LUT requirements
against bit-width for integer division shown in Figure 10. It
was generated from three-data points (18, 32 and 64 bits)
from synthesis experiment for a Stratix-V device. We can
now use it for polynomial interpolation, e.g., for 24-bits, and
get an estimate of 654 ALUTs, which compares favourably
with the actual usage of 652 ALUTs.

Another example is shown in Figure 11, which illustrates
how we derive the estimates for integer multiplication. A
multiplier requires two different kinds of resources: DSP-
elements and ALUTs. As we can see, both show a very dif-
ferent kind of trend, with the DSP-elements behaving like a
step-function, and ALUTs showing a continuous trend. Ei-
ther way, once we have the experimental results, incorporat-
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ing the derived analytical expressions into the cost-model is
straightforward. Other IR instructions have similar or sim-
pler expressions that we can use to calculate their resource-
utilization estimate. We thus calculate the overall resource-
cost of the design by accumulating the cost of individual IR
instructions and the structural information implied in the
type of each IR function.
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We thus calculate the overall resource-cost of the design by
accumulating the cost of individual IR instructions and the
structural information implied in the type of each IR func-
tion.

7.2 HDL Code Generation
We have developed a Verilog HDL code generator as part
of the compiler, which can currently generate configurations
in the C1 plane, that is, one or multiple identical pipelines
for a kernel. Our code-generator creates designs that work
with on-chip memories. For off-chip memory access and host
communication, we integrate the generated code with a com-
mercially available HLS framework by Maxeler, which has
the ability to integrate custom HDL code as part of its high-

level programming flow.

8. USING TYBEC ON THE SOR EXAMPLE
For proof-of-concept of our cost model and prototype com-
piler we hand-coded some design variants of the SOR kernel
as discussed in §2.1. Figure 13 shows the translation of the
SOR kernel to TyTra-IR configured as a single pipeline. The
Manage-IR which declares the memory and stream objects
is not shown. Note the creation of offsets of input stream p

in lines 6-9, which create streams for the six neighbouring
elements of p. These offset streams, together with the input
streams shown in lines 2-4 form the input tuple referred to in
§2.1. This tuple is fed into the datapath pipeline described
in lines 10-15. Figure 12 shows the kernel’s realization as a
pipeline. The same SOR example can be expressed in the
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Figure 12: Illustration of the pipelined dataflow of
the SOR kernel generated by our compiler. Only
pass-through pipeline buffers are shown; all func-
tional units have pipeline buffers as well. The blocks
at the top refer to on-chip memory for each data.

IR to represent thread-parallelism by adding multiple lanes,
corresponding to a reshaped data along 4 rows, similar to
the simple illustration we showed in Figure 7.

8.1 Evaluating TyTra-IR Design Variants us-
ing the Cost-Model

We use the high-level reshapeTo function in Idris to generate
variants of the program by reshaping the data, which means
we can take a single stream of size N and transform it into L
streams of size N

L
, where L is the number of concurrent lanes

of execution in the corresponding design variant. Figure
14 shows evaluation of variants generated by reshaping the
input streams and costing the corresponding IR description.

For maximum performance, we would like as many lanes
of execution as the resources on the FPGA allow, or un-
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     1 ; **** COMPUTE-IR ****
     2 @main.p  = addrSpace(12) ui18, 
     3           !"istream", !"CONT", !0, !"strobj_p" 
     4 ;...[more inputs]...
     5 define void @f0(...args...) pipe {
     6   ;stream offsets
     7   ui18 %pip1=ui18 %p, !offset, !+1
     8   ui18 %pkn1=ui18 %p, !offset, !-ND1*ND2
     9     ;...[more stream offsets]...
    10   ;datapath instructions 
    11   ui18 %1 = mul ui18 %p_i_p1, %cn2l
    12   ui18 %2 = mul ui18 %p_i_n1, %cn2s
    13     ;..[more instructions]...
    14   ;reduction operation on global variable
    15   ui18 @sorErrAcc=add ui18 %sorErr, %sorErrAcc
    16 }
    17 define void @main () {
    18   call @f0(..args...) pipe }
    19
    20

Figure 13: Abbreviated TyTra-IR code for the SOR
kernel configured as a single pipeline lane.

til we saturate the IO bandwidth. If data is transported
between the host and device, then beyond 4 lanes, we en-
counter the host communication wall ; further replication
of kernel-pipeline will not improve performance unless the
communication-to-computation ratio decreases by having more
kernel iterations per invocation of SOR. If all the data is
made available in the device’s global (on-board) memory
then the communication wall moves to about 16 lanes. We
encounter the computation-wall at six lanes, where we run
out of LUTs on the FPGA. However, we can see other re-
sources are underutilized, and some sort of resource-balancing
can lead to further performance improvement.
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Figure 14: Evaluation of variants for the SOR ker-
nel generated by changing the number of kernel-
pipelines (16 data points and 10 kernel iterations).

The estimator can also be used to evaluate if we are fully uti-
lizing the computation power that the design-configuration
of the FPGA exposes, or if the overall performance has been
limited by the IO bandwidth. As shown in Host-IO series
of Figure 15, if the SOR kernel is repeated less than 16
times, we are in the IO-bound zone, not fully utilizing the
eight lanes in the design. Further increase in the repetition
of kernel brings us into the computation-bound zone, where
we can get better performance by optimizing the design to
use lesser or more balanced resources, or possibly by moving

part of the kernel to a peer device or host. This transition
from IO to compute bound performance comes much earlier
in case the streams are connected to the global memory with
a higher bandwidth.
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Figure 15: Evaluating how the number of kernel
repetitions (on the same data) effects whether per-
formance is IO or compute bound, for both host
and global-memory communication scenarios (lanes
fixed at 8).

We have illustrated here how the TyBEC estimator can be
used to evaluate many design variants and the trade-offs
involved, generate feedback for optimizations, and achieve
a near-optimal design point. We would like to highlight
here that the estimator is very light-weight, and e.g. the
evaluation of the five design variants in Figure 14 takes a few
seconds. That is orders-of-magnitude quicker than e.g. the
Maxeler flow that takes tens of minutes to give preliminary
resource estimates for one variant.

A light-weight cost-model is essential for our proposed ap-
proach of automatically evaluating many design variants as
part of the TyTra compiler flow. Preliminary results show
that there is a trade-off in the accuracy of our cost model, as
shown in Table 1. The difference in the throughput (EWGT)
estimate is due to deviation in the underlying frequency es-
timate, but it can be seen that the cycles/kernel estimate
is much more accurate. These results confirm our observa-
tion that an IR constrained at an appropriate abstraction
will allow quick estimates of cost and performance that are
accurate enough to make design decisions.

9. RELATED WORK
There is considerable work that deals with high-level pro-
gramming of FPGAs, including compiler optimizations and
design-space exploration. Such approaches raise the abstrac-
tion of the design-entry from HDL to typically a C-type
language, and apply various optimizations to this high-level
code to generate an HDL solution. Our observation is that
most solutions have one or more of these limitations that
distinguish our work from them: (1) design entry is in a
custom high-level (mostly C-like) language, that neverthe-
less is not a pure software language and requires knowledge
of target hardware and the programming framework [9, 4,
6], (2) compiler optimizations are limited to improving the
overall architecture already specified by the programmer,



Resource 1-lane
(E)

1-lane
(G)

4-lane
(E)

4-lane
(G)

ALUTs 239 164 148K 146K
REGs 725 572 76,628 77,260
BRAM(bits) 186K 186K 449K 682K
DSPs 9 12 36 24

Cycles/Kernel 1,746 1,742 436 446
EWGT 190K 222K 763K 488K

Table 1: Cost and throughput estimated from IR
(E), compared with results from generated (G) Ver-
ilog code synthesized for a Stratix-5 Device, for 1-
lane and 4-lane variants of SOR kernel.

with no real architectural design-space exploration[9, 4, 6,
2], (3) solutions are based on a creating soft-microprocessors
on the FPGA and are hence not necessarily optimized for
HPC [2, 7], (4) the exploration requires evaluation of vari-
ants that take a prohibitively long amount of time[6], or (5)
the flow is limited to very specific application domain e.g.
for image-processing or DSP applications[5]. A high-level,
pure software design-entry in the functional paradigm, that
can automatically and quickly perform architectural opti-
mizations using a light-weight cost-model, and apply safe
transformations to ensure correct solutions, is to the best of
our knowledge a completely novel proposition.

10. CONCLUSION AND FUTURE WORK
We have shown our approach to automated exploration of
the design space of FPGA, and generating HDL code for pro-
gramming the chosen design variant. Starting with a high-
level functional language Idris, we demonstrated our method
of creating program variants through the use of higher-order
functions and type-transformations. These program variants
map to design variants for the FPGA, expressed in our cus-
tom IR language, the TyTra-IR. It not only allows us to
describe various design variants for the same problem, but
also to directly associate each variant with a cost for cost-
driven optimization. Using a Succesive Over-Relaxation ker-
nel taken from a real-world weather simulator as a running
example, we illustrated the generation of program variants
using type-transformations in Idris, expressing design vari-
ants in the TyTra-IR, and costing different variants to eval-
uate trade-offs. We demonstrated the accuracy of the cost-
model by comparing against synthesis figures. In future,
the TyTra-IR will evolve to support different front-end lan-
guages, with the aim to support legacy scientific code. We
will explore routes from Fortran and from a modern scien-
tific language such as Julia, either via Idris or via LLVM.
The compiler will also be extended to incorporate optimiza-
tions from the LLVM framework before emitting HDL code.
Finally, we will experiment with a much wider selection of
benchmark kernels beyond this SOR example, for a better
qualification of this approach.
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