o 23

Denver,CO | | am hpc.

Tydi-lang: A Language for Typed Streaming Hardware

Zaid Al-Ars, Yongding Tian, Matthijs A. Reukers, Peter Hofstee, Matthijs Brobbel, Johan
Peltenburg and Jeroen van Straten

Accelerated Big Data Systems group
Email: , Web: abs.ewi.tudelft.nl

Delft University of Technology

mailto:z.al-ars@tudelft.nl

Overview

e Addressing HW design limitations

* Details of the Tydi specification and type-
oriented streaming protocol

* Tydi-lang toolchain
* High-level abstraction of Tydi-lang

Q
=

O

o))
N
m
g

e SQL to Tydi-lang cases

]
TUDelft

Zaid Al-Ars (z.al-ars@tudelft.nl), Accelerated Big Data Systems, Delft University of Technology

Designing FPGA accelerators is complex

- Lack of data abstractions

- Low-level attributes (like assembly programming)

=> Large codebase
=> not composable
=> complex to debug

=> etc.

cow\plexi‘tt/

s

il

e
3

single thread STMD

progro\w\wﬁng

multi-thread

Pf‘ogr‘o\mm‘mg pr‘ogramwﬁng

GPU

FP&A accelerator

prograwming Jlesigning
Adrian Sampson, https://www.sigarch.org/hd|-to-adl/

\
—

11

http://www.sigarch.org/hdl-to-adl/

Data interfacing and communication challenge

* HW kernels design is not the only challenge
 Data interfacing and communication is a bigger challenge
 Alignment of bus bandwidth
 Communication synchrosization
* Debugging bit-wise signals rather than variables
* Etc.

Kernel 1 Kernel 2

o
[}
O
©

G
-
[}

+=

£

Interface?
Interface?

Kernel 3

Interface?
Interface?
Interface?

Tydi specification to facilitate streaming of
complex data

* Tydi is open specification to abstract streaming data in HW
e Automates HW design of streaming data interfaces

* Allows HW components (aka Streamlets) to be composed together

* It provides the following:
* Datatypes
* Data organization
* Interface requirements

Streamlet 1 Tydi spec Streamlet 2 Tydi spec Streamlet 3

Peltenburg et al., Tydi: an open specification for complex data structures over hardware streams, IEEE Micro, 2020

Tydi specification to facilitate streaming of
complex data: Data types

Tydi provides a type system for composite and variable-length data
Type system defines the following data types

1. Stream: represents physical stream carrying the following logical types
Bits(N): represents a data signal of N bits
Group: composites of multiple types (all types set at the same time)

Union: composites of multiple types (one type can be active at a time)

A o A

Null: user-defined data type

Streamlet 1 Stream (of Null, Bits, Group & Union) Streamlet 2

Tydi specification to facilitate streaming of
complex data: Data organization

* Tydi defines how data elements are organized in transfers
* Nested data types: dimensionality property indicates if data is part of a sequence
* Translated to a “last” signal in HW

* Higher dimensionality need multiple last signals for nested sequences

_Time | Complexity = 1
Valid B
— E Active Data I:] Inactive Data
Lanes H 1 W
l - . o d] Last In Dimension... H:HNO Transfer
| r

Tydi specification to facilitate streaming of
complex data: Requirements

* Tydi defines the requirements system needs from transfers

* Tydi provides the following requirements attributes: Throughput, Direction,
Synchronicity, Complexity

Lime | Complexity = 1 } Complexity = 8

Valid I_E L L |

Lanes, H 1 W 1 | i -1l e |- *T |l - -

1 ¢ | 0 | 0 d ﬁi H - |l o 0 | o - d -
| r | i -1 |- | W - | r |- 0..1
- 0 = 0.1

| | Active Data | |Inactive Data Last In Dimension... || | No Transfer

Tydi-lang: a language for typed streaming HW

- Tydi-lang is a domain-specific HDL based on Tydi specification

- Syntax inspired by Python and Rust

- Language features:

* Hardware description by variables and types

 Abstract hardware templates

* Language sugaring —backend[1—»| VHDL

Tydi-lang

—1vdH! il Tydi IR
source code ydi-lang compiler—, y

—backend[2]—> Chisel

[1] M. Reukers, “A toolchain for streaming dataflow accelerator designs for big data analytics: Defining an ir for composable typed streaming dataflow designs,

Fourteenth International Workshop on Accelerating Analytics and Data Management Systems Using Modern Processor and Storage Architectures, 2023
[2] Casper Cromjongh, “Enabling Collaborative and Interface-Driven Data-Streaming Accelerators Design with Tydi-Chisel”, IEEE Nordic Circuits and Systems
Conference, 2023

10

Tydi-lang: HW description by variables & types

Declare const values (int, float, string, bool, time domain) and Tydi
types (Bit, Group, Union, Stream, Null):

const year_max = 1075 - 1; streamlet birthday_check_s {
type year_t = Bit(ceil(log2(year_max))); birth_date: date_stream in,
type year_stream = Stream(year_t); pass: bool _stream out,

type Group Date {
year: year_t,
month: month_t,
day: day t,

Iy

11

Tydi-lang: HW description with component templates

* Template allows designers to describe abstract components with generic Tydi types and
variables.

« Example 1: void_s is designed to acknowledge all Tydi handshake signals regardless of
the data. It is used when ports are not connected.

streamlet void_s<type_in: type>{ input: type inin, }
 Example 2: We can also define a duplicator to duplicate streaming packets. Useful when
a value is accessed multiple times in programming logic.

streamlet duplicator_s<data_type: type, output_channel: int> {
input: data_type in,
output: data_type [output _channel] out,
I
12

Tydi-lang: HW sugaring

Automatic insertion of void_s and duplicator s

There should be a mechanism
to handle unused ports,
otherwise they would be
blocked by the handshaking
protocol.

Voider
input1— —output
component
input2— —unused
sugaring
input1— ——output
component
input2—
voider

In software programming, it is
common for a value to be used
multiple times. Similarly in
hardware design, we need to
frequently duplicate streams.

—bo—

b0=a+10; Duplicator
b1=a*2;
const data 10
generator
adder —bo—
source —a~‘
const data multiplier [—b1—
generator 2
sugaring
const data
-10:
generator —|—
adder
source a duplicator <
a|_
constdata | _ multiplier
generator | ©

| —b1—

13

Tydi-lang: SQL to Tydi-lang example

Translating SQL to Tydi-lang, we use TPC-H query 19 as an example:

select Arithmetic calculations 2

sum(l_extendedprice* (1 - |_discount)) as
revenue

from - Block diagram showing streamlets
ineitem,
of TPC-H Q19
(Arithmetic calculations 1 Arlthmetlc —keep or remove?
p_partkey = |_partkey calculations 1
and p_brand ="1'
and p_container in ('SM *
CASE', 'SM BOX', 'SM PACK', 'SM PKG') o data
and |_quantity >=:4 and .
|_quantity <= :4 + 10 »| data source data——» filter
and p_size between 1 and §

|
I
|
and I_shipmode in ('AIR", | |
I
|
|

'AIR REG') Host Fletcher data
and |_shipinstruct = memory i
'DELIVER IN PERSON'
Arithmetic

) data output [€«——result .
calculations 2

14

Tydi-lang: SQL to Tydi-lang example
We implement several TPC-H queries in Tydi-lang and compare the #lines of code for SQL/Tydi-
lang/VHDL.
The Tydi-lang code contains three parts:
1) The Fletcher part, generated by Fletcher to access in-memory Arrow data (LoC = 166)

2) The Tydi-lang standard template library, including some frequently-used component
templates (LoC = 151)

3) Tydi-lang code to performing query logic (LoC shown below)

@ Raw SQL query [Tydi-lang query logic Generated VHDL [Ratio: VHDL/Tydi-lang
10000
7547 6291 6992 4586
1000
100 284 197 297
e 108
42
) n I ﬂ
1
TPC-H 1 TPC-H 3 TPC-H5 TPC-H 6 TPC-H 19

15

Conclusions

1.

Tydi spec: standard to describe composite & complex data

We present Tydi-lang: language based on Tydi spec, allowing
higher abstractions of streaming components

We implement the logic of several TPC-H queries with Tydi-
lang. Find that Tydi-lang can save over 20x LoC compared to
writing VHDL directly

Future work: 1) emitting Chisel, & 2) automatic behavior code
generation for templates

