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Advancements of Large language models (LLMs)
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Better LLM quality relies on more parameters

Source: https://indiaai.gov.in/article/the-future-of-large-language-models-llms-strategy-opportunities-and-challenges
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LLM tries to compress textual knowledge into its parameters

Why more parameters?
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High training and inference cost

Cannot edit the knowledge without further training
Does not know the latest news

Hard to delete knowledge already learned from the training set

No model personalization based on private knowledge

But there are serious problems by simply scaling up…
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Retrieval-augmented generation as a rescue
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Reliability

reducing hallucinations by referencing external knowledge

Updatability

the external database can be easily updated (insertion, deletions, etc.)

Efficiency

achieving superior generation quality with much fewer parameters

Retrieval-Augmented Language Models (RALM)

11/17/23 Systems Group, D-INFK, ETH Zurich 9



Vector search: problem definition
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Vector search: problem definition
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Vector search: problem definition
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Inverted-file (IVF) index
prune the search space

Product quantization (PQ)
quantize database vectors
speedup distance computation

IVF-PQ for large-scale ANNS
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CPUs: slow at processing PQ codes
too many cache accesses: twice per byte
instruction dependencies: computation depends on the decoded data
1 GB/s per CPU core

Mapping large-scale search to CPUs
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GPUs are prohibitively expensive at scale
H100 80 GB: $30K
GPU cluster with 1 TB memory: $375K

The high bandwidth of GPUs is not fully leveraged
multiple pass of read and write to the memory
both PQ decoding and K-selection consume a lot of shared memory  

The GPU architecture is not tailored for PQ
waste of chip resources and energy

Mapping large-scale search to GPUs
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Both LLM inference and vector search should be fast and efficient

Principle 1: Accelerator heterogeneity

More research should be done on designing vector search accelerators

Proposed RALM system design principles
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How are these accelerators connected?
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Monolithic design: installing a certain number of LLM accelerators 
and retrieval accelerators on a same server 

not feasible for large databases

cannot maximize accelerator utilizations due to the many RALM
configurations such as retrieval intervals and model sizes



Both LLM inference and vector search should be fast and efficient

Principle 1: Accelerator heterogeneity

More research should be done on designing vector search accelerators

Proposed RALM system design principles
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Flexibility to accommodate diverse RALM configurations

Principle 2: Accelerator disaggregation

Various performance bottlenecks and system requirements across RALMs



Chameleon overview
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Accelerated disaggregated memory node
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Rapidly processing quantized database vectors



Accelerated disaggregated memory node
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High-throughput and resource-efficient K-selection



Accelerated disaggregated memory node
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Direct access to the network, bypassing PCIe



Accelerated disaggregated memory node
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Operate on the physical address space; load-balance across channels



Evaluation settings

Various model architectures, sizes, and retrieval intervals
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Evaluation settings

Vector search benchmarks of different dimensionalities
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Evaluation settings

AMD Alveo U250 FPGA (16 nm) equipped with 64 GB of DDR4 
memory (4 channels x 16 GB).

CPU-based vector search system with equivalent memory capacity (64 
GB) and an 8-core AMD EPYC 7313 processor (7 nm) with a base 
frequency of 3.0 GHz and a max turbo frequency of 3.7 GHz.

NVIDIA RTX 3090 GPUs (8nm) with 24 GB GDDR6X memory.
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Vector search performance (SIFT dataset)
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8.43x
4.35x

2.42x

2.25x

FPGA-GPU solution achieves 1.82~16.59x speedup over CPU across datasets
FPGA-GPU solution achieves up to 3.87x speedup over FPGA-CPU

Chameleon can take advantage of existing GPUs



Vector search setting: CPU only versus GPU + FPGA

LLM inference setting: always use GPU

End-to-end RALM latency

1.98x end-to-end speedup in latency
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End-to-end RALM latency
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Disaggregation is required to maximize utilizations and meet demands



Retrieval augmentation will drive the next-generation LLMs

Key design principles for RALM systems: heterogeneity and disaggregation

Chameleon: prototype those principles on CPUs, GPUs, and FPGAs

Up to 2.16x latency reduction and up to 3.18x throughput improvements

Preprint available: https://arxiv.org/pdf/2310.09949.pdf

Conclusion
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Backup slides
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A generative large language model (LLM) is a machine learning model 
trained to predict the probability of a sequence of words.

Language Models

11/17/23 Systems Group, D-INFK, ETH Zurich 36



Common Crawl: 200~300 billions of web pages

translates to 200~300 TB text data assuming 1KB per page

GPT3: 175 billion parameters

350 GB using float16

1000x compression rate!

Learns roughly rather than precisely

What about the compression ratio?
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Sentence found on: https://en.wikipedia.org/wiki/ETH_Zurich

founded
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ETH Zurich was _______

World Knowledge vs Linguistic Structures

established

the

https://en.wikipedia.org/wiki/ETH_Zurich
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Sentence found on: https://en.wikipedia.org/wiki/ETH_Zurich
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ETH Zurich was founded by the _______

World Knowledge vs Linguistic Structures

City of Zurich

Swiss government

European Union
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Swiss government

European Union
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RETRO model architecture

Borgeaud, Sebastian, et al. "Improving language models by retrieving from trillions of 
tokens." International conference on machine learning. PMLR, 2022.
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kNN-LM model architecture
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Khandelwal, Urvashi, et al. "Generalization through memorization: Nearest neighbor language 
models." arXiv preprint arXiv:1911.00172 (2019).



Inverted-file (IVF) index

Training: cluster database vectors into IVF lists
11/17/23 Systems Group, D-INFK, ETH Zurich 44



Training: cluster database vectors into IVF lists

Inverted-file (IVF) index
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Searching: scan only a subset of IVF lists

Inverted-file (IVF) index
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Searching: scan only a subset of IVF lists

Inverted-file (IVF) index
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Searching: scan only a subset of IVF lists

Inverted-file (IVF) index

11/17/23 Systems Group, D-INFK, ETH Zurich 48



Product quantization (PQ): training

Quantize the vectors to a few bytes of PQ-codes
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Product quantization (PQ): training
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Product quantization (PQ): training

Quantize the vectors to a few bytes of PQ-codes
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Product quantization (PQ): searching

Construct distance lookup tables based on PQ-codes
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Product quantization (PQ): searching

Construct distance lookup tables based on PQ-codes
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Product quantization (PQ): searching

Construct distance lookup tables based on PQ-codes
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Both LLM inference and vector search should be fast and efficient
Amdahl’s law: performance gains achieved by accelerating one component are 
limited by the proportion of execution time of that component
So far, many work has been focused on LLM acceleration

System requirements for efficient RALM inference
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Flexibility to accommodate diverse RALM configurations
Model architectures: decoder-only, encoder-decoder
Retrieval intervals: once per token generation step ~ only once per sequence
Various model and database sizes



Approximate hierarchical priority queue
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1. PQ decoding units can rapidly process quantized database vectors

2.The approximate hierarchical priority queue architecture offers high

throughput while being resource-efficient

3. Operate on the physical address space to avoid virtualization overhead

4. Search workloads balanced across different channels and nodes

Key design insights of the near-memory accelerator
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Compute distance to PQ codes
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Systolic Priority Queue
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Approximate hierarchical priority queue

11/17/23 Systems Group, D-INFK, ETH Zurich 61



Evaluation settings

Vector search hardware combinations:

CPU only

GPU (IVF index) + CPU (PQ)

CPU (IVF index) + FPGA (PQ)

GPU (IVF index) + FPGA (PQ)
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Great scalability thanks to the low latency variance per ChamVS
disaggregated memory node

ChamVS vector search scalability
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The ChamVS near-memory accelerator consumes little FPGA resources
on AMD Alveo U250

Can deploy it on FPGAs with more memory channels to further improve
performance and cost efficiency

FPGA resource consumptions
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RALM Latency - Large models
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RALM Throughput - Large models
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Up to 3.18x speedup



RALM Throughput - Large models
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Up to 2.34x speedup


