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Advancements of Large language models (LLMs)
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Better LLM quality relies on more parameters
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NLP’s Moore’s Law: Every year model size increases by 10x
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Why more parameters?

LLM tries to compress textual knowledge into its parameters
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But there are serious problems by simply scaling up...

High training and inference cost

Cannot edit the knowledge without further training
Does not know the latest news

Hard to delete knowledge already learned from the training set

No model personalization based on private knowledge



Retrieval-augmented generation as a rescue
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Retrieval-Augmented Language Models (RALM)

Reliability @

reducing hallucinations by referencing external knowledge

N
Updatability {85
the external database can be easily updated (insertion, deletions, etc.)
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achieving superior generation quality with much fewer parameter
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Vector search:
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Vector search: problem definition

O
@)
O O @ o
vector ~~_ o J
> o ‘.
o)
o %o
@ - o ®
O ° o
® -

11/17/23 Systems Group, D-INFK, ETH Zurich

11



Vector search: problem definition
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IVF-PQ for large-scale ANNS

Inverted-file (IVF) index WL/

prune the search space

Product quantization (PQ)
quantize database vectors
speedup distance computation

b, & y ) : 16 approximate
points in total

4 quantization levels
o
w



Mapping large-scale search to CPUs

CPUs: slow at processing PQ codes TR
too many cache accesses: twice per byte -:®/
instruction dependencies: computation depends on the decoded data

| GB/s per CPU core



Mapping large-scale search to GPUs

GPUs are prohibitively expensive at scale I |

H100 80 GB: $30K
GPU cluster with | TB memory: $375K

The high bandwidth of GPUs is not fully leveraged
multiple pass of read and write to the memory
both PQ decoding and K-selection consume a lot of shared memory

The GPU architecture is not tailored for PQ
waste of chip resources and energy




Proposed RALM system design principles

Both LLM inference and vector search should be fast and efficient
Principle |: Accelerator heterogeneity

More research should be done on designing vector search accelerators
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How are these accelerators connected?

Monolithic design: installing a certain number of LLM accelerators
and retrieval accelerators on a same server
not feasible for large databases

cannot maximize accelerator utilizations due to the many RALM

configurations such as retrieval intervals and model sizes



Proposed RALM system design principles

Both LLM inference and vector search should be fast and efficient
Principle |: Accelerator heterogeneity

More research should be done on designing vector search accelerators

Flexibility to accommodate diverse RALM configurations
Principle 2: Accelerator disaggregation

Various performance bottlenecks and system requirements across RALMs
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Chameleon overview
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Accelerated disaggregated memory node
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Accelerated disaggregated memory node
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Accelerated disaggregated memory node
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ChamVS Near-Memory Accelerator
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Accelerated disaggregated memory node
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Evaluation settings

Various model architectures, sizes, and retrieval intervals

Dim. Layers Heads Param. Interval K
Dec-S 512 24 8 10IM 1 100
Dec-L 1024 96 16 1259M 1 100
EncDec-S 512 2,24 8 158M  8/64/512 10
EncDec-L 1024 2,96 16 1738M 8/64/512 10
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Evaluation settings

Vector search benchmarks of different dimensionalities

Deep SIFT SYN-512 SYN-1024
#vec 1E+9 1E+9 1E+9 1E+9
D 96 128 512 1,024
m 16 16 32 64
nlist 32,768 32,768 32,768 32,768
Raw vectors (GB) 384 512 4,096 8,192

PQ and vec ID (GB) 24 24 40 712
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Evaluation settings

AMD Alveo U250 FPGA (16 nm) equipped with 64 GB of DDR4
memory (4 channels x 16 GB).

CPU-based vector search system with equivalent memory capacity (64
GB) and an 8-core AMD EPYC 7313 processor (7 nm) with a base
frequency of 3.0 GHz and a max turbo frequency of 3.7 GHz.

NVIDIA RTX 3090 GPUs (8nm) with 24 GB GDDR6X memory.



Vector search performance (SIFT dataset)
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FPGA-GPU solution achieves 1.82~16.59x speedup over CPU across datasets
FPGA-GPU solution achieves up to 3.87x speedup over FPGA-CPU
Chameleon can take advantage of existing GPUs
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End-to-end RALM latency

Vector search setting: CPU only versus GPU + FPGA
LLM inference setting: always use GPU
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1.98x end-to-end speedup in latency



Latency (ms)

Latency (ms)

End-to-end RALM latency
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Disaggregation is required to maximize utilizations and meet demands
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Conclusion

Retrieval augmentation will drive the next-generation LLMs

Key design principles for RALM systems: heterogeneity and disaggregation
Chameleon: prototype those principles on CPUs, GPUs, and FPGAs

Up to 2.16x latency reduction and up to 3.18x throughput improvements

Preprint available: https://arxiv.org/pdf/2310.09949.pdf
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Language Models

A generative large language model (LLM) is a machine learning model
trained to predict the probability of a sequence of words.

n

The cat sat on the ——>» @

| | \

Prediction
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What about the compression ratio?

Common Crawl: 200~300 billions of web pages

translates to 200~300 TB text data assuming | KB per page
GPT3: 175 billion parameters

350 GB using floatl6
|000x compression rate!

Learns roughly rather than precisely



World Knowledge vs Linguistic Structures

established
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ETH Zurich was > founded
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Sentence found on: https://en.wikipedia.org/wiki/ETH_Zurich
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World Knowledge vs Linguistic Structures

ETH Zurich was > founded

Sentence found on: https://en.wikipedia.org/wiki/ETH_Zurich
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World Knowledge vs Linguistic Structures

Swiss government

7

ETH Zurich was founded by the > City of Zurich

\ European Union

Sentence found on: https://en.wikipedia.org/wiki/ETH_Zurich
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World Knowledge vs Linguistic Structures

Swiss government

7

ETH Zurich was founded by the

Sentence found on: https://en.wikipedia.org/wiki/ETH_Zurich
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RETRO model architecture
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Borgeaud, Sebastian, et al. "Improving language models by retrieving from trillions of
tokens." International conference on machine learning. PMLR, 2022.
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KNN-LM model architecture

Training Contexts Targets || Representations Distances Nearest k Normalization Aggregation
C; v; ki = f(ci) d; = d(q, k;) p(ki) x exp(—d,;) PNN(Y) 29‘ Ly=uvip(ki)
Obama was senator for | lllinois @00O® —> 4 Hawaii |3 |—> Hawaii |0.7 Hawaii | 0.8
Barack is married to | Michelle @ I'le —> 100 lllinois |4 |—>  Illinois |0.2 lllinois | 0.2
Obama was born in | Hawaii @O —> 5 Hawaii |5 — Hawaii|0.1 l
Obama is a native of | Hawaii @000 — 3 Classification Interpolation
riyy) P(y) = ApkaN(y) + (1= A)pLa(y)
Test Context Target Representation B B
T q = f(z) Hawaii |0.2 Hawaii | 0.6
lllinois |0.2 —™ lllinois | 0.2
Obama’s birthplace is ? @O0O® >
Khandelwal, Urvashi, et al. "Generalization through memorization: Nearest neighbor language
models." arXiv preprint arXiv:1911.00172 (2019).
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Inverted-file (IVF) index

Training: cluster database vectors into IVF lists



Inverted-file (IVF) index

database
vectors

Training: cluster database vectors into IVF lists
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Inverted-file (IVF) index
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Searching: scan only a subset of IVF lists
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Inverted-file (IVF) index
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Searching: scan only a subset of IVF lists
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Inverted-file (IVF) index
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Searching: scan only a subset of IVF lists
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Product quantization (PQ): training

g
1

Original database vectors

Yo=L[11.3,-7.2, ..., 25.9]
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Quantized vectors: PQ codes
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D*=D/m
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}M

Quantize the vectors to a few bytes of PQ-codes



Product quantization (PQ): training

Original database vectors Database sub-vectors
Yo=[11.3,-7.2, ..., 25.9] @ Yoo | Yor | = | Yoo
N "es _— ar N
Yna=[-11.7,02, ...,-6.3] Yaro | Yarr | = | Ynaoes
\ NS / Rf_J
D D*=D/m
Quantized vectors: PQ codes Sub-vector centroids
17 89 255 Coo | Cox | Copes
N e e M
55 181 e 26 C-1,0 C-1,1 "t Ch1-1,0%-1
D*=D/m

Quantize the vectors to a few bytes of PQ-codes



Product quantization (PQ): training

Original database vectors
Y,=[11.3,-7.2,...,25.9]

Yon=1-11.7,0.2, ..., -6.3]

. J
N\

D

N {
Quantized vectors: PQ codes

17 89 255
N
55 181 26

Database sub-vectors

Yo,0 Yo, Yo,01
yN-1,0 yN-1,1 "t yN-1,D*-1
——
@] Dp*=D/m

Sub-vector centroids

Co0 Co,1 Co,p"-1
Cm-1,0 | Cm-1,1 Chv-1,0°-1
D*=D/m

}M

Quantize the vectors to a few bytes of PQ-codes
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Product quantization (PQ): training

Original database vectors

Database sub-vectors

Y,=[113,-7.2,...,25.9] Yoo Yo Yo.0-1
N { } N
Yye=[-11.7,0.2, ...,-6.3] Yn-1.0 Yn-11 YN-1,0%1
§ ~ ) ® ——/
D / D*=D/m

Quantized vectors: PQ codes Sub-vector centroids

17 89 255 ® Coo | Co- Co.00-
N - M
55 1 81 26 cM-1,0 cM-1 ,1 CM-1 ,D*-1
D*=D/m

Quantize the vectors to a few bytes of PQ-codes



Product quantization (PQ): searching

1

Quantized vectors: PQ codes

17

89

255

Sub-vector centroids

55

181

26

Query vector

q

l Query sub-vectors

Co Co,1 Co,pt-1
Cm10 | Cm.1,1 Ci-1,0%1
D*=D/m

Distance lookup table

9

a,

Q-1

——
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do,o do,1 do,D*-1
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}M
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Construct distance lookup tables based on PQ-codes



Product quantization (PQ): searching

{

Quantized vectors: PQ codes

Sub-vector centroids

Coo Co,1 Co.pr1
Cv10 | Cwmot T Cw1,01
®| obm

Distance lookup table

17 89 255
55 181 26
Query vector
q
Query sub-vectors
Yo d; Op-1
D*=D/m

do,o do,1 dO,D"-1
d N-1,0 d N-1,1 d N-1,D*-1
—

scalar

}M
}c

Construct distance lookup tables based on PQ-codes



Product quantization (PQ): searching

g

Quantized vectors: PQ codes

Sub-vector centroids

Coo Co,1 Co,p"-1
Ci-1,0 Cp-1,1 Cy1-1,0°-1
D*=D/m

Distance lookup table

17 89 255
55 181 26
Query vector
q
Query sub-vectors
Y d; Q-1
D*=D/m

do,o do,1 dO,D*-1
d N-1,0 d N-1,1 d N-1,D*-1
—

scalar

}M
}c

Construct distance lookup tables based on PQ-codes



System requirements for efficient RALM inference

Both LLM inference and vector search should be fast and efficient

Amdabhl’s law: performance gains achieved by accelerating one component are
limited by the proportion of execution time of that component

So far, many work has been focused on LLM acceleration

Flexibility to accommodate diverse RALM configurations
Model architectures: decoder-only, encoder-decoder
Retrieval intervals: once per token generation step ~ only once per sequence
Various model and database sizes



Approximate hierarchical priority queue
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Key design insights of the near-memory accelerator

|. PQ decoding units can rapidly process quantized database vectors

2. The approximate hierarchical priority queue architecture offers high

throughput while being resource-efficient
3. Operate on the physical address space to avoid virtualization overhead

4.Search workloads balanced across different channels and nodes



Compute distance to PQ codes

11/17/23

m-byte PQ codes
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Systolic Priority Queue

@) —@) (D—@) &H—O
min(37, 16)
Input=16 —*@ @ @ @ @

@ @ Cycle 2

min(25, 23)

Input=23 —»(28) (17) (12) &)

@ @ Cycle 4
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Approximate hierarchical priority queue
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Evaluation settings

Vector search hardware combinations:
CPU only

GPU (
CPU (
GPU (

VF index) + CPU (PQ)
VF index) + FPGA (PQ)
VF index) + FPGA (PQ)



ChamVS vector search scalability

Great scalability thanks to the low latency variance per ChamVS
disaggregated memory node

g 100 -

g median, b=1, incr=54.5% 99th, b=1, incr=2.8%

% 50 - median, b=64, incr=7.9% 99th, b=64, incr=0.1%

= Dataset: SYN-512 Close median and 99th latency (b = 1)

e . . . = . .
1 2 4 8 16 32 64 128

Number of FPGA-based Disaggregated Memory Nodes
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FPGA resource consumptions

The ChamVS near-memory accelerator consumes little FPGA resources
on AMD Alveo U250

Can deploy it on FPGAs with more memory channels to further improve
performance and cost efficiency

Dataset LUT FF BRAM URAM DSP
SIFT 253% 162% 13.7% 4.4% 12.2%
Deep 237% 154% 13.0% 4.4% 10.4%
SYN-512 232% 15.5% 232% 4.4% 8.4%
SYN-1024 280% 19.0% 3577% 4.4% 11.9%




RALM Latency - Large models

Latency (ms)

Latency (ms)

16CPU-1GPU 2FPGA-1GPU Dec-L, Interval=1
150 -
100 -
50 -
0 100 200 300 400 500 10-3 10-2 10-1
Time (token) steps Prob. density
16CPU-1GPU 2FPGA-1GPU EncDec-L, Interval=64
150 -
100 A
0 100 200 300 400 500 1(';—‘3”'1'3—‘2“13—'1'

Time (token) steps

Prob. density

Latency (ms)

Latency (ms)

16CPU-1GPU 2FPGA-1GPU EncDec-L, Interval=8
150 -
100 A
0 100 200 300 400 500 1073 1072 107!
Time (token) steps Prob. density
16CPU-1GPU 2FPGA-1GPU EncDec-L, Interval=512
120 -
100 -
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0 100 200 300 400 500 10721071 10°

Time (token) steps

Prob. density



RALM Throughput - Large models

Up to 3.18x speedup

8CPU-1GPU 1FPGA-1GPU

— 4000 4
59 3121.4 3162.5
a & 2468.9 27552 r =
L~ =
2 v 2000 - 1719.2
(@]
2 2 609 1 941;4
= 9 191.8 —

= 0 = | | 1 1

Dec-S EncDec-S EncDec-S EncDec-S
Interval=1 Interval=8 Interval=64 Interval=512
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RALM Throughput - Large models

Up to 2.34x speedup
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